Skip to main content
Log in

Molecular Cloning, Chromosomal Mapping, and Characterization of the Human Cardiac-Specific Homeobox Gene hCsx

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Csx/Nkx2.5, a murine nonclustered homeobox gene expressed primarily in the heart, has significant sequence similarity to the Drosophila tinman gene. Tinman is essential for heart and gut formation in Drosophila. Targeted mutation in the mouse gene, Csx/Nkx25, arrests cardiac development during early embryonic stages, suggesting an evolutionary conservation in cardiogenesis.

Materials and Methods

We have isolated and characterized a human homolog, hCsx, from an adult cardiac cDNA library. Northern blotting and ribonuclease protection was used to define the pattern of expression during normal development and in disease states. Chromosomal localization of the gene was determined by somatic cell hybrid analysis and fluorescent in situ hybridization.

Results

The predicted amino acid sequence of hCsx has 87% overall homology to the murine gene with 100% identity in the homeodomain. The homeodomain sequence of hCsx is 95% identical to its Xenopus homolog, and 65% to tinman. hCsx mRNA was detected exclusively in the heart. hCsx transcript was detected at 12 weeks in human embryonic heart, the earliest time point examined, and was up-regulated 5-fold between 12 and 19 weeks. There was no significant alteration of hCsx message level in the myocardium of 14 patients with end stage heart failure compared to a normal control. The human gene mapped to the distal portion of chromosome 5, the 5q34–q35 region. This defines a new synteny region between human chromosome 5q and the t-locus of mouse chromosome 17, where the mouse Csx gene is located.

Conclusions

hCsx, the human homolog of Drosophila tinman, is expressed in heart in a tissue restricted manner. Distal 5q trisomies produce several phenotypic abnormalities, including a high incidence of congenital heart disease. Isolation of the hCsx gene will allow further studies of mutations in this gene and their potential associations with some forms of congenital heart disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weintraub H, Davis R, Tapscott S, et al. (1991) The myoD gene family: Nodal point during specification of the muscle cell lineage. Science 251: 761–766.

    Article  CAS  PubMed  Google Scholar 

  2. Olson E, Klein WH. (1994) bHLH factors in muscle development: Deadlines and commitment, what to leave in and what to leave out. Gene Dev. 8: 1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rudnicki MA, Schnegelsberg PNJ, Stead RH, Braun T, Arnold HH, Jaenisch R. (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  4. Gehring WJ. (1994) A history of the homeobox. In: Duboule D (ed). Guidebook to the Homeobox Genes. Oxford University Press, Oxford, pp. 3–10.

    Google Scholar 

  5. Gehring WJ, Qian YQ, Billeter M, et al. (1994) Homeodomain-DNA recognition. Cell 78: 211–223.

    Article  CAS  PubMed  Google Scholar 

  6. Burglin TR. (1994) A Comprehensive classification of the homeobox genes. In: Duboule D (ed). Guidebook to the homeobox genes. Oxford University Press, Oxford, pp. 27–71.

    Google Scholar 

  7. Beeman RW. (1987) A homeotic gene cluster in the red flour beetle. Science 327: 247–249.

    Google Scholar 

  8. Gehring WJ, Affolter M, Burglin T. (1994) Homeodomain proteins. Annu. Rev. Biochem. 63: 487–526.

    Article  CAS  PubMed  Google Scholar 

  9. Kim Y, Nirenberg M. (1989) Drosophila NK-homeobox genes. Proc. Natl. Acad. Sci. U.S.A. 86: 7716–7720.

    Article  CAS  PubMed  Google Scholar 

  10. Dohrmann C, Azpiazu N, Frasch M. (1990) A new Drosophila homeobox gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Gene Dev. 4: 2098–2111.

    Article  CAS  PubMed  Google Scholar 

  11. Duboule D. (1994) Description of the homeobox genes. In: Duboule D (ed). Guidebook to the Homeobox Genes. Oxford University Press, Oxford, pp. 75–246.

    Google Scholar 

  12. Price M, Lazzaro D, Pohl T, et al. (1992) Regional expression of the homeobox gene Nkx2.2 in the developing mammalian forebrain. Neuron 8: 241–255.

    Article  CAS  PubMed  Google Scholar 

  13. Azpiazu N, Frasch M. (1993) Tinman and bagpipe: Two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Gene Dev. 7: 1325–1340.

    Article  CAS  PubMed  Google Scholar 

  14. Bodmer R, Jan LY, Jan YN. (1990) A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila. Development 110: 661–669.

    CAS  PubMed  Google Scholar 

  15. Bodmer R. (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729.

    CAS  PubMed  Google Scholar 

  16. Bodmer R. (1995) Heart development in Drosophila and its relation to vertebrates. Trends Cardiovasc. Med. 5: 21–28.

    Article  CAS  PubMed  Google Scholar 

  17. Komuro I, Izumo S. (1993) Csx: A murine homeobox-containing gene specifically expressed in the developing heart. Proc. Natl. Acad. Sci. U.S.A. 90: 8145–8149.

    Article  CAS  PubMed  Google Scholar 

  18. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. (1993) Nkx-2.5: A novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119: 419–431.

    CAS  PubMed  Google Scholar 

  19. Lions I, Parsons LM, Hartley L, Harvey RP. (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2.5. Gene Dev. 9: 1654–1666.

    Article  Google Scholar 

  20. Heikinheimo M, Scandrett JM, Wilson DB. (1994) Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Devel. Biol. 164: 361–373.

    Article  CAS  Google Scholar 

  21. Edmondson DG, Lyons GE, Martin JF, Olson EN. (1994) Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogemesis. Development 120: 1251–1263.

    CAS  PubMed  Google Scholar 

  22. Tamkun MM, Knoth KM, Walbridge JA, Kroemer H, Roden DM, Glover DM. (1991) Molecular cloning and characterization of two voltage-gated K channel cDNA from human ventricle. FASEB J 5: 331–337.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi T, Allen PD, Izumo S. (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Circ. Res. 71: 9–17.

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  25. Church GM, Gilbert W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. U.S.A. 81: 1991–1995.

    Article  CAS  PubMed  Google Scholar 

  26. Shepherd NS, Pfrogner BD, Coulby JN, et al. (1994) Preparation and screening of an arrayed human genomic library generated with the P1 cloning system. Proc. Natl. Acad. Sci. U.S.A. 91: 2629–2633.

    Article  CAS  PubMed  Google Scholar 

  27. Pierce JC, Sauer B, Stenberg N. (1992) A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: Improved cloning efficacy. Proc. Natl. Acad. Sci. U.S.A. 89: 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  28. Wechsler DS, Hawkins AL, Li X, Wang Jabs E, Griffin CA, Dang CV. (1994) Localization of the human Mxi1 transcription factor gene (MXI1) to chromosome 10q24–q25. Genomics 21: 669–672.

    Article  CAS  PubMed  Google Scholar 

  29. Kozak M. (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acid. Res. 15: 8125–8132.

    Article  CAS  PubMed  Google Scholar 

  30. Tonissen KF, Drysdale TA, Lints TJ, Harvey RP, Krieg PA. (1994) XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: Evidence for a conserved role in cardiac development. Devel. Biol. 162: 325–328.

    Article  CAS  Google Scholar 

  31. Himmelbauer H, Harvey RP, Copeland NG, Jenkins NA, Silver LM. (1994) High-resolution genetic analysis of a deletion on mouse chromosome 17 extending over the fused, tufted, and homeobox Nkx2.5 loci. Mamm. Genome 5: 814–816.

    Article  CAS  PubMed  Google Scholar 

  32. Forejt J, Artzt K, Barlow D, et al. (1994) Mouse chromosome 17. Mamm. Genome 5(Suppl): S238–S258.

    CAS  PubMed  Google Scholar 

  33. Moorman AFM, Lamers WH. (1994) Molecular anatomy of the developing heart. Trends Cardiovasc. Med. 4: 257–264.

    Article  CAS  PubMed  Google Scholar 

  34. Litvin J, Montgomery M, Gonzalez-Sanchez A, Bisaha JG, Bader D. (1992) Commitment and differentiation of cardiac myocytes. Trends Cardiovasc. Med. 2: 27–32.

    Article  CAS  PubMed  Google Scholar 

  35. John Sutton MG, Raichlen JS, Reichek N, Huff DS. (1984) Quantitative assesment of right and left ventricular growth in the human fetal heart: A pathoanatomic study. Circulation 70: 935–941.

    Article  Google Scholar 

  36. John Sutton MG, Gewitz MH, Shah B, et al. (1984) Quantitative assessment of growth and function of the cardiac chambers in the normal fetus: A prospective longitudinal echocardiographic study. Circulation 69: 645–654.

    Article  Google Scholar 

  37. Kenny JF, Plappert T, Doubilet P, et al. (1986) Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: A prospective Doppler echocardiographic study. Circulation 74: 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  38. Dietz HCI, Pyeritz RE. (1994) Molecular genetic approaches to the study of human cardiovascular disease. Annu. Rev. Physiol. 56: 763–796.

    Article  CAS  PubMed  Google Scholar 

  39. Nora JJ. (1993) Causes of congenital heart diseases: Old and new modes, mechanisms, and models. Am. Heart J. 125: 1409–1419.

    Article  CAS  PubMed  Google Scholar 

  40. Bouvagnet P, Sauer U, Debrus S, et al. (1994) Deciphering the molecular genetics of congenital heart disease. Herz 19: 119–125.

    CAS  PubMed  Google Scholar 

  41. Zavala C, Jimenez D, Rubio R, Castillo-Sosa ML, Diaz-Arauzo A, Salamanca F. (1992) Isolated congenital heart defects in first degree relatives of 185 affected children. Prospective study in mexico city. Arch. Med. Res. 23: 177–182.

    CAS  PubMed  Google Scholar 

  42. Perry LW, Neill CA, Ferencz C, Rubin JD, Loffredo CA. (1994) Infants with congenital heart disease: the cases. In: Ferencz C, Rubin JD, Loffredo CA, Magee CA (eds). Perspectives in Pediatric Cardiology, Epidemiology of Congenital Heart disease. Futura Publishing Company, Mount Kisco, NY. Vol. 4, pp. 33–62.

    Google Scholar 

  43. Borgaonkar DS. (1991) Chromosomal Variation in Man: A Catalog of Chromosomal Variants and Anomalies. 6th Ed. Wiley-Liss, New York.

    Google Scholar 

  44. McDonald M, Maynard S, Sheldon S, Innis J. (1994) Unbalanced 5;16 translocation in a boy with papillary Thyroid carcinoma. Am. J. Med. Genet. 49: 288–293.

    Article  CAS  PubMed  Google Scholar 

  45. Fryns JP, Kleczkowska A, Kubien E, Petit P, Van den Berghe H. (1984) Cytogenetic survey in couples with recurrent fetal wastage. Hum. Genet. 65: 336–354.

    Article  CAS  PubMed  Google Scholar 

  46. Byrne J, Warburton D, Kline J, Blanc W, Stein Z. (1985) Morphology of early fetal deaths and their chromosomal characteristics. Teratology 32: 297–315.

    Article  CAS  PubMed  Google Scholar 

  47. Lyon MF, Bechtol K. (1977) Derivation of mutant t-haplotypes of the mouse by presumed duplication or deletion. Genet. Res. 30: 63–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ann Burgess, Madhu Prasad, and Mary Richmond for excellent technical assistance; T. Takahashi and P. D. Allen for RNA samples; and N. G. Copeland, T. W. Glover, S. A. Camper, and D. Law for helpful comments on the manuscript. This work was supported in part by grants from the National Institutes of Health and the American Heart Association to SI.

Author information

Authors and Affiliations

Authors

Additional information

Contributed by T. Yamada on October 11, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turbay, D., Wechsler, S.B., Blanchard, K.M. et al. Molecular Cloning, Chromosomal Mapping, and Characterization of the Human Cardiac-Specific Homeobox Gene hCsx. Mol Med 2, 86–96 (1996). https://doi.org/10.1007/BF03402205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402205

Navigation