Skip to main content

Advertisement

Log in

TreFoil Factor 1 (TFF1/pS2) Deficiency Activates the Unfolded Protein Response

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The trefoil factor 1 (TFF1/pS2) is a secreted gastrointestinal peptide that is often altered or lost in human gastric cancers. Consistently, mouse TFF1 deficiency leads to antropyloric tumors.

Materials and Methods

To investigate the gene expression alterations in response to the lack of TFF1, we performed differential expression analyses of TFF1 null antropyloric tumors using an array containing 588 cDNAs.

Results

Using total and enriched probes, 22 genes were found to be up-regulated. The identification of the genes for endoplasmic reticulum (ER)-resident GRP78, ERp72, and p58IPK proteins connected TFF1 deficiency to the unfolded protein response (UPR). Accordingly, CHOP10, a transcription factor induced early in response to ER stress, and the pleiotropic Clusterin, involved in protein folding, were also overexpressed. Northern blot analyses of 8 weeks and 1 year TFF1 null tumors confirmed that GRP78, ERp72, p58IPK, CHOP10, and Clusterin overexpression is a common and permanent feature shared by all TFF1 null antropyloric tumors. Finally, consistent with UPR, ultrastructural analyses showed that tumor rough ER was enlarged and contained dense material, supporting the hypothesis that TFF1 deficiency leads to the accumulation of misfolded proteins in the ER.

Conclusion

Together, our data provide the first evidence of a relationship between a member of the TFF family and the ER machinery. Whereas to date TFF1 is believed to act as an extracellular molecule, our results suggest a possible additional function for TFF1 in protein folding and/or secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thim L. (1997) Trefoil peptides: from structure to function. Cell Mol. Life Sci. 53: 888–903.

    Article  CAS  Google Scholar 

  2. Ribieras S, Tomasetto C, Rio MC. (1998) The pS2/TFF1 trefoil factor, from basic research to clinical applications. Biochim. Biophys. Acta 1378: F61–F77.

    CAS  PubMed  Google Scholar 

  3. Hoffmann W, Jagla W, Wiede A. (2001) Molecular medicine of TFF-peptides: from gut to brain. Histol. Histopathol. 16: 319–334.

    CAS  PubMed  Google Scholar 

  4. Rio MC, Bellocq JP, Daniel JY, et al. (1988) Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science 241: 705–708.

    Article  CAS  Google Scholar 

  5. Poulsen SS, Thulesen J, Nexo E, Thim L. (1998) Distribution and metabolism of intravenously administered trefoil factor 2/porcine spasmolytic polypeptide in the rat. Gut 43: 240–247.

    Article  CAS  Google Scholar 

  6. Chinery R, Playford RJ. (1995) Combined intestinal trefoil factor and epidermal growth factor is prophylactic against indomethacin-induced gastric damage in the rat. Clin. Sci. (Colch.) 88: 401–403.

    Article  CAS  Google Scholar 

  7. Babyatsky MW, de Beaumont M, Thim L, Podolsky DK. (1996) Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats [see comments]. Gastroenterology 110: 489–497.

    Article  CAS  Google Scholar 

  8. Tran CP, Cook GA, Yeomans ND, Thim L, Giraud AS. (1999) Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44: 636–642.

    Article  CAS  Google Scholar 

  9. Playford RJ, Marchbank T, Goodlad RA, Chinery RA, Poulsom R, Hanby AM. (1996) Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage. Proc. Natl. Acad. Sci. U.S.A. 93: 2137–2142.

    Article  CAS  Google Scholar 

  10. Mashimo H, Wu DC, Podolsky DK, Fishman MC. (1996) Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor [see comments]. Science 274: 262–265.

    Article  CAS  Google Scholar 

  11. Lefebvre O, Chenard MP, Masson R, et al. (1996) Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein [see comments]. Science 274: 259–262.

    Article  CAS  Google Scholar 

  12. Machado JC, Nogueira AM, Carneiro F, Reis CA, Sobrinho-Simoes M. (2000) Gastric carcinoma exhibits distinct types of cell differentiation: an immunohistochemical study of trefoil peptides (TFF1 and TFF2) and mucins (MUC1, MUC2, MUC5AC, and MUC6). J. Pathol. 190: 437–443.

    Article  CAS  Google Scholar 

  13. Ribieras S, Lefebvre O, Tomasetto C, Rio MC. (2001) Mouse Trefoil factor genes: genomic organization, sequences and methylation analyses. Gene 266: 67–75.

    Article  CAS  Google Scholar 

  14. Seib T, Blin N, Hilgert K, et al. (1997) The three human trefoil genes TFF1, TFF2, and TFF3 are located within a region of 55 kb on chromosome 21q22.3. Genomics 40: 200–202.

    Article  CAS  Google Scholar 

  15. Sakata K, Tamura G, Nishizuka S, et al. (1997) Commonly deleted regions on the long arm of chromosome 21 in differentiated adenocarcinoma of the stomach. Genes Chromosomes Cancer 18: 318–321.

    Article  CAS  Google Scholar 

  16. Nishizuka S, Tamura G, Terashima M, Satodate R. (1998) Loss of heterozygosity during the development and progression of differentiated adenocarcinoma of the stomach. J. Pathol. 185: 38–43.

    Article  CAS  Google Scholar 

  17. Park WS, Oh RR, Park JY, et al. (2000) Somatic mutations of the trefoil factor family 1 gene in gastric cancer. Gastroenterology 119: 691–698.

    Article  CAS  Google Scholar 

  18. Fujimoto J, Yasui W, Tahara H, Tahara E, Kudo Y, Yokozaki H. (2000) DNA hypermethylation at the pS2 promoter region is associated with early stage of stomach carcinogenesis. Cancer Lett. 149: 125–134.

    Article  CAS  Google Scholar 

  19. Calnan DP, Westley BR, May FE, Floyd DN, Marchbank T, Playford RJ. (1999) The trefoil peptide TFF1 inhibits the growth of the human gastric adenocarcinoma cell line AGS. J. Pathol. 188: 312–317.

    Article  CAS  Google Scholar 

  20. Bossenmeyer-Pourié C, Kannan R, Ribieras S, et al. (2002) The Trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J. Cell Biol. 157: 761–770.

    Article  Google Scholar 

  21. Longman RJ, Douthwaite J, Sylvester PA, et al. (2000) Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47: 792–800.

    Article  CAS  Google Scholar 

  22. Tomasetto C, Masson R, Linares JL, et al. (2000) pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology 118: 70–80.

    Article  CAS  Google Scholar 

  23. Newton JL, Allen A, Westley BR, May FE. (2000) The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut 46: 312–320.

    Article  CAS  Google Scholar 

  24. Taupin D, Podolsky DK. (1999) Mitogen-activated protein kinase activation regulates intestinal epithelial differentiation. Gastroenterology 116: 1072–1080.

    Article  CAS  Google Scholar 

  25. Kinoshita K, Taupin DR, Itoh H, Podolsky DK. (2000) Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol. Cell. Biol. 20: 4680–4690.

    Article  CAS  Google Scholar 

  26. Taupin DR, Kinoshita K, Podolsky DK. (2000) Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97: 799–804.

    Article  CAS  Google Scholar 

  27. Emami S, Le Floch N, Bruyneel E, et al. (2001) Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells. FASEB J. 15: 351–361.

    Article  CAS  Google Scholar 

  28. Chen YH, Lu Y, De Plaen IG, Wang LY, Tan XD. (2000) Transcription factor NF-kappaB signals antianoikic function of trefoil factor 3 on intestinal epithelial cells. Biochem. Biophys. Res. Commun. 274: 576–582.

    Article  CAS  Google Scholar 

  29. Thim L, Mortz E. (2000) Isolation and characterization of putative trefoil peptide receptors. Regul. Pept. 90: 61–68.

    Article  CAS  Google Scholar 

  30. Ferea TL, Brown PO. (1999) Observing the living genome. Curr. Opin. Genet. Dev. 9: 715–722.

    Article  CAS  Google Scholar 

  31. Tomasetto C, Regnier C, Moog-Lutz C, et al. (1995) Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genomics 28: 367–376.

    Article  CAS  Google Scholar 

  32. Sagerstrom CG, Sun BI, Sive HL. (1997) Subtractive cloning: past, present, and future. Annu. Rev. Biochem. 66: 751–783.

    Article  CAS  Google Scholar 

  33. McCawley LJ, Matrisian LM. (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr. Opin. Cell. Biol. 13: 534–540.

    Article  CAS  Google Scholar 

  34. Coussens LM, Werb Z. (1996) Matrix metalloproteinases and the development of cancer. Chem. Biol. 3: 895–904.

    Article  CAS  Google Scholar 

  35. Conese M, Blasi F. (1995) Urokinase/urokinase receptor system: internalization/degradation of urokinase-serpin complexes: mechanism and regulation. Biol. Chem. Hoppe Seyler 376: 143–155.

    CAS  PubMed  Google Scholar 

  36. Malumbres M, Barbacid M. (2001) To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1: 223–231.

    Article  Google Scholar 

  37. Fisher DE. (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539–542.

    Article  CAS  Google Scholar 

  38. Patil C, Walter P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell. Biol. 13: 349–355.

    Article  CAS  Google Scholar 

  39. Kaufman RJ. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13: 1211–1233.

    Article  CAS  Google Scholar 

  40. Ng DT, Spear ED, Walter P. (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell. Biol. 150: 77–88.

    Article  CAS  Google Scholar 

  41. Ma Y, Hendershot LM. (2001) The unfolding tale of the unfolded protein response. Cell 107: 827–830.

    Article  CAS  Google Scholar 

  42. Tang NM, Korth MJ, Gale M Jr, et al. (1999) Inhibition of double-stranded RNA- and tumor necrosis factor alphamediated apoptosis by tetratricopeptide repeat protein and cochaperone P58(IPK). Mol. Cell. Biol. 19: 4757–4765.

    Article  CAS  Google Scholar 

  43. Wang XZ, Lawson B, Brewer JW, et al. (1996) Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16: 4273–4280.

    Article  CAS  Google Scholar 

  44. Wilson MR, Easterbrook-Smith SB. (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci. 25: 95–98.

    Article  CAS  Google Scholar 

  45. Karam SM. (1999) Lineage commitment and maturation of epithelial cells in the gut. Front. Biosci. 4: D286–D298.

    Article  CAS  Google Scholar 

  46. Hastie ND, Bishop JO. (1976) The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9: 761–774.

    Article  CAS  Google Scholar 

  47. Kuznetsov G, Bush KT, Zhang PL, Nigam SK. (1996) Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc. Natl. Acad. Sci. U.S.A. 93: 8584–8589.

    Article  CAS  Google Scholar 

  48. Gething MJ, Sambrook J. (1992) Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  Google Scholar 

  49. Jamora C, Dennert G, Lee AS. (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc. Natl. Acad. Sci. U.S.A. 93: 7690–7694.

    Article  CAS  Google Scholar 

  50. Perrais M, Pigny P, Buisine MP, Porchet N, Aubert JP, Van Seuningen-Lempire I. (2001) Aberrant expression of human mucin gene MUC5B in gastric carcinoma and cancer cells. Identification and regulation of a distal promoter. J. Biol. Chem. 276: 15386–15396.

    Article  CAS  Google Scholar 

  51. Wright NA, Poulsom R, Stamp G, et al. (1993) Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology 104: 12–20.

    Article  CAS  Google Scholar 

  52. Bertolotti A, Wang X, Novoa I, et al. (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J. Clin. Invest. 107: 585–593.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Ruffenach, I. Colas, and E. Troesch for their technical assistance, and C. Nourse for critical reading of the manuscript. L.F.T. was a recipient of a fellowship from the Instituto Nacional de Ciencias Médicas y de la Nutricion “Salvador Zubiran” (INCMNSZ), the Instituto de Investigaciones Biomédicas, UNAM, and the Consejo Nacional de Ciencia y Tecnologia (CONACYT). This work was supported by funds from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg, the Association pour la Recherche sur le Cancer, the Ligue Nationale Française contre le Cancer and the Comités du Haut-Rhin et du Bas-Rhin and the Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Rio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, LF., Karam, S.M., Wendling, C. et al. TreFoil Factor 1 (TFF1/pS2) Deficiency Activates the Unfolded Protein Response. Mol Med 8, 273–282 (2002). https://doi.org/10.1007/BF03402153

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402153

Keywords

Navigation