Skip to main content

Advertisement

Log in

Looking beneath the Surface: The Cell Death Pathway of Fas/APO-1 (CD95)

  • Review
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Summary

The biochemical basis of programmed cell death is poorly understood in mammals. The cell surface receptor Fas/APO-1 (CD95) is one molecule known to be central to a number of mammalian cell death processes. Several studies in the past year have led to insights about the role of Fas/APO-1 in vivo and have also given some clues about the biochemical components of the Fas/APO-1 death pathway. This article reviews those studies and discuss models of Fas/APO-1 signaling and function

Background

Cell death occurs as a normal process in a wide variety of developmental and homeostatic contexts in metazoan organisms (1); it represents the timely and appropriate fate for many or even the majority of cells born in certain organ systems. Despite the importance and ubiquitous nature of such physiologic, or “programmed”, cell death, little is known about the molecular events that mediate this process. That a conserved biochemical pathway exists is suggested by the observation that programmed cell death is almost always accompanied by a consistent set of morphologic changes, an appearance known as apoptosis (2).

The identification of the genes that control programmed cell death in higher eukaryotes has been hampered by several inherent difficulties. First, the genetic tools so useful in dissecting cell death pathways in Caenorhabditis elegans (3) and Drosophila (4) have not been available in higher eukaryotes. Second, the death-inducing properties of such genes makes genetic selection an impractical means of identification. Third, it appears that many cell death genes are constitutively expressed and present in an inactive form (5), making it unlikely that they could be discovered by techniques relying upon differential gene expression. Finally, genes identified by virtue of an ability to induce death when overexpressed must be subjected to rigorous criteria to determine whether the cell death is of physiologic importance, since it is likely that overexpression of certain proteins may lead to toxic effects that are distinct from the in vivo roles of those proteins.

Two approaches to date have yielded the most information about cell death processes: (i) identification of cell death genes by classical genetic means coupled with characterization of their mammalian homologs and (ii) screening for proteins capable of inducing cell death directly in mammalian cells. The Fas antigen/APO-1 is an example of a protein discovered using the latter approach, as it was first discovered as an inducer of cell death and later shown to be necessary and sufficient for certain programmed deaths in vivo. More recent studies have connected Fas to elements of cell death pathways in other species. It has been proposed that Fas is related to the Drosophila cell death protein Reaper, and that in signaling cell death Fas relies upon a relative of the C. elegans cell death protein CED-3. Fas may therefore represent an evolutionarily conserved component of a universal cell death pathway

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saunders JW. (1966) Death in embryonic systems. Science 154: 604–612.

    Article  PubMed  Google Scholar 

  2. Wyllie AH, Kerr JFR, Currie AR. (1980) Cell death: The significance of apoptosis. Int. Rev. Cytol. 68: 251–306.

    Article  CAS  PubMed  Google Scholar 

  3. Ellis HM, Horvitz HR. (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    Article  CAS  PubMed  Google Scholar 

  4. Abrams JM, White K, Fessler LI, Steller H. (1993) Programmed cell death during Drosophila embryogenesis. Development 117: 29–43.

    CAS  PubMed  Google Scholar 

  5. Raff M. (1992) Social controls on cell survival and cell death. Nature 356: 397–400.

    Article  CAS  PubMed  Google Scholar 

  6. Trauth BC, Klas C, Peters AMJ, et al. (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305.

    Article  CAS  PubMed  Google Scholar 

  7. Yonehara S, Ishii A, Yonehara M. (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169: 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh N, Yonehara S, Ishii A, et al. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243.

    Article  CAS  PubMed  Google Scholar 

  9. Oehm A, Behrmann I, Falk W, et al. (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. J. Biol. Chem. 267: 10709–10715.

    CAS  PubMed  Google Scholar 

  10. Smith CA, Farrah T, Goodwin RG. (1994) The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 76: 959–962.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. (1992b) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317.

    Article  CAS  PubMed  Google Scholar 

  12. Suda T, Takahashi T, Golstein P, Nagata S. (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi T, Tanaka M, Brannan CI, et al. (1994) Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 76: 969–976.

    Article  CAS  PubMed  Google Scholar 

  14. Lynch DH, Watson ML, Alderson MR, et al. (1994) The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1: 131–136.

    Article  CAS  PubMed  Google Scholar 

  15. Ashwell JD, Cunningham RE, Noguchi PD, Hernandez D. (1987) Cell growth cycle block of T cell hybridomas upon activation with antigen. J. Exp. Med. 165: 173–194.

    Article  CAS  PubMed  Google Scholar 

  16. Singer GG, Abbas AK. (1994) The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1: 365–371.

    Article  CAS  PubMed  Google Scholar 

  17. Russell JH, Rush B, Weaver C, Wang R. (1993) Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide. Proc. Natl. Acad. Sci. U.S.A. 90: 4409–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhein J, Walczak H, Baumler C, Debatin K-M, Krammer PH. (1995) Autocrine T-cell suicide by APO-1/(Fas/CD95). Nature 373: 438–441.

    Article  CAS  PubMed  Google Scholar 

  19. Brunner T, Mogil RJ, LaFace D, et al. (1995) Cell-autonomous Fas (CD95)/Fasligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441–444.

    Article  CAS  PubMed  Google Scholar 

  20. Ju S-T, Panka DJ, Cui H, et al. (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444–448.

    Article  CAS  PubMed  Google Scholar 

  21. Rothstein TL, Wang JKM, Panka DJ, et al. (1995) Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374: 163–165.

    Article  CAS  PubMed  Google Scholar 

  22. Rathmell JC, Cooke MP, Ho WY, et al. (1995) CD95(Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ cells. Nature 376: 181–184.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen PL, Eisenberg RA. (1991) Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9: 243–269.

    Article  CAS  PubMed  Google Scholar 

  24. Henkart PA. (1994) Lymphocyte-mediated cytotoxicity: Two pathways and multiple effector molecules. Immunity 1: 343–346.

    Article  CAS  PubMed  Google Scholar 

  25. Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809.

    Article  CAS  PubMed  Google Scholar 

  26. Adachi M, Suematsu S, Kondo T, et al. (1995) Targeted mutation in the Fas gene causes hyperplasia of peripheral lymphoid organs and liver. Nature Genet. 11: 294–300.

    Article  CAS  PubMed  Google Scholar 

  27. Leist M, Gantner F, Kunstle G, et al. (1996) The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol. Med. 2: 109–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng J, Zhou T, Liu C, et al. (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263: 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  29. Fisher GH, Rosenberg FJ, Straus SE, et al. (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946.

    Article  CAS  PubMed  Google Scholar 

  30. Rieux-Laucat F, Le Deist F, Hivroz C, et al. (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347–1349.

    Article  CAS  PubMed  Google Scholar 

  31. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632.

    Article  CAS  PubMed  Google Scholar 

  32. Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC. (1992) Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 175: 331–340.

    Article  CAS  PubMed  Google Scholar 

  33. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA, Herzenberg LA. (1995) Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J. Exp. Med. 181: 2029–2036.

    Article  CAS  PubMed  Google Scholar 

  34. Westendorp MO, Frank R, Ochsenbauer C, et al. (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375: 497–500.

    Article  CAS  PubMed  Google Scholar 

  35. Itoh N, Nagata S. (1993) A novel protein domain required for apoptosis. J. Biol. Chem. 268: 10932–10937.

    CAS  PubMed  Google Scholar 

  36. Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV. (1993b) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–853.

    Article  CAS  PubMed  Google Scholar 

  37. Schlessinger J. (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci. 13: 443–447.

    Article  CAS  PubMed  Google Scholar 

  38. Dhein J, Daniel PT, Trauth BC, Oehm A, Moller P, Krammer PH. (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149: 3166–3173.

    CAS  PubMed  Google Scholar 

  39. Banner DW, D’Arcy A, Janes W, et al. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 73: 431–445.

    Article  CAS  PubMed  Google Scholar 

  40. Clement M-V, Stamenkovic I. (1994) Fas and tumor necrosis factor receptor-mediated cell death: Similarities and distinctions. J. Exp. Med. 180: 557–567.

    Article  CAS  PubMed  Google Scholar 

  41. Bazzoni F, Alejos E, Beutler B. (1995) Chimeric tumor necrosis factor receptors with constitutive signaling activity. Proc. Natl. Acad. Sci. U.S.A. 92: 5376–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fields S, Song O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.

    Article  CAS  PubMed  Google Scholar 

  43. Boldin MP, Mett IL, Varfolomeev EE, et al. (1995a) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J. Biol. Chem. 270: 387–391.

    Article  CAS  PubMed  Google Scholar 

  44. Stanger BZ, Leder P, Lee T-H, Kim E, Seed B. (1995) RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523.

    Article  CAS  PubMed  Google Scholar 

  45. Song HY, Dunbar JD, Donner DB. (1994) Aggregation of the intracellular domain of the type 1 tumor necrosis factor receptor defined by the two-hybrid system. J. Biol. Chem. 269: 22492–22495.

    CAS  PubMed  Google Scholar 

  46. Hsu H, Xiong J, Goeddel DV. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81: 495–504.

    Article  CAS  PubMed  Google Scholar 

  47. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. (1995b) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270: 7795–7798.

    Article  CAS  PubMed  Google Scholar 

  48. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512.

    Article  CAS  PubMed  Google Scholar 

  49. Golstein P, Marguet D, Depraetere V. (1995) Homology between Reaper and the cell death domains of Fas and TNFR1. Cell 81: 185–186.

    Article  CAS  PubMed  Google Scholar 

  50. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. (1994) Genetic control of programmed cell death in Drosophila. Science 264: 677–693.

    Article  CAS  PubMed  Google Scholar 

  51. Cleveland JL, Ihle JN. (1995) Contenders in FasL/TNF death signaling. Cell 81: 479–482.

    Article  CAS  PubMed  Google Scholar 

  52. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH. (1994b) Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell. Biol. 127: 15–20.

    Article  CAS  PubMed  Google Scholar 

  53. Nakajima H, Golstein P, Henkart PA. (1995) The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity. J. Exp. Med. 181: 1905–1909.

    Article  CAS  PubMed  Google Scholar 

  54. Owen-Schaub LB, Yonehara S, Crump WLd, Grimm EA. (1992) DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell. Immunol. 140: 197–205.

    Article  CAS  PubMed  Google Scholar 

  55. Klas C, Debatin K-M, Jonker RR, Krammer PH. (1993) Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5: 625–630.

    Article  CAS  PubMed  Google Scholar 

  56. Heldin C-H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223.

    Article  CAS  PubMed  Google Scholar 

  57. Kolesnick R, Golde DW. (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328.

    Article  CAS  PubMed  Google Scholar 

  58. Kyriakis JM, Banerjee P, Nikolakaki E, et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    Article  CAS  PubMed  Google Scholar 

  59. Derijard B, Hibi M, Wu IH, et al. (1994) JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  60. Darnay BG, Reddy SAG, Aggarwal BB. (1994a) Identification of a protein kinase associated with the cytoplasmic domain of the p60 tumor necrosis factor receptor. J. Biol. Chem. 269: 20299–20304.

    CAS  PubMed  Google Scholar 

  61. Darnay BG, Singh S, Chaturvedi MM, Aggarwal BB. (1995) The p60 tumor necrosis factor (TNF) receptor-associated kinase (TRAK) binds residues 344–397 within the cytoplasmic domain involved in TNF signaling. J. Biol. Chem. 270: 14867–14870.

    Article  CAS  PubMed  Google Scholar 

  62. Eischen CM, Dick CJ, Leibson PJ. (1994) Tyrosine kinase activation provides an early and requisite signal for Fas-induced apoptosis. J. Immunol. 153: 1947–1954.

    CAS  PubMed  Google Scholar 

  63. Schulze-Osthoff K, Krammer PH, Droge W. (1994a) Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13: 4587–4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sato T, Irie S, Kitada S, Reed JC. (1995) FAP-1: A protein tyrosine phosphatase that associates with Fas. Science 268: 411–415.

    Article  CAS  PubMed  Google Scholar 

  65. Feng X-H, Zhao Y, Bottino PJ, Kung S-D. (1993) Cloning and characterization of a novel member of protein kinase family from soybean. Biochim. Biophys. Acta 1172: 200–204.

    Article  CAS  PubMed  Google Scholar 

  66. Hubbard SR, Wei L, Ellis L, Hendrickson WA. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 746–754.

    Article  CAS  PubMed  Google Scholar 

  67. Maekawa K, Imagawa N, Nagamatsu M, Harada S. (1994) Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Lett. 337: 200–206.

    Article  CAS  PubMed  Google Scholar 

  68. Su X, Zhou T, Wang Z, Yang P, Jope RS, Mountz JD. (1995) Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 2: 353–362.

    Article  CAS  PubMed  Google Scholar 

  69. Shultz LD, Schweitzer PA, Rajan TV, et al. (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454.

    Article  CAS  PubMed  Google Scholar 

  70. Cifone MG, R DeMaria, Roncaioli P, et al. (1994) Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J. Exp. Med. 180: 1547–1552.

    Article  CAS  PubMed  Google Scholar 

  71. Gill BM, Nishikata H, Chan D, Delovitch TL, Ochi A. (1994) Fas antigen and sphingomy-elin-ceramide turnover-mediated signaling: role in life and death of T lymphocytes. Immunol. Rev. 142: 113–126.

    Article  CAS  PubMed  Google Scholar 

  72. Obeid LM, Linardic CM, Karolak LA, Hannun Y. (1993) Programmed cell death induced by ceramide. Science 259: 1769–1771.

    Article  CAS  PubMed  Google Scholar 

  73. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. (1994) Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc. Natl. Acad. Sci. U.S.A. 91: 73–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaattela M, Benedict M, Tewari M, Shayman JA, Dixit VM. (1995) Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 10: 2297–2305.

    CAS  PubMed  Google Scholar 

  75. Gulbins E, Bissonnette R, Mahboubi A, et al. (1995) Fas-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2: 341–351.

    Article  CAS  PubMed  Google Scholar 

  76. Liu J, Mathias S, Yang Z, Kolesnick RN. (1994) Renaturation and tumor necrosis factor-α stimulation of a 97-kDa ceramide-activated protein kinase. J. Biol. Chem. 269: 3047–3052.

    CAS  PubMed  Google Scholar 

  77. Alderson MR, Armitage RJ, Maraskovsky E, et al. (1993) Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178: 2231–2235.

    Article  CAS  PubMed  Google Scholar 

  78. Mapara MY, Bargou R, Zugck C, et al. (1993) APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: Correlation with bcl-2 oncogene expression. Eur. J. Immunol. 23: 702–708.

    Article  CAS  PubMed  Google Scholar 

  79. Owen-Schaub LB, Radinsky R, Kruzel E, Berry K, Yonehara S. (1994) Anti-Fas on nonhematopoietic tumors: Levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 54: 1580–1586.

    CAS  PubMed  Google Scholar 

  80. Aggarwal BB, Singh S, Lapushin R, Totpal K. (1995) Fas antigen signals proliferation of normal human diploid fibroblasts and its mechanism is different from tumor necrosis factor receptor. FEBS Lett. 364: 5–8.

    Article  CAS  PubMed  Google Scholar 

  81. Hengartner MO, Horvitz HR. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665–676.

    Article  CAS  PubMed  Google Scholar 

  82. Vaux DL, Haecker G, Strasser A. (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779.

    Article  CAS  PubMed  Google Scholar 

  83. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β–converting enzyme. Cell 75: 641–652.

    Article  CAS  PubMed  Google Scholar 

  84. Thornberry NA, Bull HG, Calaycay JR, et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356: 768–774.

    Article  CAS  PubMed  Google Scholar 

  85. Martin SJ, Green DR. (1995) Protease activation during apoptosis—Death by a thousand cuts. Cell 82: 349–352.

    Article  CAS  PubMed  Google Scholar 

  86. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. (1993) Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660.

    Article  CAS  PubMed  Google Scholar 

  87. Shi L, Kam C-M, Powers JC, Aebersold R, Greenberg AH. (1992b) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176: 1521–1529.

    Article  CAS  PubMed  Google Scholar 

  88. Shi L, Kraut RP, Aebersold R, Greenberg AH. (1992a) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175: 553–566.

    Article  CAS  PubMed  Google Scholar 

  89. Darmon AJ, Nicholson DW, Bleackley RC. (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446–448.

    Article  CAS  PubMed  Google Scholar 

  90. Tewari M, Dixit VM. (1995) Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270: 3255–3260.

    Article  CAS  PubMed  Google Scholar 

  91. Enari M, Hug H, Nagata S. (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375: 78–81.

    Article  CAS  PubMed  Google Scholar 

  92. Los M, Van de Craen M, Penning LC, et al. (1995) Requirement of an ICE/CED-3 protease for Fas/APO-1 mediated apoptosis. Nature 375: 81–83.

    Article  CAS  PubMed  Google Scholar 

  93. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with porperties like ICE. Nature 371: 346–347.

    Article  CAS  PubMed  Google Scholar 

  94. Tewari M, Quan LT, O’Rourke K, et al. (1995) Yama/CPP32b, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly-(ADP-ribose) polymerase. Cell 81: 801–809.

    Article  CAS  PubMed  Google Scholar 

  95. Nicholson DW, Ali A, Thornberry NA, et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43.

    Article  CAS  PubMed  Google Scholar 

  96. Kuida K, Lippke JA, Ku G, et al. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme. Science 267: 2000–2003.

    Article  CAS  PubMed  Google Scholar 

  97. Li P, Allen H, Banerjee S, et al. (1995) Mice deficient in IL-1-beta-converting enzyme are defective in production of mature IL-1-beta and resistant to endotoxic shock. Cell 80: 401–411.

    Article  CAS  PubMed  Google Scholar 

  98. Oltvai ZN, Korsmeyer SJ. (1994) Checkpoints of dueling dimers foil death wishes. Cell 79: 189–192.

    Article  CAS  PubMed  Google Scholar 

  99. Hengartner MO, Ellis RE, Horvitz HR. (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499.

    Article  CAS  PubMed  Google Scholar 

  100. Itoh N, Tsujimoto Y, Nagata S. (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151: 621–627.

    CAS  PubMed  Google Scholar 

  101. Takayama S, Sato T, Krajewski S, et al. (1995) Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity. Cell 80: 279–284.

    Article  CAS  PubMed  Google Scholar 

  102. Boise LH, Minn AJ, Noel PJ, et al. (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3: 87–98.

    Article  CAS  PubMed  Google Scholar 

  103. White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI, Gooding LR. (1992) The 19-kilodalton Adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Mol. Cell. Biol. 12: 2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hashimoto S, Ishii A, Yonehara S. (1991) The Elb oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int. Immunol. 3: 343–351.

    Article  CAS  PubMed  Google Scholar 

  105. Chiou S-K, Tseng C-C, Rao L, White E. (1994) Functional complementation of the Adenovirus EIB 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J. Virol. 68: 6553–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Beidler DR, Tewari M, Friesen PD, Poirier G, Dixit VM. (1995) The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270: 16526–16528.

    Article  CAS  PubMed  Google Scholar 

  107. Bump NJ, Hackett M, Hugunin M, et al. (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888.

    Article  CAS  PubMed  Google Scholar 

  108. Williams GT, Smith CA. (1993) Molecular regulation of apoptosis: Genetic controls on cell death. Cell 74: 777–779.

    Article  CAS  PubMed  Google Scholar 

  109. Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P. (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67: 629–639.

    Article  CAS  PubMed  Google Scholar 

  110. Tian Q, Taupin J-L, Elledge S, Robertson M, Anderson P. (1995) Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J. Exp. Med. 182: 865–874.

    Article  CAS  PubMed  Google Scholar 

  111. Taupin J-L, Tian Q, Kedersha N, Robertson M, Anderson P. (1995) The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc. Natl. Acad. Sci. U.S.A. 92: 1629–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong GHW, Goeddel DV. (1994) Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J. Immunol. 152: 1751–1755.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contributed by P. Leder on October 12, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanger, B.Z. Looking beneath the Surface: The Cell Death Pathway of Fas/APO-1 (CD95). Mol Med 2, 7–20 (1996). https://doi.org/10.1007/BF03402198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402198

Navigation