1 Introduction

On the Euclidean space \(\mathbb {R}^n\), the Ornstein–Uhlenbeck operator

$$\begin{aligned} L = -\frac{1}{2} \Delta + x\cdot \nabla \end{aligned}$$

is associated with the Gaussian measure

$$\begin{aligned} d\gamma (x) = \pi ^{-n/2} e^{-|x|^2}dx \end{aligned}$$

by the Dirichlet form

$$\begin{aligned} \int _{\mathbb {R}^n} (Lf) g \, d\gamma = \frac{1}{2} \int _{\mathbb {R}^n} \nabla f \cdot \nabla g \, d\gamma , \quad f,g\in C^\infty _0(\mathbb {R}^n) . \end{aligned}$$

It has discrete spectrum \(\sigma (L) = \{ 0,1,2,\ldots \}\) on \(L^2(\gamma )\), and an orthonormal basis of eigenfunctions is given by Hermite polynomials \(h_\beta \), \(\beta \in \mathbb {N}^n\), so that \(Lh_\beta = |\beta | h_\beta \). Moreover, it generates a (positive) diffusion semigroup on \(L^2(\gamma )\) which can be expressed as

$$\begin{aligned} e^{-tL}f(x) = \int _{\mathbb {R}^n} M_t(x,y) f(y) \, d\gamma (y) , \quad t>0 , \end{aligned}$$

by means of the Mehler kernel (see [12])

$$\begin{aligned} M_t(x,y) = \frac{1}{(1-e^{-2t})^{n/2}} \exp \left( -\frac{e^{-t}}{1-e^{-2t}} |x-y|^2 \right) \exp \left( \frac{e^{-t}}{1+e^{-t}} (|x|^2 + |y|^2) \right) . \end{aligned}$$

The semigroup is contractive on \(L^p(\gamma )\) for each \(1\le p \le \infty \), and acts conservatively so that \(e^{-tL}1 = 1\). Therefore, Stein’s theory [13] is applicable in studying the boundedness of spectral multipliers \(\phi (L)\) defined as \(\phi (L)h_\beta = \phi (|\beta |) h_\beta \) for \(\beta \in \mathbb {N}^n\). More precisely, [13, Corollary 3, p. 121] guarantees \(L^p(\gamma )\)-boundedness with \(1 < p < \infty \), for any spectral multiplier of ‘Laplace transform type’, i.e. of the form

$$\begin{aligned} \phi (\lambda ) = \lambda \int _0^\infty \Phi (t) e^{-t\lambda } \, dt , \quad \lambda \ge 0, \end{aligned}$$

where \(\Phi : (0,\infty ) \rightarrow \mathbb {C}\) is bounded. In particular, the imaginary powers \(L^{i\tau }\), \(\tau \in \mathbb {R}\), arising from \(\Phi (t) = t^{-i\tau } / \Gamma (1-i\tau )\) are bounded on \(L^p(\gamma )\). The general theory was improved by Cowling [3] who showed that, for a given \(p\in (1,\infty )\), \(\phi (L)\) is bounded on \(L^p(\gamma )\) as soon as \(\phi \) extends analytically to a sector of angle greater than \(\pi |1/p - 1/2|\). (See also the more recent development [2].)

The \(L^1\)-theory in the Gaussian setting is quite problematic. Although finite linear combinations of Hermite polynomials are dense in \(L^1(\gamma )\), the spectral projections onto their eigenspaces are not \(L^1(\gamma )\)-bounded. Moreover, \(tLe^{-tL}\) is bounded (uniformly) on \(L^p(\gamma )\) only when \(1 < p < \infty \) (see [7, Chap. 5]).

A Gaussian weak (1, 1)-type estimate for spectral multipliers of Laplace transform type was established by García-Cuerva et al. [5]. Moreover, in [4] they showed that requiring analyticity of \(\phi \) in a sector of angle smaller than \(\arcsin |1-2/p|\) will not alone suffice for boundedness of \(\phi (L)\) on \(L^p(\gamma )\). Observing that \(\arcsin |1-2/p| \rightarrow \pi /2\) as \(p\rightarrow 1\) is in line with the fact that the spectrum of L on \(L^1(\gamma )\) is the (closed) right half-plane. Furthermore, \(L^1(\gamma )\)-boundedness of dilation invariant spectral multipliers for L was characterised in [6, Theorem 3.5(ii)].

The main obstruction in developing a metric theory of Hardy spaces in the Gaussian setting arises from the fact that the rapidly decaying measure \(\gamma \) is non-doubling, that is, for every \(t>0\)

$$\begin{aligned} \frac{\gamma (B(x,2t))}{\gamma (B(x,t))} \longrightarrow \infty , \quad as \quad |x|\rightarrow \infty . \end{aligned}$$

Mauceri and Meda overcame this problem in [10] and developed an atomic theory for a Gaussian Hardy space which relies of the fact that the Gaussian measure behaves well locally with respect to the admissibility function

$$\begin{aligned} m(x) = \min (1 , |x|^{-1}) , \quad x\in \mathbb {R}^n . \end{aligned}$$

Indeed, \(\gamma \) is doubling on families of ‘admissible’ Euclidean balls

$$\begin{aligned} \mathscr {B}_\alpha = \{ B(x,t) : 0 < t \le \alpha m(x) \} , \quad \alpha \ge 1, \end{aligned}$$

in the sense that for all \(\lambda \ge 2\) we have

$$\begin{aligned} \gamma (\lambda B) \le e^{4\lambda ^2\alpha ^2} \gamma (B) , \quad B\in \mathscr {B}_\alpha . \end{aligned}$$
(1)

Other natural objects that are suitable for defining Hardy spaces, namely maximal functions and square functions, were studied in the Gaussian setting by Maas et al. In [8] they considered (a versionFootnote 1 of) the admissible conical square function

$$\begin{aligned} Sf(x) = \left( \int _0^{2m(x)} \frac{1}{\gamma (B(x,t))} \int _{B(x,t)} |t^2L e^{-t^2L}f(y)|^2 \, d\gamma (y) \, \frac{dt}{t} \right) ^{1/2} , \quad x\in \mathbb {R}^n, \end{aligned}$$

and showed that it is controlled by a non-tangential semigroup maximal function. The converse inequality was presented in [11] along with a proof that the Riesz transform satisfies \(\Vert \nabla L^{-1/2} f \Vert _1 \lesssim \Vert Sf \Vert _1 + \Vert f \Vert _1\). The benefit of conical objects (as opposed to vertical ones) is the applicability of tent space theory, which in the Gaussian setting was initiated in [9] and further developed by Amenta and Kemppainen [1].

The aim of this paper is to examine the decomposition method presented in [11] and to see what kind of \(L^1\)-estimates one can obtain for spectral multipliers \(\phi (L)f\) in terms of the admissible conical square function Sf and other relevant objects. The hope is that these considerations will help in developing a fully satisfactory theory of Gaussian Hardy spaces.

Theorem

Let

$$\begin{aligned} \phi (\lambda ) = \int _0^\infty \Phi (t) (t\lambda )^2 e^{-t\lambda } \, \frac{dt}{t} , \quad \lambda \ge 0, \end{aligned}$$

where \(\Phi : (0,\infty ) \rightarrow \mathbb {C}\) is twice continuously differentiable and satisfies

$$\begin{aligned} \sup _{0<t<\infty } (|\Phi (t)| + t|\Phi '(t)| + t^2|\Phi ''(t)|) + \int _1^\infty (|\Phi '(t)| + t|\Phi ''(t)|) \, dt < \infty . \end{aligned}$$

Then, for all \(f\in L^1(\gamma )\), we have

$$\begin{aligned} \Vert \phi (L)f \Vert _1 \lesssim \Vert Sf \Vert _1 + \Vert f \Vert _1 + \Vert (1+\log _+ |\cdot |) \, Mf \Vert _1 , \end{aligned}$$

where

$$\begin{aligned} Mf(x) = \sup _{\varepsilon m(x)^2 < t \le 1} |e^{-tL}f(x)|, \quad x\in \mathbb {R}^n , \end{aligned}$$

and \(\varepsilon > 0\) does not depend on f.

Remarks

Several remarks are in order:

  1. (1)

    The term \(\Vert (1+\log _+ |\cdot |) \, Mf \Vert _1\) is highly undesirable for two reasons. Firstly, the maximal operator M is of a non-admissible kind in the sense that it is not restricted to times \(t\lesssim m(\cdot )\). Secondly, the weight factor \((1+\log _+ |\cdot |)\), which arises from the admissibility function m, seems problematic. However, it is difficult to see how the appearance of the term could be avoided. Notice, nevertheless, that \(\Vert (1+\log _+ |\cdot |) \, Mf \Vert _1\) is finite at least if \(f\in L^p(\gamma )\) with \(1 < p < \infty \).

  2. (2)

    The operators in the theorem above are special kind of Laplace type multipliers;

    $$\begin{aligned} \phi (\lambda ) = \int _0^\infty \Phi (t) (t\lambda )^2 e^{-t\lambda } \, \frac{dt}{t} = \lambda \int _0^\infty (\Phi (t) + t\Phi '(t)) e^{-t\lambda } \, dt , \quad \lambda \ge 0, \end{aligned}$$

    and therefore bounded on \(L^p(\gamma )\) when \(1 < p < \infty \). Note that if, in addition, we had

    $$\begin{aligned} \int _0^1 (|\Phi '(t)| + t|\Phi ''(t)|) \, dt < \infty , \end{aligned}$$

    then \(\phi (L)\) would be bounded even on \(L^1(\gamma )\). Indeed, using integration by parts we have

    $$\begin{aligned} \phi (L)f = -\Phi (0)f + \int _0^\infty (2\Phi '(t) + t\Phi ''(t)) e^{-tL}f \, dt \end{aligned}$$

    so that \(\Vert e^{-tL}f \Vert _1 \le \Vert f \Vert _1\) implies

    $$\begin{aligned} \Vert \phi (L)f \Vert _1 \lesssim \left( |\Phi (0)| + \int _0^\infty (|\Phi '(t)| + t|\Phi ''(t)|) \, dt \right) \Vert f \Vert _1 . \end{aligned}$$
  3. (3)

    An example of a multiplier satisfying the conditions of the theorem is the localized imaginary power arising from \(\Phi (t) = t^{i\tau } \chi (t)\), where \(\tau \in \mathbb {R}\) and \(\chi \) is a smooth cutoff with, say, \(1_{(0,1]} \le \chi \le 1_{(0,2]}\). Observe that for \(0 < t \le 1\) we have \(|\Phi '(t)| \eqsim t^{-1}\) and \(|\Phi ''(t)| \eqsim t^{-2}\) so that

    $$\begin{aligned} \int _0^1 (|\Phi '(t)| + t|\Phi ''(t)|) \, dt = \infty . \end{aligned}$$

2 Proof of the Theorem

Strategy The proof of the theorem follows the decomposition method from [11]. Let us begin by introducing a discretized version of the admissibility function

$$\begin{aligned} \widetilde{m}(x) = {\left\{ \begin{array}{ll} 1, &{}|x|<1, \\ 2^{-k}, &{}2^{k-1} \le |x| < 2^k , \quad k\ge 1, \end{array}\right. } \end{aligned}$$

and write \(\widetilde{\mathscr {B}}_\alpha \) for the associated family of admissible balls. From \(\widetilde{m} \le m \le 2\widetilde{m}\) it follows that \(\widetilde{\mathscr {B}}_\alpha \subset \mathscr {B}_\alpha \subset \widetilde{\mathscr {B}}_{2\alpha }\). This discretization is relevant for Proposition 7.

We define the Gaussian tent space adapted to this new admissibility function as the space \(\mathfrak {t}^1(\gamma )\) of functions u on the admissible region \(D = \{ (y,t)\in \mathbb {R}^n \times (0,\infty ) : 0 < t < \widetilde{m}(y) \}\) for which

$$\begin{aligned} \Vert u \Vert _{\mathfrak {t}^1(\gamma )} = \int _{\mathbb {R}^n} \left( \iint _{\Gamma (x)} |u(y,t)|^2 \, \frac{d\gamma (y) \, dt}{t\gamma (B(y,t))} \right) ^{1/2} d\gamma (x) < \infty . \end{aligned}$$

Here \(\Gamma (x) = \{ (y,t)\in D : |y-x| < t \}\) is an admissible cone at \(x\in \mathbb {R}^n\).

The main theorem of [1] guarantees that every \(u\in \mathfrak {t}^1(\gamma )\) admits a decomposition into ‘atoms’ \(a_k\) so that

$$\begin{aligned} u = \sum _k \lambda _k a_k , \quad with \quad \sum _k |\lambda _k| \eqsim \Vert u \Vert _{\mathfrak {t}^1(\gamma )} . \end{aligned}$$

Recall that atom is a function a on D associated with a ball \(B\in \widetilde{\mathscr {B}}_5\) for which \(supp \, a \subset B\times (0,r_B)\) and

$$\begin{aligned} \left( \int _0^{r_B} \Vert a(\cdot , t) \Vert _2^2 \, \frac{dt}{t} \right) ^{1/2} \le \gamma (B)^{-1/2} . \end{aligned}$$

For such a function, \(\Vert a \Vert _{\mathfrak {t}^1(\gamma )} \lesssim 1\).

Let then \(\phi \) and \(\Phi \) be as in Theorem and let f be a polynomial. For any \(\delta , \delta ' > 0\) and \(\kappa \ge 1\) we can decompose \(\phi (L)f\) into three parts as follows:

$$\begin{aligned} \phi (L)f&= c_{\delta ,\delta '} \int _0^\infty \Phi ((\delta '+\delta )t^2) (t^2L)^2 e^{-(\delta '+\delta )t^2L} f \, \frac{dt}{t} \\&= c_{\delta ,\delta '} \left( \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2L e^{-\delta ' t^2L} u(\cdot , t) \, \frac{dt}{t} \right. \\&\left. \quad +\, \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2L e^{-\delta ' t^2L} (1_{D^c}(\cdot , t) t^2L e^{-\delta t^2L}f) \, \frac{dt}{t} \right. \\&\left. \quad +\,\int _{\widetilde{m}(\cdot )/\kappa }^\infty \widetilde{\Phi }(t^2) (t^2L)^2 e^{-(\delta '+\delta )t^2L}f \, \frac{dt}{t} \right) \\&=: c_{\delta ,\delta '} ( \pi _1 u + \pi _2 f + \pi _3 f ), \end{aligned}$$

where \(u(\cdot , t) = 1_D(\cdot , t) t^2L e^{-\delta t^2L}f\) and \(\widetilde{\Phi } (t) = \Phi ((\delta '+\delta )t)\).

Now

$$\begin{aligned} \Vert \phi (L)f \Vert _1 \le |c_{\delta ,\delta '} | (\Vert \pi _1 u \Vert _1 + \Vert \pi _2 f \Vert _1 + \Vert \pi _3 f \Vert _1) , \end{aligned}$$

and the proof consists of estimating these three terms separately for sufficiently small \(\delta > \delta ' > 0\) and large enough \(\kappa \ge 1\).

Analysis of the three parts Proposition 2 deals with

$$\begin{aligned} \pi _1 u = \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2L e^{-\delta ' t^2L} u(\cdot , t) \, \frac{dt}{t} \end{aligned}$$

and relies on the following \(L^2\)\(L^2\)-off diagonal estimate (cf. [11, Proposition 4.2] and [14]).

Lemma 1

There exists a constant \(c_{od} > 0\) such that for \(j=0,1\) we have

$$\begin{aligned} \Vert 1_{E'} (tL)^j e^{-tL} 1_E \Vert _{2\rightarrow 2} \lesssim \exp \left( -\frac{d(E,E')^2}{c_{od}t}\right) , \quad t>0, \end{aligned}$$

whenever \(E,E'\subset \mathbb {R}^n\).

Proposition 2

Let \(\kappa \ge 1\) and \(0 < \delta \le 1\). For sufficiently small \(\delta ' > 0\) we have \(\Vert \pi _1 u \Vert _1 \lesssim \Vert u \Vert _{\mathfrak {t}^1(\gamma )}\). Moreover, the function \(u(\cdot , t) = 1_D (\cdot , t) t^2L e^{-\delta t^2L}f\) satisfies \(\Vert u \Vert _{\mathfrak {t}^1(\gamma )} \lesssim \Vert Sf \Vert _1\).

Proof

By the atomic decomposition, it suffices to show that \(\Vert \pi _1 a \Vert _1 \lesssim 1\) for any atom a associated with a ball \(B\in \widetilde{\mathscr {B}}_5\). Let us consider the annuli \(C_k(B) = 2^{k+1}B \setminus 2^k B\) for \(k\ge 1\), and \(C_0(B) = 2B\). By Hölder’s inequality we have

$$\begin{aligned} \Vert \pi _1 a \Vert _1&= \left\| \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2L e^{-\delta ' t^2L} a(\cdot , t) \, \frac{dt}{t} \right\| _1 \nonumber \\&\le \sum _{k=0}^\infty \gamma (2^{k+1}B)^{1/2} \left\| 1_{C_k(B)} \int _0^{r_B\wedge 2^{-k-1}/\kappa } \widetilde{\Phi } (t^2) t^2L e^{-\delta ' t^2L} a(\cdot , t) \, \frac{dt}{t} \right\| _2 . \end{aligned}$$
(2)

We estimate the norms on the right hand side of (2) by pairing with a \(g\in L^2(\gamma )\) and relying on the assumption that \(\Phi \) is bounded:

$$\begin{aligned} \begin{array}{ll} &{}\left| \int _{\mathbb {R}^n} \int _0^{r_B\wedge 2^{-k-1}/\kappa } \widetilde{\Phi } (t^2) t^2Le^{-\delta ' t^2L} a(\cdot , t) \, \frac{dt}{t} \, g \, d\gamma \right| \\ &{}= \left| \int _0^{r_B\wedge 2^{-k-1}/\kappa } \int _B a(\cdot , t) \widetilde{\Phi } (t^2) t^2Le^{-\delta ' t^2L} g \, d\gamma \, \frac{dt}{t} \right| \\ &{}\lesssim \left( \int _0^{r_B} \Vert a(\cdot , t) \Vert _2^2 \, \frac{dt}{t} \right) ^{1/2} \left( \int _0^{r_B} \Vert 1_B t^2L e^{-\delta ' t^2L} g \Vert _2^2 \, \frac{dt}{t} \right) ^{1/2} . \end{array} \end{aligned}$$

Now, for g supported in \(C_0(B) = 2B\) we have

$$\begin{aligned} \begin{array}{ll} \left( \int _0^{r_B} \Vert 1_B t^2L e^{-\delta ' t^2L}g \Vert _2^2 \, \frac{dt}{t} \right) ^{1/2} &{}= \left( \sum \limits _{\beta \in \mathbb {N}^n} |\langle g , h_\beta \rangle |^2 \int _0^{r_B} (t^2|\beta |)^2 e^{-2\delta ' t^2|\beta |} \, \frac{dt}{t} \right) ^{1/2} \\ &{}\lesssim \Vert g \Vert _2 . \end{array} \end{aligned}$$

When \(k\ge 1\) we have \(d(C_k(B),B) \ge (2^k - 1)r_B \ge 2^{k-1} r_B\) and so, by Lemma 1, it follows that for \(0 < t \le r_B\),

$$\begin{aligned} \Vert 1_B t^2L e^{-\delta ' t^2L} 1_{C_k(B)} \Vert _{2\rightarrow 2} \lesssim \exp \left( -\frac{4^{k-1}r_B^2}{c_{od}\delta ' t^2} \right) \lesssim \exp \left( -\frac{4^{k-2}}{c_{od}\delta '} \right) \left( \frac{t}{r_B}\right) ^{1/2}. \end{aligned}$$

Hence, for g supported in \(C_k(B)\), \(k\ge 1\), we have

$$\begin{aligned} \left( \int _0^{r_B} \Vert 1_B t^2L e^{-\delta ' t^2L} g \Vert _2^2 \, \frac{dt}{t}\right) ^{1/2} \lesssim \exp \left( -\frac{4^{k-2}}{c_{od}\delta '} \right) \Vert g \Vert _2 . \end{aligned}$$

We have therefore shown that, for \(k\ge 0\),

$$\begin{aligned} \left\| 1_{C_k(B)} \int _0^{r_B} \widetilde{\Phi } (t^2) t^2L e^{-\delta ' t^2L} a(\cdot , t) \, \frac{dt}{t} \right\| _2 \lesssim \exp \left( -\frac{4^{k-2}}{c_{od}\delta '}\right) \gamma (B)^{-1/2} . \end{aligned}$$

According to the doubling inequality (1), we have \(\gamma (2^{k+1}B)^{1/2} \lesssim e^{2\cdot 4^{k+1} \cdot 25} \gamma (B)^{1/2}\) and therefore

$$\begin{aligned}&\Vert \pi _1 a \Vert _1 \lesssim \sum _{k=0}^\infty \gamma (2^{k+1}B)^{1/2} \exp \left( -\frac{4^{k-2}}{c_{od}\delta '} \right) \gamma (B)^{-1/2}\\&\lesssim \sum _{k=0}^\infty \exp \left( 50\cdot 4^{k+1} - \frac{4^{k-2}}{c_{od}\delta '} \right) \lesssim 1 \end{aligned}$$

as soon as \(\delta ' < 1/(3200c_{od})\). This proves the first claim.

For the second claim, let \(u(\cdot , t) = 1_D (\cdot , t) t^2Le^{-\delta t^2L} f\). We perform a change of variable, \(\delta t^2 = s^2\), i.e. \(t = s / \sqrt{\delta }\) so that

$$\begin{aligned} (y,t)\in \Gamma (x)&\Leftrightarrow |y-x| < t < \widetilde{m}(y) \\&\Leftrightarrow |y-x| < s / \sqrt{\delta } < \widetilde{m}(y) \\&\Leftrightarrow (y,s) \in \Gamma '_{1/\sqrt{\delta }}(x) := \{ (y,s)\in D' : |y-x| < s/\sqrt{\delta } \} , \end{aligned}$$

where \(D' := \{ (y,s) \in \mathbb {R}^n \times (0,\infty ) : s < \sqrt{\delta } \widetilde{m}(y) \}\). Now, change of aperture in the Gaussian tent space on \(D'\) (see [1, Corollary 3.5]) guarantees that

$$\begin{aligned} \Vert u \Vert _{\mathfrak {t}^1(\gamma )}&= \int _{\mathbb {R}^n} \left( \iint _{\Gamma (x)} |t^2L e^{-\delta t^2 L}f(y)|^2 \,\frac{d\gamma (y)\, dt}{t\gamma (B(y,t))} \right) ^{1/2} d\gamma (x) \\&= \int _{\mathbb {R}^n} \left( \iint _{\Gamma '_{1/\sqrt{\delta }} (x)} |\delta ^{-1} s^2 L e^{-s^2L}f(y)|^2 \,\frac{d\gamma (y)\, ds}{s \gamma (B(y,s/\sqrt{\delta }))} \right) ^{1/2} d\gamma (x) \\&\lesssim \int _{\mathbb {R}^n} \left( \iint _{\Gamma '(x)} |s^2L e^{-s^2L}f(y)|^2 \,\frac{d\gamma (y)\, ds}{s \gamma (B(y,s))} \right) ^{1/2} d\gamma (x). \end{aligned}$$

We then observe (see [9, Lemma 2.3]) that for any \(x,y\in \mathbb {R}^n\), \(|y-x| < s < m(y)\) implies \(s < 2m(x)\), and therefore

$$\begin{aligned} \Gamma '(x) \subset \Gamma (x) \subset \bigcup _{0<s<2m(x)} B(x,s) \times \{ s \} . \end{aligned}$$

Moreover, \(\gamma (B(y,s)) \eqsim \gamma (B(x,s))\) when \(|y-x| < s < \delta \widetilde{m}(y)\), and hence

$$\begin{aligned}&\iint _{\Gamma '(x)} |s^2L e^{-s^2L}f(y)|^2 \,\frac{d\gamma (y)\, ds}{s \gamma (B(y,s))}\\&\quad \lesssim \,\int _0^{2m(x)} \frac{1}{\gamma (B(x,s))}\int _{B(x,s)} |s^2L e^{-s^2L}f(y)|^2 \, d\gamma (y) \, \frac{ds}{s} \end{aligned}$$

for every \(x\in \mathbb {R}^n\), which shows that \(\Vert u \Vert _{\mathfrak {t}^1(\gamma )} \lesssim \Vert Sf \Vert _1\) as required.\(\square \)

For \(\pi _2\) and \(\pi _3\) (more precisely, for Proposition 5 and Lemma 6) we need the following two lemmas concerning pointwise kernel estimates.

Lemma 3

Let \(j=0,1\). For all \(x,y\in \mathbb {R}^n\) we have the pointwise kernel estimate

$$\begin{aligned} |t^j \partial _t^j M_t(x,y)| \lesssim t^{-n/2} \exp \left( -\frac{|x-y|^2}{8t} \right) \exp \left( \frac{|x|^2 + |y|^2}{2} \right) , \quad 0 < t \le 1 . \end{aligned}$$

As a consequence, for all \(0 < t \le 1\) we have

$$\begin{aligned} \Vert 1_{E'} (tL)^j e^{-tL} 1_E \Vert _{1\rightarrow \infty } \lesssim t^{-n/2} \exp \left( -\frac{d(E,E')^2}{8t} \right) \sup _{\begin{array}{c} x\in E \\ y\in E' \end{array}} \exp \left( \frac{|x|^2 + |y|^2}{2} \right) , \end{aligned}$$

whenever \(E,E'\subset \mathbb {R}^n\).

Proof

For \(0 < t \le 1\) we have the elementary estimates

$$\begin{aligned} \frac{1}{1-e^{-2t}} \eqsim \frac{1}{t}, \quad \frac{1}{4t} \le \frac{e^{-t}}{1-e^{-2t}} \le \frac{1}{2t}, \quad \frac{1}{8} \le \frac{e^{-t}}{1 + e^{-t}} \le \frac{1}{2} \end{aligned}$$

and the case \(j=0\) follows immediately:

$$\begin{aligned} \begin{array}{ll} M_t(x,y) &{}= \frac{1}{(1-e^{-2t})^{n/2}} \exp \left( -\frac{e^{-t}}{1-e^{-2t}} |x-y|^2 \right) \exp \left( \frac{e^{-t}}{1+e^{-t}} (|x|^2 + |y|^2) \right) \\ &{}\lesssim t^{-n/2} \exp \left( -\frac{|x-y|^2}{4t} \right) \exp \left( \frac{|x|^2 + |y|^2}{2} \right) . \end{array} \end{aligned}$$

For \(j=1\) we calculate:

$$\begin{aligned}&\partial _t M_t(x,y) = \left( -\frac{ne^{-2t}}{1-e^{-2t}} + |x-y|^2 \frac{e^{-t}(1+e^{-2t})}{(1-e^{-2t})^2}\right. \\&\left. - (|x|^2 + |y|^2) \frac{e^{-t}}{(1+e^{-t})^2}\right) M_t(x,y) . \end{aligned}$$

Using the previous case \(j=0\) we then see that

$$\begin{aligned} \begin{array}{ll} |t\partial _t M_t(x,y)| &{}\lesssim \left( 1 + \frac{|x-y|^2}{t} + |x|^2 + |y|^2 \right) M_t(x,y) \\ &{}\lesssim t^{-n/2} \exp \left( -\frac{|x-y|^2}{8t} \right) \exp \left( \frac{|x|^2 + |y|^2}{2} \right) . \end{array} \end{aligned}$$

The consequence is also immediate: for any \(x\in E'\) we have

$$\begin{aligned} \begin{array}{ll} |(tL)^je^{-tL}f(x)| &{}\lesssim t^{-n/2} \int _E \exp \left( -\frac{|x-y|^2}{8t} \right) \exp \left( \frac{|x|^2 + |y|^2}{2}\right) |f(y)| \, d\gamma (y) \\ &{}\lesssim t^{-n/2} \exp \left( -\frac{d(E,E')^2}{8t} \right) \sup _{y\in E} \exp \left( \frac{|x|^2 + |y|^2}{2}\right) \int _E |f(y)| \, d\gamma (y) . \end{array} \end{aligned}$$

\(\square \)

Lemma 4

For \(\alpha \) large enough there exists a constant \(c>0\) such that for all \(x,y\in \mathbb {R}^n\) and all \(0 < t \le 1\) we have

$$\begin{aligned} M_{t/\alpha }(x,y) \lesssim \exp \left( -\frac{|x-y|^2}{ct} \right) \exp \left( \alpha t \min (|x|^2,|y|^2) \right) M_t(x,y) , \end{aligned}$$

and, consequently,

$$\begin{aligned} |t\partial _t M_{t/\alpha }(x,y)| \lesssim \exp \left( \alpha t \min (|x|^2,|y|^2) \right) M_t(x,y) . \end{aligned}$$

Proof

An alternative way to express the Mehler kernel is (see [12])

$$\begin{aligned} M_t(x,y) = \frac{1}{(1-e^{-2t})^{n/2}} \exp \left( -\frac{|e^{-t}x - y|^2}{1-e^{-2t}} \right) e^{|y|^2} . \end{aligned}$$

By [11, Lemma 3.4] for \(\alpha \) large enough we have for all \(x,y\in \mathbb {R}^n\) and all \(0 < t \le 1\) that

$$\begin{aligned} \exp \left( -\frac{|e^{-t/\alpha }x - y|^2}{1-e^{-2t/\alpha }} \right) \le \exp \left( -2\frac{|e^{-t}x - y|^2}{1-e^{-2t}} \right) \exp \left( \frac{t^2\min (|x|^2,|y|^2)}{1-e^{-2t/\alpha }} \right) . \end{aligned}$$

Therefore

$$\begin{aligned} M_{t/\alpha }(x,y) \lesssim \exp \left( -\frac{|e^{-t}x - y|^2}{1-e^{-2t}} \right) \exp \left( \frac{t^2\min (|x|^2,|y|^2)}{1-e^{-2t/\alpha }} \right) M_t(x,y), \end{aligned}$$

where, by symmetry, the first exponential factor can be replaced by

$$\begin{aligned} \exp \left( -\frac{\max (|e^{-t}x - y|^2, |x-e^{-t}y|^2)}{1-e^{-2t}} \right) . \end{aligned}$$

The first claim now follows because for all \(x,y\in \mathbb {R}^n\) and all \(0 < t \le 1\) we have

$$\begin{aligned} |x-y|^2 \lesssim \max (|e^{-t}x - y|^2, |x-e^{-t}y|^2) . \end{aligned}$$

In order to see this, let us assume, with no loss of generality, that \(|x|\le |y|\), and show that \(|x-y|^2 \lesssim |e^{-t}x - y|^2\). Then

$$\begin{aligned} \begin{array}{ll} |x-y|^2 &{}\le e ( e^{-t}|x|^2 - 2e^{-t} x\cdot y + e^{-t}|y|^2) \\ &{}=e(e^{-t}|x|^2 - (1-e^{-t})|y|^2 - 2e^{-t}x\cdot y + |y|^2) , \end{array} \end{aligned}$$

where

$$\begin{aligned} e^{-t}|x|^2 - (1-e^{-t})|y|^2 \le e^{-2t}|x|^2 , \end{aligned}$$

because \(|x| \le |y|\). Indeed,

$$\begin{aligned} e^{-t}|x|^2 - (1-e^{-t})|x|^2 - e^{-2t}|x|^2 =(2e^{-t} - 1 - e^{-2t})|x|^2 , \end{aligned}$$

where \(2e^{-t} - 1 - e^{-2t} \le 0\) for all \(t>0\).

The second claim now follows from the first one since

$$\begin{aligned} \begin{array}{ll} |t\partial _t M_{t/\alpha }(x,y)| &{}\lesssim \left( 1 + \frac{|x-y|^2}{t} + |x|^2 + |y|^2 \right) M_{t/\alpha }(x,y) \\ &{}\lesssim \exp \left( \alpha t \min (|x|^2,|y|^2) \right) M_t(x,y) . \end{array} \end{aligned}$$

Here the first inequality is obtained as in the proof of Lemma 3 (case \(j=1\)).\(\square \)

Let us then consider

$$\begin{aligned} \pi _2 f = \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2L e^{-\delta ' t^2L} (1_{D^c}(\cdot , t) t^2L e^{-\delta t^2L}f) \, \frac{dt}{t} . \end{aligned}$$

Proposition 5

Let \(\kappa \ge 4\). For sufficiently small \(\delta > \delta ' > 0\) we have \(\Vert \pi _2f \Vert _1 \lesssim \Vert f \Vert _1\).

Proof

We begin by observing that if \(t\le \widetilde{m}(x)/4\) and \(t > 2^{-k-1}\) for some \(k\ge 2\), then \(|x| < 2^{k-2}\). Moreover, if \(t\ge \widetilde{m}(y)\) and \(t\le 2^{-k}\), then \(|y| \ge 2^{k-1}\).

We then decompose \(\pi _2f\) (using boundedness of \(\Phi \)) as follows:

$$\begin{aligned} \begin{array}{ll} \Vert \pi _2 f \Vert _1 &{}= \left\| \int _0^{\widetilde{m}(\cdot )/\kappa } \widetilde{\Phi }(t^2) t^2Le^{-\delta ' t^2L} (1_{D^c}(\cdot , t) t^2Le^{-\delta t^2L}f ) \, \frac{dt}{t} \right\| _1 \\ &{}\lesssim \sum \limits _{k=2}^\infty \int _{2^{-k-1}}^{2^{-k}} \Vert 1_{B(0,2^{k-2})} t^2L e^{-\delta ' t^2L} (1_{\mathbb {R}^n\setminus B(0,2^{k-1})} t^2Le^{-\delta t^2L}f ) \Vert _1 \, \frac{dt}{t}\\ &{}\le \sum \limits _{k=2}^\infty \sum \limits _{l=1}^\infty \int _{2^{-k-1}}^{2^{-k}} \Vert 1_{B(0,2^{k-2})} t^2L e^{-\delta ' t^2L} (1_{C_{k+l-1}} t^2Le^{-\delta t^2L}f) \Vert _1 \, \frac{dt}{t} , \end{array} \end{aligned}$$
(3)

where \(C_{k+l-1} := B(0,2^{k+l-1})\setminus B(0,2^{k+l-2})\).

First, by Lemma 4, we choose a \(\delta > 0\) such that for all \(0 < t \le 1\) we have

$$\begin{aligned} |t^2L e^{-\delta t^2L}f(x)| \lesssim \exp \left( \frac{t^2|x|^2}{\delta } \right) |e^{-tL}f(x)| , \quad x\in \mathbb {R}^n . \end{aligned}$$

Hence, for \(2^{-k-1} < t \le 2^{-k}\) we have

$$\begin{aligned} \Vert 1_{C_{k+l-1}} t^2L e^{-\delta t^2L}f \Vert _1 \lesssim \exp \left( \frac{4^{-k} \cdot 4^{k+l-1}}{\delta } \right) \Vert e^{-tL} f \Vert _1 \lesssim \exp \left( \frac{4^{l-1}}{\delta } \right) \Vert f \Vert _1 . \end{aligned}$$

Then, since the distance between \(B(0,2^{k-2})\) and \(C_{k+l-1}\) is at least \(2^{k+l-3}\), we have, by Lemma 3, for \(2^{-k-1} < t \le 2^{-k}\) that

$$\begin{aligned} \begin{array}{ll} \Vert 1_{B(0,2^{k-2})} t^2L e^{-\delta ' t^2L} 1_{C_{k+l-1}} \Vert _{1\rightarrow 1} &{}\lesssim t^{-n} \exp \left( -\frac{4^{k+l-3}}{8\delta ' t^2} \right) \exp \left( \frac{4^{k-2} + 4^{k+l-1}}{2} \right) \\ &{}\lesssim 2^{kn} \exp \left( -\frac{4^{2k+l-5}}{\delta '} + 4^{k+l-1} \right) . \end{array} \end{aligned}$$

Combining the two estimates we see that for \(2^{-k-1} < t \le 2^{-k}\) we have

$$\begin{aligned} \begin{array}{ll} &{}\Vert 1_{B(0,2^{k-2})} t^2L e^{-\delta ' t^2L} (1_{C_{k+l-1}} t^2L e^{-\delta t^2L}f) \Vert _1 \\ &{}\lesssim 2^{kn} \exp \left( -\frac{4^{2k+l-5}}{\delta '} + 4^{k+l-1} + \frac{4^{l-1}}{\delta } \right) \Vert f \Vert _1 \\ &{}= 2^{kn} \exp \left( -4^{k+l+1} \left( \frac{4^{k-6}}{\delta '} - 4^{-2} - \frac{4^{-2}}{\delta } \right) \right) \Vert f \Vert _1 \\ &{}\lesssim \exp (-4^{k+l}) \Vert f \Vert _1 , \end{array} \end{aligned}$$

where in the last step we chose \(\delta ' < \delta \) small enough.

The right-hand side of (3) is therefore dominated by

$$\begin{aligned} \sum _{k=2}^\infty \sum _{l=1}^\infty \exp (-4^{k+l}) \Vert f \Vert _1 \int _{2^{-k-1}}^{2^{-k}} \frac{dt}{t} \lesssim \Vert f \Vert _1 . \end{aligned}$$

\(\square \)

Lemma 6

For any \(\alpha > 0\) we have

$$\begin{aligned} \Vert (e^{-tL}f)|_{t={\widetilde{m}(\cdot )^2/\alpha }} \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$

Moreover, for \(\alpha \) large enough we have

$$\begin{aligned} \Vert (tLe^{-tL}f)|_{t={\widetilde{m}(\cdot )^2/\alpha }} \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$

Proof

Write \(C_0 = B(0,1)\) and \(C_k = B(0,2^k)\setminus B(0,2^{k-1})\) for \(k\ge 1\). Moreover, let \(C_0^* = B(0,2)\), \(C_1^* = B(0,4)\), and \(C_k^* = B(0,2^{k+1})\setminus B(0,2^{k-2})\) for \(k\ge 2\).

We first show that for any \(\alpha > 0\),

$$\begin{aligned} \Vert (e^{-tL}f)|_{t={\widetilde{m}(\cdot )^2}/\alpha } \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$
(4)

Denote \(\varepsilon = 1/\alpha \) for notational convenience. For \(x\in C_k\) we have \(\widetilde{m}(x)^2 = 4^{-k}\) and hence

$$\begin{aligned} \Vert (e^{-tL}f)|_{t=\varepsilon \widetilde{m}(\cdot )^2} \Vert _1 = \sum _{k=0}^\infty \Vert 1_{C_k} e^{-\varepsilon 4^{-k} L} f \Vert _1 . \end{aligned}$$

We split f into \(1_{C_k^*}f\) and \(1_{\mathbb {R}^n\setminus C_k^*} f\), and first estimate

$$\begin{aligned} \sum _{k=0}^\infty \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} (1_{C_k^*}f) \Vert _1 \le \sum _{k=0}^\infty \Vert 1_{C_k^*} f \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$

Fixing an integer N for which \(8\varepsilon \le 4^N\), we use the trivial estimate for \(k=0,1,\ldots , N+3\):

$$\begin{aligned} \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} (1_{\mathbb {R}^n\setminus C_k^*} f) \Vert _1 \le \Vert f \Vert _1 . \end{aligned}$$

For \(k\ge N+4\) we have the decomposition

$$\begin{aligned} \mathbb {R}^n \setminus C_k^* = B(0,2^{k-2}) \cup \bigcup _{l=2}^\infty C_{k+l} . \end{aligned}$$

Observing that \(d(C_k , B(0,2^{k-2})) = 2^{k-2}\) we obtain, by Lemma 3,

$$\begin{aligned} \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} 1_{B(0,2^{k-2})} \Vert _{1\rightarrow 1}\lesssim & {} 2^{kn} \exp \left( - \frac{4^{k-2}}{8\varepsilon 4^{-k}} \right) \exp \left( \frac{4^k + 4^{k-2}}{2} \right) \\\le & {} 2^{kn} \exp ( - 4^{2k-2-N} + 4^k ) \\\lesssim & {} \exp (-4^k) . \end{aligned}$$

Furthermore, since \(d(C_k , C_{k+l}) = 2^{k+l-2}\), Lemma 3 implies that

$$\begin{aligned} \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} 1_{C_{k+l}} \Vert _{1\rightarrow 1}\lesssim & {} 2^{kn} \exp \left( -\frac{4^{k+l-2}}{8\varepsilon 4^{-k}}\right) \exp \left( \frac{4^k + 4^{k+l}}{2} \right) \\\le & {} 2^{kn} \exp ( -4^{2k+l-2-N} + 4^{k+l}) \\\lesssim & {} \exp (-4^{k+l}) . \end{aligned}$$

Therefore,

$$\begin{aligned} \sum \limits _{k=N+4}^\infty \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} (1_{\mathbb {R}^n\setminus C_k^*} f) \Vert _1= & {} \sum \limits _{k=N+4}^\infty \left( \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} (1_{B(0,2^{k-2})} f) \Vert _1 \right. \\&\left. + \sum \limits _{l=2}^\infty \Vert 1_{C_k} e^{-\varepsilon 4^{-k}L} (1_{C_{k+l}} f) \Vert _1 \right) \\\lesssim & {} \sum \limits _{k=N+4}^\infty \left( \exp (-4^k) \Vert f \Vert _1 + \sum \limits _{l=2}^\infty \exp (-4^{k+l})\Vert f \Vert _1 \right) \\\lesssim & {} \Vert f \Vert _1. \end{aligned}$$

We have now proven (4) which includes the first case from the statement of the lemma.

The second case follows by using Lemma 4, which guarantees that there exists an \(\alpha > 0\) such that for all \(x,y\in \mathbb {R}^n\)

$$\begin{aligned} \left| (t\partial _t M_t(x,y))|_{t=\widetilde{m}(x)^2/\alpha } \right| \lesssim \exp \left( \alpha \frac{\widetilde{m}(x)^2}{\alpha } |x|^2 \right) M_{\widetilde{m}(x)^2}(x,y) \lesssim M_{\widetilde{m}(x)^2}(x,y) . \end{aligned}$$

Then

$$\begin{aligned} \Vert (tL e^{-tL}f)|_{t=\widetilde{m}(\cdot )^2 / \alpha } \Vert _1 \lesssim \Vert (e^{-tL}f)|_{t=\widetilde{m}(\cdot )^2} \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$

\(\square \)

Finally, we turn to

$$\begin{aligned} \pi _3f = \int _{\widetilde{m}(\cdot )/\kappa }^\infty \widetilde{\Phi }(t^2) (t^2L)^2 e^{-(\delta '+\delta )t^2L}f \, \frac{dt}{t} . \end{aligned}$$

Proposition 7

Let \(0 < \delta ,\delta ' \le 1/2\). For \(\kappa \) large enough we have \(\Vert \pi _3f \Vert _1 \lesssim \Vert f \Vert _1 + \Vert (1+\log _+ |\cdot |) \, Mf \Vert _1\), where \(Mf(x) = \sup _{\varepsilon m(x)^2<t\le 1} |e^{-tL}f(x)|\) and \(\varepsilon > 0\) does not depend on f.

Proof

Integrating by parts we obtain

$$\begin{aligned}&\int _{\widetilde{m}(\cdot )/\kappa }^\infty \widetilde{\Phi } (t^2) (t^2L)^2 e^{-(\delta '+\delta )t^2L}f \, \frac{dt}{t} \\&\quad = c \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^\infty \widetilde{\Phi } (t) t\partial _t^2 e^{-(\delta '+\delta )tL}f \, dt \\&\quad = c \left[ \widetilde{\Phi } (t) t\partial _t e^{-(\delta '+\delta )tL}f \right] _{t=\widetilde{m}(\cdot )^2/\kappa ^2}^\infty \\&\qquad +\, c' \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^\infty (\widetilde{\Phi } (t) + t\widetilde{\Phi }'(t)) \partial _t e^{-(\delta '+\delta )tL}f \, dt. \end{aligned}$$

Repeating for the last term we get

$$\begin{aligned}&\int _{\widetilde{m}(\cdot )^2/\kappa ^2}^\infty (\widetilde{\Phi } (t) + t\widetilde{\Phi }'(t)) \partial _t e^{-(\delta '+\delta )tL}f \, dt \\&\quad = c \left[ (\widetilde{\Phi } (t) + t\widetilde{\Phi }'(t)) e^{-(\delta '+\delta )tL}f \right] _{t=\widetilde{m}(\cdot )^2/\kappa ^2}^\infty \\&\qquad + \, c' \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^\infty (2\widetilde{\Phi }'(t) + t\widetilde{\Phi }''(t)) e^{-(\delta '+\delta )tL}f \, dt . \end{aligned}$$

Now, having assumed that \(\sup _{0 < t < \infty } (|\Phi (t)| + t|\Phi '(t)|) < \infty \), we may use Lemma 6 to choose \(\kappa \) large enough so that

$$\begin{aligned} \left\| \left[ \widetilde{\Phi } (t) t\partial _t e^{-(\delta '+\delta )tL}f \right] _{t=\widetilde{m}(\cdot )^2/\kappa ^2}^\infty \right\| _1 \lesssim \Vert (tLe^{-(\delta '+\delta )tL}f)|_{t={\widetilde{m}(\cdot )^2/\kappa ^2}} \Vert _1 \lesssim \Vert f \Vert _1 \end{aligned}$$

and

$$\begin{aligned} \left\| \left[ (\widetilde{\Phi } (t) + t\widetilde{\Phi }'(t)) e^{-(\delta '+\delta )tL}f \right] _{t=\widetilde{m}(\cdot )^2/\kappa ^2}^\infty \right\| _1 \lesssim \Vert (e^{-(\delta '+\delta )tL}f)|_{t={\widetilde{m}(\cdot )^2/\kappa ^2}} \Vert _1 \lesssim \Vert f \Vert _1 . \end{aligned}$$

Moreover,

$$\begin{aligned}&\left\| \int _1^\infty (2\widetilde{\Phi }'(t) + t\widetilde{\Phi }''(t)) e^{-(\delta ' +\delta )tL}f \, dt \right\| _1\\&\quad \lesssim \int _1^\infty (|\widetilde{\Phi }'(t)| + t|\widetilde{\Phi }''(t)|) \Vert e^{-(\delta ' +\delta )tL}f \Vert _1 \, dt \\&\quad \lesssim \Vert f \Vert _1 . \end{aligned}$$

Finally, having assumed that \(\sup _{0 < t < \infty } (t|\Phi '(t)| + t^2|\Phi ''(t)|) < \infty \), we get

$$\begin{aligned}&\left| \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^1 (2\widetilde{\Phi }'(t) + t\widetilde{\Phi }''(t)) e^{-(\delta '+\delta )tL}f \, dt \right| \\&\quad \lesssim \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^1 (|\widetilde{\Phi }'(t)| + t|\widetilde{\Phi }''(t)|) \, |e^{-(\delta '+\delta )tL}f| \, dt \\&\quad \lesssim \sup \limits _{\varepsilon m(\cdot )^2<t\le 1} |e^{-tL}f| \int _{\widetilde{m}(\cdot )^2/\kappa ^2}^1 \frac{dt}{t} \\&\quad \lesssim (1 + \log _+ |\cdot |) \, Mf , \end{aligned}$$

where \(\varepsilon > 0\) is chosen small enough depending on \(\delta \), \(\delta '\) and \(\kappa \).\(\square \)