Skip to main content

Advertisement

Log in

Modeling of large-scale hoxbb cluster deletions in zebrafish uncovers a role for segmentation pathways in atrioventricular boundary specification

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hox genes orchestrate the segmental specification of the muscular circulatory system in invertebrates but it has not proven straightforward to decipher segmental parallels in the vertebrate heart. Recently, patients with HOXB gene cluster deletion were found to exhibit abnormalities including atrioventricular canal defects. Using CRISPR, we established a mutant with the orthologous hoxbb cluster deletion in zebrafish. The mutant exhibited heart failure and atrioventricular regurgitation at 5 days. Analyzing the four genes in the hoxbb cluster, isolated deletion of hoxb1b−/− recapitulated the cardiac abnormalities, supporting hoxb1b as the causal gene. Both in situ and in vitro data indicated that hoxb1b regulates gata5 to inhibit hand2 expression and ultimately is required to pattern the vertebrate atrioventricular boundary. Together, these data reveal a role for segmental specification in vertebrate cardiac development and highlight the utility of CRISPR techniques for efficiently exploring the function of large structural genomic lesions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding authors.

References

  1. Bruneau BG (2003) The developing heart and congenital heart defects: a make or break situation. Clin Genet 63:252–261. https://doi.org/10.1034/j.1399-0004.2003.00066.x

    Article  CAS  PubMed  Google Scholar 

  2. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948. https://doi.org/10.1038/nature06801

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900. https://doi.org/10.1016/s0735-1097(02)01886-7

    Article  PubMed  Google Scholar 

  4. Abdul-Wajid S, Demarest BL, Yost HJ (2018) Loss of embryonic neural crest derived cardiomyocytes causes adult onset hypertrophic cardiomyopathy in zebrafish. Nat Commun 9:4603. https://doi.org/10.1038/s41467-018-07054-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cavanaugh AM, Huang J, Chen J-N (2015) Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Dev Biol 404:103–112. https://doi.org/10.1016/j.ydbio.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Pater E, Clijsters L, Marques SR et al (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136:1633–1641. https://doi.org/10.1242/dev.030924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2–13. https://doi.org/10.1002/bdrc.10002

    Article  CAS  PubMed  Google Scholar 

  8. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835. https://doi.org/10.1038/nrg1710

    Article  CAS  PubMed  Google Scholar 

  9. Prummel KD, Nieuwenhuize S, Mosimann C (2020) The lateral plate mesoderm. Development. https://doi.org/10.1242/dev.175059

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tao Y, Schulz RA (2007) Heart development in Drosophila. Semin Cell Dev Biol 18:3–15. https://doi.org/10.1016/j.semcdb.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad SM (2017) Conserved signaling mechanisms in Drosophila heart development: signaling mechanisms in Drosophila cardiogenesis. Dev Dyn 246:641–656. https://doi.org/10.1002/dvdy.24530

    Article  CAS  PubMed  Google Scholar 

  12. Zaffran S, Kelly RG (2012) New developments in the second heart field. Differentiation 84:17–24. https://doi.org/10.1016/j.diff.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Pajusalu S, Reimand T, Uibo O et al (2015) De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis. Eur J Med Genet 58:336–340. https://doi.org/10.1016/j.ejmg.2015.04.002

    Article  PubMed  Google Scholar 

  14. Rooryck C, Burgelin I, Stef M et al (2008) A 580kb microdeletion in 17q21.32 associated with mental retardation, microcephaly, cleft palate, and cardiac malformation. Eur J Med Genet 51:74–80. https://doi.org/10.1016/j.ejmg.2007.09.003

    Article  PubMed  Google Scholar 

  15. Medina-Martinez O, Bradley A, Ramirez-Solis R (2000) A large targeted deletion of Hoxbl-Hoxb9 produces a series of single-segment anterior homeotic transformations. Develop Biol 13:71–83

    Article  Google Scholar 

  16. Soshnikova N, Dewaele R, Janvier P et al (2013) Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 378:194–199. https://doi.org/10.1016/j.ydbio.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346. https://doi.org/10.1242/dev.121.2.333

    Article  CAS  PubMed  Google Scholar 

  18. Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201. https://doi.org/10.1016/0092-8674(94)90290-9

    Article  CAS  PubMed  Google Scholar 

  19. Bertrand N, Roux M, Ryckebüsch L et al (2011) Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 353:266–274. https://doi.org/10.1016/j.ydbio.2011.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diman NYS-G, Remacle S, Bertrand N et al (2011) A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field. PLoS One 6:e27624. https://doi.org/10.1371/journal.pone.0027624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roux M, Laforest B, Capecchi M et al (2015) Hoxb1 regulates proliferation and differentiation of second heart field progenitors in pharyngeal mesoderm and genetically interacts with Hoxa1 during cardiac outflow tract development. Dev Biol 406:247–258. https://doi.org/10.1016/j.ydbio.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  22. Alkan F, Wenzel A, Anthon C et al (2018) CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol 19:177. https://doi.org/10.1186/s13059-018-1534-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anthon C, Corsi GI, Gorodkin J (2022) CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design. Bioinformatics 38:5437–5439. https://doi.org/10.1093/bioinformatics/btac697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904. https://doi.org/10.1038/nrg1726

    Article  CAS  PubMed  Google Scholar 

  25. McClintock JM, Kheirbek MA, Prince VE (2002) Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339–2354. https://doi.org/10.1242/dev.129.10.2339

    Article  CAS  PubMed  Google Scholar 

  26. Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83:1223–1267. https://doi.org/10.1152/physrev.00006.2003

    Article  CAS  PubMed  Google Scholar 

  27. Perl E, Waxman JS (2019) Reiterative mechanisms of retinoic acid signaling during vertebrate heart development. JDB 7:11. https://doi.org/10.3390/jdb7020011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holler KL, Hendershot TJ, Troy SE et al (2010) Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 341:291–304. https://doi.org/10.1016/j.ydbio.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morikawa Y, Cserjesi P (2008) Cardiac neural crest expression of hand2 regulates outflow and second heart field development. Circ Res 103:1422–1429. https://doi.org/10.1161/CIRCRESAHA.108.180083

    Article  CAS  PubMed  Google Scholar 

  30. Schindler YL, Garske KM, Wang J et al (2014) Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141:3112–3122. https://doi.org/10.1242/dev.106336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yelon D, Ticho B, Halpern ME et al (2000) The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127:2573–2582. https://doi.org/10.1242/dev.127.12.2573

    Article  CAS  PubMed  Google Scholar 

  32. Machon O, Masek J, Machonova O et al (2015) Meis2 is essential for cranial and cardiac neural crest development. BMC Dev Biol 15:40. https://doi.org/10.1186/s12861-015-0093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mosimann C (2015) Chamber identity programs drive early functional partitioning of the heart. Nat Commun 10:8146

    Article  Google Scholar 

  34. Aanhaanen WTJ, Brons JF, Domínguez JN et al (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267–1274. https://doi.org/10.1161/CIRCRESAHA.108.192450

    Article  CAS  PubMed  Google Scholar 

  35. Park JP, Moeschler JB, Berg SZ et al (1992) A unique de novo interstitial deletion del(17) (q21.3q23) in a phenotypically abnormal infant. Clin Genet 41:54–56. https://doi.org/10.1111/j.1399-0004.1992.tb03631.x

    Article  CAS  PubMed  Google Scholar 

  36. Rasmussen M, Vestergaard EM, Graakjaer J et al (2016) 17q12 deletion and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature. Am J Med Genet A 170:2934–2942. https://doi.org/10.1002/ajmg.a.37848

    Article  CAS  PubMed  Google Scholar 

  37. Foo JN, Lee J, Tan LC et al (2016) Large 3-Mb deletions at 22q11.2 locus in Parkinson’s disease and schizophrenia. Mov Disord 31:1924–1925. https://doi.org/10.1002/mds.26822

    Article  CAS  PubMed  Google Scholar 

  38. Jiang T, Zhang X-O, Weng Z, Xue W (2022) Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 40:227–234. https://doi.org/10.1038/s41587-021-01026-y

    Article  CAS  PubMed  Google Scholar 

  39. Souidi A, Jagla K (2021) Drosophila heart as a model for cardiac development and diseases. Cells 10:3078. https://doi.org/10.3390/cells10113078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia G, Preussner J, Chen X et al (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 9:4877. https://doi.org/10.1038/s41467-018-07307-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Makki N, Capecchi MR (2010) Hoxa1 lineage tracing indicates a direct role for Hoxa1 in the development of the inner ear, the heart, and the third rhombomere. Dev Biol 341:499–509. https://doi.org/10.1016/j.ydbio.2010.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holve S, Friedman B, Hoyme HE et al (2003) Athabascan brainstem dysgenesis syndrome. Am J Med Genet 120A:169–173. https://doi.org/10.1002/ajmg.a.20087

    Article  PubMed  Google Scholar 

  43. Makki N, Capecchi MR (2012) Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet 21:26–31. https://doi.org/10.1093/hmg/ddr434

    Article  CAS  PubMed  Google Scholar 

  44. Tischfield MA, Bosley TM, Salih MAM et al (2005) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 37:3

    Article  Google Scholar 

  45. Roux M, Laforest B, Eudes N et al (2017) Hoxa1 and Hoxb1 are required for pharyngeal arch artery development. Mechan Develop 8:1–8

    Article  CAS  Google Scholar 

  46. Nemer G, Qureshi ST, Malo D, Nemer M (1999) Functional analysis and chromosomal mapping of Gata5, a gene encoding a zinc finger DNA-binding protein. Mamm Genome 10:993–999. https://doi.org/10.1007/s003359901146

    Article  CAS  PubMed  Google Scholar 

  47. Tremblay M, Sanchez-Ferras O, Bouchard M (2018) GATA transcription factors in development and disease. Development. https://doi.org/10.1242/dev.164384

    Article  PubMed  PubMed Central  Google Scholar 

  48. Laforest B, Nemer M (2011) GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol 358:368–378. https://doi.org/10.1016/j.ydbio.2011.07.037

    Article  CAS  PubMed  Google Scholar 

  49. Singh MK, Li Y, Li S et al (2010) Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem 285:1765–1772. https://doi.org/10.1074/jbc.M109.038539

    Article  CAS  PubMed  Google Scholar 

  50. Srivastava D, Thomas T, Lin Q et al (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160. https://doi.org/10.1038/ng0697-154

    Article  CAS  PubMed  Google Scholar 

  51. Zeisberg EM, Ma Q, Juraszek AL et al (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531. https://doi.org/10.1172/JCI23769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McFadden DG, Charité J, Richardson JA et al (2000) A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 127:5331–5341. https://doi.org/10.1242/dev.127.24.5331

    Article  CAS  PubMed  Google Scholar 

  53. Ladam F, Sagerström CG (2014) Hox regulation of transcription: More complex(es): Hox Transcription Complexes. Dev Dyn 243:4–15. https://doi.org/10.1002/dvdy.23997

    Article  CAS  PubMed  Google Scholar 

  54. Paige SL, Thomas S, Stoick-Cooper CL et al (2012) A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151:221–232. https://doi.org/10.1016/j.cell.2012.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tong X, Zu Y, Li Z et al (2014) Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nat Commun 5:3153. https://doi.org/10.1038/ncomms4153

    Article  CAS  PubMed  Google Scholar 

  56. Asimaki A, Kapoor S, Plovie E et al (2014) Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci Transl Med 6:240ra74. https://doi.org/10.1126/scitranslmed.3008008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin JT, Pomerantsev EV, Mably JD, MacRae CA (2010) High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiol Genom 42:300–309. https://doi.org/10.1152/physiolgenomics.00206.2009

    Article  CAS  Google Scholar 

  58. Zhang K, Yuan G, Werdich AA, Zhao Y (2020) Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations. Environ Pollut 258:113613. https://doi.org/10.1016/j.envpol.2019.113613

    Article  CAS  PubMed  Google Scholar 

  59. Han P, Bloomekatz J, Ren J et al (2016) Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature 534:700–704. https://doi.org/10.1038/nature18310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Bressan M, Hassel D et al (2010) A dual role for ErbB2 signaling in cardiac trabeculation. Development 137:3867–3875. https://doi.org/10.1242/dev.053736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Panáková D, Werdich AA, MacRae CA (2010) Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature 466:874–878. https://doi.org/10.1038/nature09249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becker JR, Deo RC, Werdich AA et al (2011) Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Dis Model Mech 4:400–410. https://doi.org/10.1242/dmm.006148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wagner DE, Weinreb C, Collins ZM et al (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981–987. https://doi.org/10.1126/science.aar4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu Y, Zu Y (2023) Comprehensive bioinformatics analysis reveals PTPN1 (PTP1B) is a promising immunotherapy target associated with t cell function for liver cancer. J Healthcare Eng 2023:1533794. https://doi.org/10.1155/2023/1533794

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bo Zhang (School of Life Sciences, Peking University) for providing the zCas9 plasmid, Dr. Jingwei Xiong (Institute of Molecular Medicine, Peking University) for providing the pUC19-scaffold plasmid for gRNA synthesis, Dr. Yi Zhou(Harvard Medical School) for the data discussion. We thank Jie Wang, Yumeng Rui, Xuebin Ye, Yihao Zhu, Xuhui Han, Wenhao Li, and Liang Jia for data analysis assistance.

Funding

This work was supported by the National Natural Science Foundation of China [No. 32170423 and 31501166 to Y.Z.], Shanghai Sailing Program of Science and Technology Commission of Shanghai Municipality [15YF1405000 to Y.Z.], Chenguang Program of the Shanghai Municipal Education Commission [14CG49 to Y.Z.], SciTech Funding by CSPFTZ Lingang Special Area Marine Biomedical Innovation Platform. Calum A. MacRae was funded by the NIH (OD017870).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design, Y.Z.; Investigation, P.H., Y.Z., B.W., D.J., Y.G., H.H., and X.M.; Formal analysis, Y.Z., P.H., B.W., D.J., Y.G., W.Z., D.Y.C. and C.A.M.; Writing, Y.Z., P.H., C.A.M. and B.W.; Resources, Y.Z. W. L. and C.A.M.; Funding acquisition, Y.Z. and C.A.M. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Calum A. MacRae or Yao Zu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13081 KB)

Supplementary file2 (MP4 4285 KB)

Supplementary file3 (MP4 15957 KB)

Supplementary file4 (MP4 15941 KB)

Supplementary file5 (MP4 55574 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Wang, B., Jin, D. et al. Modeling of large-scale hoxbb cluster deletions in zebrafish uncovers a role for segmentation pathways in atrioventricular boundary specification. Cell. Mol. Life Sci. 80, 317 (2023). https://doi.org/10.1007/s00018-023-04933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04933-2

Keywords

Navigation