Skip to main content

Advertisement

Log in

The Role of Insulin-Like Growth Factor 2 and Its Receptors in Human Tumors

  • Review Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Insulin-like growth factor 2 (IGF-2) is important for normal development and growth of an organism. In humans it is encoded by 11p15.5 paternally expressed imprinted gene. It binds at least two different types of receptors: IGF type 1 (IGF-1R) and IGF-2/mannose 6-phospate receptors (IGF-2R/M6P). Ligand binding to IGF-1R provokes mitogenic and anti-apoptotic effects. IGF-2R/M6P has tumor suppressor function; it mediates IGF-2 degradation. When the IGF-2 gene/protein is overexpressed, mostly as a consequence of loss of heterozygosity resulting in paternal allele duplication (LOH) or by loss of imprinting (LOI), it is involved in the development and progression of many tumors and overgrowth syndromes by autocrine or paracrine mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pavelić K. (1979) Aplastic carcinoma in diabetic mice: hyperglycemia-suppressed proliferation rate and insulin synthesis by tumor cells. J. Natl. Cancer Inst. 62: 139–141.

    PubMed  Google Scholar 

  2. Pavelić K, Ferle-Vidović A, Osmak M, et al. (1981) Synthesis of immunoreactive insulin in vitro by aplastic mammary carcinoma preconditioned in diabetic mice. J. Natl. Cancer Inst. 67: 687–688.

    PubMed  Google Scholar 

  3. Pavelić K, Vuk-Pavlović S. (1983) C-peptide does not parallel increases of substances immunologically cross-reactive with insulin in non-Hodgkin lymphoma patients. Blood 61: 925–928.

    PubMed  Google Scholar 

  4. Pavelić K, Popović M. (1981) Insulin and glucagon secretion by renal adenocarcinoma. Cancer (Philad.) 48: 98–100.

    Article  Google Scholar 

  5. Pavelić LJ, Pavelić K, Vuk-Pavlović S. (1984) Human mammary and bronchial carcinomas. In vivo and in vitro secretion of substances immunologically cross-reactive with insulin. Cancer 53: 2467–2471.

    Article  PubMed  Google Scholar 

  6. Baltić V, Levanat S, Petek M, et al. (1985) Elevated levels of substances immunologically cross-reactive with insulin in blood of patients with malignant and nonmalignant pulmonary tissue proliferation. Oncology 42: 174–178.

    Article  PubMed  Google Scholar 

  7. Pavelić K, Pekić B, Slijepčević M, Popović M. (1980) Insulin levels in Hodgkin’s disease. Br. J. Haematol. 46: 133–135.

    Article  PubMed  Google Scholar 

  8. Pavelić K, Odavić M, Pekić B, et al. (1982) Correlation of substance(s) immunologically cross-reactive with insulin, glucose and growth hormone in Hodgkin lymphoma patients. Cancer Lett. 17: 81–86.

    Article  PubMed  Google Scholar 

  9. Čabrijan T, Levanat S, Pekić B, et al. (1991) The role of insulin-related substance in Hodgkin’s disease. J. Cancer Res. Clin. Oncol. 117: 615–619.

    Article  PubMed  Google Scholar 

  10. Pavelić K, Bolanča M, Veček N, et al. (1982) Carcinomas of the cervix and corpus uteri in humans: stage-dependent blood levels of substance(s) immunologically cross-reactive with insulin. J. Natl. Cancer Inst. 68: 891–894.

    PubMed  Google Scholar 

  11. Pavelić J, Pavelić LJ, Karadža J, et al. (2002) Insulin-like growth factor family and combined antisense approach in therapy of lung carcinoma. Mol. Med. 8: 149–157.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Pavelić K, Vrbanec D, Marušić S, et al. (1986) Autocrine tumor growth regulation by somatomedin C: an in vitro model. J. Endocrinol. 109: 233–238.

    Article  PubMed  Google Scholar 

  13. Pavelić K, Spaventi Š, Glunčić V, et al. (1999) The expression and role of insulin-like growth factor II in malignant hemangiopericytomas. J. Mol. Med. 77: 865–869.

    Article  PubMed  Google Scholar 

  14. Pavelić K, Pavelić ZP, Čabrijan T, et al. (1999) Insulin-like growth factor family in malignant haemangiopericytomas: the expression and role of insulin-like growth factor I receptor. J. Pathol. 188: 69–75.

    Article  PubMed  Google Scholar 

  15. Pavelić K, Čabrijan T, Hraščan R, et al. (1998) Molecular pathology of hemangiopericytomas accompanied by severe hypoglycemia: oncogenes, tumor-suppressor genes and the insulin-like growth factor family. J. Cancer Res. Clin. Oncol. 124: 307–314.

    Article  PubMed  Google Scholar 

  16. Bajzer Ž, Pavelić K, Vuk-Pavlović S. (1984) Growth self-incitement in murine melanoma B-16: a phenomenological model. Science 225: 930–932.

    Article  CAS  PubMed  Google Scholar 

  17. Vuk-Pavlović Z, Pavelić K, Vuk-Pavlović S. (1986a) Modulation of in vitro growth of murine myeloid leukemia by an autologous substance immunochemically cross-reactive with insulin and antiinsulin serum. Blood 67: 1031–1035.

    PubMed  Google Scholar 

  18. Vuk-Pavlović S, Opara EC, Levanat S, et al. (1986b) Autocrine tumor growth regulation and tumor-associated hypoglycemia in murine melanoma B16 in vivo. Cancer Res. 46: 2208–2213.

    PubMed  Google Scholar 

  19. Yu H, Rohan T. (2000) Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 92: 1472–1489.

    Article  PubMed  CAS  Google Scholar 

  20. Jansen M, van Schaik FM, Ricker A, et al. (1983) Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306: 609–611.

    Article  CAS  PubMed  Google Scholar 

  21. Dull TJ, Gray A, Hayflick JS, et al. (1984) Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310: 777–781.

    Article  CAS  PubMed  Google Scholar 

  22. Brissenden JE, Ullrich A, Francke U. (1984) Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor. Nature 310: 781–784.

    Article  CAS  PubMed  Google Scholar 

  23. Vu TH, Hoffman AR. (1994) Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371: 714–717.

    Article  CAS  PubMed  Google Scholar 

  24. Issa JPJ, Vertino PM, Boehm CD, et al. (1996) Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 93: 11757–11762.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Zhan S, Shapiro D, Zhan S, et al. (1995) Concordant loss of imprinting of the human insulin-like growth factor II gene. J. Biol. Chem. 270: 27983–27986.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Park SE, Lee C, et al. (2002) Alterations in promoter usage and expression levels in insulin-like growth factor-II and H19 genes in cervical carcinoma exhibiting biallelic expression of IGF-II. Biochim. Biophys. Acta 1586: 307–315.

    Article  PubMed  CAS  Google Scholar 

  27. Kiess W, Yang Y, Kessler U, et al. (1994) Insulin-like growth factor II (IGF-II) and the IGF-II mannose-6-phosphate receptor—the myth continues. Hormone Res. 41: 66–73.

    Article  CAS  PubMed  Google Scholar 

  28. Pravtcheva DD, Wise TL. (1998) Metastasizing mammary carcinomas in H19 enhancers IGF2 transgenic mice. J. Exp. Zoology 281: 43–57.

    Article  CAS  Google Scholar 

  29. Resnicoff M, Sell C, Rubini M, et al. (1994) Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res. 54: 2218–2222.

    CAS  PubMed  Google Scholar 

  30. Rubin R, Baserga R. (1995) Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab. Invest. 73: 311–331.

    CAS  PubMed  Google Scholar 

  31. Yang-Feng Y, Ullrich A, Francke U. (1985) Gene for human insulin receptor: localization to site on chromosome 19 involved in pre-B-cell leukemia. Science 228: 728–731.

    Article  PubMed  CAS  Google Scholar 

  32. Harper ME, Franchini G, Love J, et al. (1983) Chromosomal sublocalization of human c-myb and c-fes cellular onc genes. Nature 304: 169–171.

    Article  PubMed  CAS  Google Scholar 

  33. Ullrich A, Gray A, Tam AW, et al. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5: 2503–2512.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Coussens L, Yang-Feng TA, Liao Y-C, et al. (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  35. Sherr CJ, Rettenmier CW, Sacca R, et al. (1985) The c-fms proto-oncogene products related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41: 665–676.

    Article  PubMed  CAS  Google Scholar 

  36. Neckameyer WS, Wang LH. (1985) Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J. Virol. 53: 879–884.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Ullrich A, Bell JR, Chen EY, et al. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 56–761.

    Article  Google Scholar 

  38. Kaleko M, Rutter WG, Miller AD. (1990) Overexpression of the human insulin like growth factor 1 receptor promotes ligand-dependent neoplastic transformation. Mol. Cell. Biol. 10: 464–473.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. White MF, Kahn CR. (1994) The insulin signaling system. J. Biol. Chem. 269: 1–4.

    PubMed  CAS  Google Scholar 

  40. Myers MG Jr, Sun XJ, Cheatham B, et al. (1993) IRS-1 is a common element in insulin and insulin-like growth factor-1 signaling to the phosphatidylinositol 3′-kinase. Endocrinology 132: 1421–1430.

    Article  PubMed  CAS  Google Scholar 

  41. Crews CM, Erikson RL. (1993) Extracellular signals and reversible protein phosphorylation. What to Mek of it all. Cell 74: 215–217.

    Article  PubMed  CAS  Google Scholar 

  42. Liu JP, Baker J, Perkins AS, et al. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-I) and type 1 IGF receptor (Igf1r). Cell 75: 59–72.

    PubMed  CAS  Google Scholar 

  43. Baserga R. (1995) The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res. 55: 249–252.

    PubMed  CAS  Google Scholar 

  44. Kornfeld S. (1992) Structure and function of the mannose 6-phosphate/insulin like growth factor II receptors. Ann. Rev. Biochem. 61: 307–330.

    Article  PubMed  CAS  Google Scholar 

  45. Dahms NM, Rose PA, Molkentin JD, et al. (1993) The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding. J. Biol. Chem. 268: 5457–5463.

    PubMed  CAS  Google Scholar 

  46. Byrd JC, MacDonald RG. (2000) Mechanisms for high affinity mannose 6-phosphate ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor. Negative cooperactivity and receptor oligomerization. J. Biol. Chem. 275: 18638–18646.

    Article  PubMed  CAS  Google Scholar 

  47. Garmroudi F, MacDonald RG. (1994) Localization of the insulin-like growth factor II (IGF-II) binding/cross-linking site of the IGF-II/mannose 6-phosphate receptor to extracellular repeats 10–11. J. Biol. Chem. 269: 26944–26952.

    PubMed  CAS  Google Scholar 

  48. Nykjaer A, Christensen EI, Vorum H, et al. (1998) Mannose 6-phosphate/insulin-like growth factor II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J. Cell. Biol. 141: 815–828.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Kang JX, Li Y, Leaf A. (1997) Mannose-6-phosphate/insulinlike growth factor-II receptor is a receptor for retinoic acid. Proc. Natl. Acad. Sci. U.S.A. 94: 13671–13676.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Byrd JC, Devi GR, DeSouza AT, et al. (1999) Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations. J. Biol. Chem. 274: 24408–24416.

    Article  PubMed  CAS  Google Scholar 

  51. DeLeon DD, Terry C, Asmerom Y, et al. (1996) Insulin-like growth factor II modulates the routing of cathepsin D in MCF-7 breast cancer cells. Endocrinology 137: 1851–1859.

    Article  CAS  Google Scholar 

  52. Braulke T, Dittmer F, Gotz W, et al. (1999) Alteration in pancreatic immunoreactivity of insulin-like growth factor (IGF)-binding protein (IGFBP)-6 and in intracellular degradation of IGFBP-3 in fibroblasts of IGF-II receptor/IGF-II-deficient mice. Horm. Metab. Res. 31: 235–241.

    Article  PubMed  CAS  Google Scholar 

  53. Dahms NM. (1996) Insulin-like growth factor II/cation-independent mannose 6-phosphate receptor and lysosomal enzyme recognition. Biochem. Soc. Trans. 24: 136–141.

    Article  PubMed  CAS  Google Scholar 

  54. Motyka B, Korbutt G, Pinkoski MJ, et al. (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T-cell-induced apoptosis. Cell 103: 491–500.

    Article  PubMed  CAS  Google Scholar 

  55. Blanchard F, Raher S, Duplomb L, et al. (1998) The mannose 6-phosphate/insulin-like growth factor II receptor is a nanomolar affinity receptor for glycosylated human leukemia inhibitory factor. J. Biol. Chem. 273: 20886–20893.

    Article  PubMed  CAS  Google Scholar 

  56. Brunetti CR, Burke RL, Kornfeld S, et al. (1994) Herpes simplex virus glycoprotein D acquires mannose B-phosphate residues and binds to mannose 6-phosphate receptors. J. Biol. Chem. 269: 17067–17074.

    PubMed  CAS  Google Scholar 

  57. Kishimoto Y, Morisawa T, Kitano M, et al. (2001) Loss of heterozygosity of the mannose 6-phosphate/insulin-like growth factor II receptor and p53 genes in human hepato-cellular carcinoma. Hepatol. Res. 20: 68–83.

    Article  PubMed  CAS  Google Scholar 

  58. Leboulleux S, Gaston V, Boulle N, et al. C (2001) Loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor 2 receptor locus: a frequent but late event in adrenocortical tumorigenesis. Eur. J. Endocrinol. 144: 163–168.

    Article  PubMed  CAS  Google Scholar 

  59. Chappell SA, Walsh T, Walker RA, et al. (1997) Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas. Br. J. Cancer 76: 1558–1561.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Rey JM, Theillet C, Brouillet JP, et al. (2000) Stable amino-acid sequence of the mannose-6-phosphate/insulin-like growth-factor-II receptor in ovarian carcinomas with loss of heterozygosity and in breast-cancer cell lines. Int. J. Cancer 85: 466–473.

    Article  CAS  PubMed  Google Scholar 

  61. Millikin D, Meese E, Vogelstein B, et al. (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res. 51: 5449–5453.

    PubMed  CAS  Google Scholar 

  62. Foulkes WD, Ragoussis J, Stamp GW, et al. (1993) Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br. J. Cancer 67: 551–559.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Gaidano G, Hauptschein RS, Parsa N, et al. (1992) Deletions involving two distinct regions of 6q in B-cell non-Hodgkin lymphoma. Blood 80: 1781–1787.

    PubMed  CAS  Google Scholar 

  64. Morita R, Saito S, Ishikawa J, et al. (1991) Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res. 51: 5817–5820.

    PubMed  CAS  Google Scholar 

  65. Confort C, Rochefort H, Vignon F. (1995) Insulin-like growth factors (IGFs) stimulate the release of α1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells. Endocrinology 136: 3759–3766.

    Article  PubMed  CAS  Google Scholar 

  66. Osipo C, Dorman S, Frankfater A. (2001) Loss of insulinlike growth factor II receptor expression promotes growth in cancer by increasing intracellular signaling from both IGF-I and insulin receptors. Exp. Cell Res. 264: 388–396.

    Article  PubMed  CAS  Google Scholar 

  67. Scott CD, Weiss J. (2000) Soluble insulin-like growth factor II/mannose 6-phosphate receptor inhibits DNA synthesis in insulin-like growth factor II sensitive cells. J. Cell. Physiol. 182: 62–68.

    Article  PubMed  CAS  Google Scholar 

  68. Werner H, Adamo M, Roberts CT Jr, et al. (1994) Molecular and cellular aspects of insulin-like growth factor action. Vitamins Hormones 48: 1–58.

    Article  PubMed  CAS  Google Scholar 

  69. Chernausek SD, Smith CE, Duffin KL, et al. (1995) Proteolytic cleavage of insulin-like growth factor binding protein (IGFBP-4). Localization of cleavage site to the non-homologous region of the native IGFBP-4. J. Biol. Chem. 270: 11377–11382.

    Article  PubMed  CAS  Google Scholar 

  70. Rajah R, Bhala SE, Nunn SE, et al. (1996) 7S nerve growth factor is an insulin-like growth factor binding protein protease. Endocrinology 137: 2676–2682.

    Article  PubMed  CAS  Google Scholar 

  71. Booth BA, Boes M, Dake BL, et al. (1999) Isolation and characterization of plasmin-generated bioactive fragments of IGFBP-3. Am. J. Physiol. 39: E450–E454.

    Google Scholar 

  72. Zheng B, Clarke JB, Busby WH, et al. (1998) Insulin-like growth factor-binding protein-5 is cleaved by physiological concentrations of thrombin. Endocrinology 139: 1708–1714.

    Article  PubMed  CAS  Google Scholar 

  73. Nunn SE, Peehl DM, Cohen P. (1997) Acid-activated insulin-like growth factor binding protein protease activity of cathepsin D in normal and malignant prostatic epithelial cells and seminal plasma. J. Cell. Physiol. 171: 196–204.

    Article  PubMed  CAS  Google Scholar 

  74. Grimberg A, Cohen P. (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J. Cell. Physiol. 183: 1–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Morison IM, Reeve AE. (1998) Insulin-like growth factor 2 and overgrowth: molecular biology and clinical implications. Mol. Med. Today 4: 110–115.

    Article  PubMed  CAS  Google Scholar 

  76. Toretsky JA, Helman LJ. (1996) Involvement of IGF-II in human cancer. J. Endocrinol. 149: 367–372.

    Article  CAS  PubMed  Google Scholar 

  77. Ogawa O, Eccles MR, Szeto J, et al. (1993) Relaxation of insulin-like growth factor II gene imprinting in Wilms tumour. Nature 362: 749–751.

    Article  PubMed  CAS  Google Scholar 

  78. Rainier S, Dobry CJ, Feinberg AP. (1995) Loss of imprinting in hepatoblastoma. Cancer Res. 55: 1836–1838.

    PubMed  CAS  Google Scholar 

  79. Zhan S, Shapiro DN, Helman LJ. (1994) Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J. Clin. Invest. 94: 445–448.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Stenman MJC, Rainier S, Dobry CJ, et al. (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumor. Nat. Genet. 7: 433–439.

    Article  Google Scholar 

  81. Feil R, Walter J, Allen ND, Reik W. (1994) Developmental control of allelic methylation in the imprinted mouse IGF2 and H19 genes. Development 120: 2933–2943.

    PubMed  CAS  Google Scholar 

  82. Taniguchi T, Sullivan MJ, Ogawa O, et al. (1995) Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc. Natl. Acad. Sci. U.S.A. 92: 2159–2163.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Cui H, Niemitz EL, Ravenel JD, et al. (2001) Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res. 61: 4947–4950.

    PubMed  CAS  Google Scholar 

  84. Burns JL, Jackson DA, Hassan AB. (2001) A view through the clouds of imprinting. FASEB J. 15: 1694–1703.

    Article  CAS  Google Scholar 

  85. Hark AT, Schoenherr CJ, Katz DJ, et al. (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486–489.

    Article  PubMed  CAS  Google Scholar 

  86. Bell AC, Felsenfeld G. (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405: 482–485.

    Article  PubMed  CAS  Google Scholar 

  87. Chen CL, Ip SM, Cheng D, et al. (2000) Loss of imprinting of the IGF-II and H19 gene in epithelial ovarian cancer. Clin. Cancer Res. 6: 474–479.

    PubMed  CAS  Google Scholar 

  88. Little M, van Heyningen V, Hastie N. (1991) Dads and disomy and disease. Nature 351: 609–610.

    Article  PubMed  CAS  Google Scholar 

  89. Little MH, Dunn R, Byrne JA, et al. (1992) Equivalent expression of paternally and maternally inherited WT1 alleles in normal and fetal tissue and Wilms’ tumours. Oncogene 7: 635–641.

    PubMed  CAS  Google Scholar 

  90. Li X, Adam G, Cui H, et al. (1995) Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. Oncogene 11: 221–229.

    PubMed  CAS  Google Scholar 

  91. Uyeno S, Acki Y, Nata M, et al. (1996) IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res. 56: 5356–5359.

    PubMed  CAS  Google Scholar 

  92. Hatada I, Ohashi H, Fukushima Y, et al. (1996) An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nature 14: 171–173.

    CAS  Google Scholar 

  93. Bockmuhl U, Petersen I, Schwendel A, Dietel M. (1996) Genetic screening of head-neck carcinomas using comparative genomic hybridization. Laryngo-Rhino-Otologie 75: 408–414.

    Article  PubMed  CAS  Google Scholar 

  94. Bockmuhl U, Wolf G, Schwendel A, et al. (1998) Genomic alterations associated with malignancy in head and neck cancer. Head Neck Surg. 20: 145–151.

    Article  CAS  Google Scholar 

  95. Newsham IF. (1998) The long and short arm of chromosome 11 in breast cancer. Am. J. Pathol. 153: 5–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Tran YK, Newsham IF. (1996) Hugh-density marker analysis of 11p15.5 in non-small cell lung carcinomas reveals allelic deletion of one shared and one distinct region when compared to breast carcinomas. Cancer Res. 56: 2916–2921.

    PubMed  CAS  Google Scholar 

  97. Besnard-Guerin C, Newsham I, Winqvist R, Cavenee WK. (1996) A common region of loss of heterozygosity in Wilms tumor and embryonal rhabdomyosarcoma distal to the D11S988 locus on chromosome 11p15.5. Hum. Genet. 97: 163–170.

    Article  PubMed  CAS  Google Scholar 

  98. Rainho CA, Kowalski LP, Rogatto SR. (2001) Loss of imprinting and loss of heterozygosity on 11p15.5 in head and neck squamous cell carcinomas. Head Neck 23: 851–859.

    Article  PubMed  CAS  Google Scholar 

  99. Scrable H, Cavenee W, Ghavimi F, et al. (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl. Acad. Sci. U.S.A. 86: 7480–7484.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Yun K. (1993) Clear cell sarcoma of the kidney expresses insulin like growth factor-II but not WT1 transcripts. Am. J. Pathol. 142: 39–47.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Buckbinder L, Talbot R, Velascomiguel S, et al. (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 646–649.

    Article  CAS  PubMed  Google Scholar 

  102. Drummond IA, Madden SL, Rohwer-Nutter P, et al. (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257: 674–678.

    Article  CAS  PubMed  Google Scholar 

  103. Pedone PV, Tirabosco R, Cavazzana AO, et al. (1994) Mono-and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors. Human Mol. Genet. 3: 1117–1121.

    Article  CAS  Google Scholar 

  104. Nielsen FC, Orskov C, Haselbacher G, et al. (1994) Insulinlike growth factor II mRNA, peptides, and receptors in a thoracopulmonary malignant small round cell tumor. Cancer 73: 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  105. Mohan S, Strong DD, Lempert UG, et al. (1992) Studies on regulation of insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-4 production in human bone cells. Acta Endocrinologica 127: 555–564.

    Article  CAS  PubMed  Google Scholar 

  106. Reeve JG, Brinkman A, Hughes S, et al. (1992) Expression of insulin-like growth factor (IGF) and IGF-binding protein genes in human lung tumor cell lines. J. Natl. Cancer Inst. 84: 628–634.

    Article  CAS  PubMed  Google Scholar 

  107. Cohen P, Peehl DM, Stamey TA, et al. (1993) Elevated levels of insulin-like growth factor-binding protein-2 in the serum of prostate cancer patients. J. Clin. Endocrinol. Metab. 76: 1031–1035.

    CAS  PubMed  Google Scholar 

  108. Lee PD, Suwanichkul A, DePaolis LA, et al. (1993) Insulinlike growth factor (IGF) suppression of IGFBP-1 production: evidence for mediation by the type I IGF receptor. Regul. Pept. 48: 199–206.

    Article  CAS  PubMed  Google Scholar 

  109. Ho MN, Delgado CH, Owens GA, Steller MA. (1997) Insulin-like growth factor-II participates in the biphasic effect of a gonadotropin-releasing hormone agonist on ovarian cancer cell growth. Fertil. Steril. 67: 870–876.

    Article  CAS  PubMed  Google Scholar 

  110. Manetta A, Gamboa-Vujicic G, Paredes P, et al. (1995) Inhibition of growth of human ovarian cancer in nude mice by luteinizing hormone-releasing hormone antagonist Cetrorelix (SB-75). Fertil. Steril. 63: 282–287.

    Article  PubMed  CAS  Google Scholar 

  111. Kleinman D, Roberts CT Jr, LeRoith D, et al. (1993) Regulation of endometrial cancer cell growth by insulin-like growth factors and luteinizing hormone-releasing hormone antagonist SB-75. Regul. Pept. 48: 91–98.

    Article  PubMed  CAS  Google Scholar 

  112. Hershkovitz E, Marbach M, Bosin E, et al. (1993) Luteinizing hormone-releasing hormone antagonists interfere with autocrine and paracrine growth stimulation of MCF-7 mammary cancer cells by insulin-like growth factors. J. Clin. Endocrinol. Metab. 77: 963–968.

    PubMed  CAS  Google Scholar 

  113. Csernus EJ, Schally AV, Kiaris H, Armatis P (1999) Inhibition of growth, production of insulin-like growth factor-II (IGF-II), and expression of IGF-II mRNA of human cancer cell lines by antagonistic analogs of growth hormone-releasing hormone in vitro. Proc. Natl. Acad. Sci. U.S.A. 96: 3098–3103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. McCaulay VM. (1992) Insulin-like growth factors and cancer. Br. J. Cancer 65: 311–320.

    Article  Google Scholar 

  115. Pollak M, Richard M. (1990) Suramin blockade in insulinlike growth factor I stimulated proliferation of human osteosarcoma cells. J. Natl. Cancer Inst. 82: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  116. Lahm H, Amstad P, Wyniger J, et al. (1994) Blockade of the insulin-like growth-factor-I receptor inhibits growth of human colorectal cancer cells: evidence of a functional IGF-II-mediated autocrine loop. Int. J. Cancer 58: 452–459.

    Article  PubMed  CAS  Google Scholar 

  117. Macaulay VM, Everard MJ, Teale JD, et al. (1990) Autocrine function for insulin-like growth factor I in human small cell lung cancer cell lines and fresh tumors. Cancer Res. 50: 2511–2517.

    PubMed  CAS  Google Scholar 

  118. Arteaga CL. (1992) Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res. Treat. 22: 101–106.

    Article  CAS  PubMed  Google Scholar 

  119. Trojan J, Blossey BK, Johnson TR, et al. (1992) Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc. Natl. Acad. Sci. U.S.A. 89: 4874–4878.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Shapiro DN, Jones BG, Shapiro LH, et al. (1994) Antisense-mediated reduction in insulin-like growth factor I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. J. Clin. Invest. 94: 1235–1242.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Lee CT, Wu S, Gabrilovich D, et al. (1996) Antitumor effects of an adenovirus expressing antisense insulin-like growth factor I receptor on human lung cancer cell lines. Cancer Res. 56: 3038–3041.

    CAS  PubMed  Google Scholar 

  122. Zia F, Jacobs S, Kull F Jr, et al. (1996) Monoclonal antibody alpha IR-3 inhibits non-small cell lung cancer growth in vitro and in vivo. J. Cell. Biochem. 24(suppl): 269–275.

    Article  CAS  Google Scholar 

  123. Goossens K, Esquenet M, Swinnen JV, et al. (1999) Androgens decrease and retinoids increase the expression of insulin-like growth factor-binding protein-3 in LNCaP prostatic adenocarcinoma cells. Mol. Cell. Endocrinology 155: 9–18.

    Article  CAS  Google Scholar 

  124. Martin JL, Coverley JA, Pattison ST, Baxter RC. (1995) Insulin-like growth factor-binding protein-3 production by MCF-7 breast cancer cells: stimulation by retinoic acid and cyclic adenosine monophosphate and differential effects of estradiol. Endocrinology 136: 1219–1226.

    Article  PubMed  CAS  Google Scholar 

  125. Gucev ZS, Oh Y, Kelley KM, Rosenfeld RG. (1996) Insulinlike growth factor binding protein-3 mediates retinoids acid- and transforming growth factor β2-induced growth inhibition in human breast cancer cells. Cancer Res. 56: 1545–1550.

    PubMed  CAS  Google Scholar 

  126. Hwa V, Oh Y, Rosenfeld RG. (1997) Insulin-like growth factor binding protein-3 and -5 are regulated by transforming growth factor-β and retinoic acid in the human prostate adenocarcinoma cell line PC-3. Endocrine 6: 235–242.

    Article  PubMed  CAS  Google Scholar 

  127. Helle SI, Lonning PE. (1996) Insulin-like growth factors in breast cancer. Acta Oncol. 35(suppl 5): 19–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 0098092 and 0098093 from the Ministry of Science and Technology, Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krešimir Pavelić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavelić, K., Buković, D. & Pavelić, J. The Role of Insulin-Like Growth Factor 2 and Its Receptors in Human Tumors. Mol Med 8, 771–780 (2002). https://doi.org/10.1007/BF03402082

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402082

Keywords

Navigation