Skip to main content

Advertisement

Log in

Synthetic Analogs of Green Tea Polyphenols as Proteasome Inhibitors

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (−)-epigallocatechin-3-gallate [(−)-EGCG] and (−)-gallocatechin-3-gallate [(−)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (−)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study.

Materials and Methods

GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, IκB-α and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G1 arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay.

Results

(+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IκB-α proteins, associated with an increased G1 population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing high basal levels of Bax, but not prostate cancer DU-145 cells with low Bax expression. Finally, synthetic GTPs significantly inhibited colony formation by LNCaP cancer cells.

Conclusions

Enantiomeric analogs of natural GTPs, (+)-EGCG and (+)-GCG, are able to potently and specifically inhibit the proteasome both, in vitro and in vivo, while protection of the hydroxyl groups on (+)-EGCG renders the compound completely inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohno Y, Wakai K, Genka K, et al. (1995) Tea consumption and lung cancer risk: a case-control study in Okinawa, Japan. Jpn. J. Cancer Res. 86: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ji BT, Chow WH, Hsing AW, et al. (1997) Green tea consumption and the risk of pancreatic and colorectal cancers. Int. J. Cancer 70: 255–258.

    Article  CAS  PubMed  Google Scholar 

  3. Mendilaharsu M, De Stefani E, Deneo-Pellegrini H, et al. (1998) Consumption of tea and coffee and the risk of lung cancer in cigarette-smoking men: a case-control study in Uruguay. Lung Cancer 19: 101–107.

    Article  CAS  PubMed  Google Scholar 

  4. Chow WH, Swanson CA, Lissowska J, et al. (1999) Risk of stomach cancer in relation to consumption of cigarettes, alcohol, tea and coffee in Warsaw, Poland. Int. J. Cancer 81: 871–876.

    Article  CAS  PubMed  Google Scholar 

  5. Zhong L, Goldberg MS, Gao YT, et al. (2001) A population-based case-control study of lung cancer and green tea consumption among women living in Shanghai, China. Epidemiology 12: 695–700.

    Article  CAS  PubMed  Google Scholar 

  6. Inoue M, Tajima K, Mizutani M, et al. (2001) Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett. 167: 175–182.

    Article  CAS  PubMed  Google Scholar 

  7. Nishida H, Omori M, Fukutomi Y, et al. (1994) Inhibitory effects of (−)-epigallocatechin gallate on spontaneous hepatoma in C3H/HeNCrj mice and human hepatoma-derived PLC/PRF/5 cells. Jpn. J. Cancer Res. 85: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liao S, Umekita Y, Guo J, et al. (1995) Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett. 96: 239–243.

    Article  CAS  PubMed  Google Scholar 

  9. Chung FL. (1999) The prevention of lung cancer induced by a tobacco-specific carcinogen in rodents by green and black Tea. Proc. Soc. Exp. Biol. Med. 220: 244–248.

    Article  CAS  PubMed  Google Scholar 

  10. Mimoto J, Kiura K, Matsuo K, et al. (2000) (−)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis 21: 915–919.

    Article  CAS  PubMed  Google Scholar 

  11. Masuda M, Suzui M and Weinstein IB. (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. 7: 4220–4229.

    PubMed  CAS  Google Scholar 

  12. Yu R, Jiao JJ, Duh JL, et al. (1997) Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis 18: 451–456.

    Article  CAS  PubMed  Google Scholar 

  13. Chung JY, Park JO, Phyu H, et al. (2001) Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (−)-epigallocatechin-3-gallate and theaflavin-3, 3′-digallate. FASEB J. 15: 2022–2024.

    Article  CAS  PubMed  Google Scholar 

  14. Naasani I, Seimiya H, Tsuruo T. (1998) Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun. 249: 391–396.

    Article  CAS  PubMed  Google Scholar 

  15. Nam S, Smith DM, Dou QP. (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem. 276: 13322–13330.

    Article  CAS  PubMed  Google Scholar 

  16. Yu GP, Hsieh CC, Wang LY, et al. (1995) Green-tea consumption and risk of stomach cancer: a population-based case-control study in Shanghai, China. Cancer Causes Control 6: 532–538.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng W, Doyle TJ, Kushi LH, et al. (1996) Tea consumption and cancer incidence in a prospective cohort study of post-menopausal women. Am. J. Epidemiol. 144: 175–182.

    Article  CAS  PubMed  Google Scholar 

  18. Fujiki H. (1999) Two stages of cancer prevention with green tea. J. Cancer Res. Clin. Oncol. 125: 589–597.

    Article  CAS  PubMed  Google Scholar 

  19. Suganuma M, Okabe S, Sueoka N, et al. (1999) Green tea and cancer chemoprevention. Mutat Res 428: 339–344.

    Article  CAS  PubMed  Google Scholar 

  20. Fujiki H, Suganuma M, Okabe S, et al. (2000) A new concept of tumor promotion by tumor necrosis factor-alpha, and cancer preventive agents (−)-epigallocatechin gallate and green tea—a review [In Process Citation]. Cancer Detect. Prev. 24: 91–99.

    PubMed  CAS  Google Scholar 

  21. Mukhtar H, Ahmad N. (2000) Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 71: 1698S–1702S (discussion 1703S–1694S).

    Article  CAS  PubMed  Google Scholar 

  22. Pisters KM, Newman RA, Coldman B, et al. (2001) Phase I trial of oral green tea extract in adult patients with solid tumors. J. Clin. Oncol. 19: 1830–1838.

    Article  CAS  PubMed  Google Scholar 

  23. Chow HH, Cai Y, Alberts DS, et al. (2001) Phase I pharmaco-kinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol. Biomarkers Prev. 10: 53–58.

    CAS  Google Scholar 

  24. Dou QP and Li B. (1999) Proteasome inhibitors as potential novel anticancer agents. Drug Resist. Updat. 2: 215–223.

    Article  CAS  PubMed  Google Scholar 

  25. An B, Goldfarb RH, Siman R, Dou QP. (1998) Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 5: 1062–1075.

    Article  CAS  PubMed  Google Scholar 

  26. Grimm LM, Goldberg AL, Poirier GG, et al. (1996) Proteasomes play an essential role in thymocyte apoptosis. Embo. iJ. 15: 3835–3844.

    Article  CAS  Google Scholar 

  27. Lee DH, Goldberg AL. (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8: 397–403.

    Article  CAS  PubMed  Google Scholar 

  28. Li B, Dou QP. (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl. Acad. Sci. USA 97: 3850–3855.

    Article  CAS  PubMed  Google Scholar 

  29. Adams J. (2001) Proteasome inhibition in cancer: development of PS-341. Semin. Oncol. 28: 613–619.

    Article  CAS  PubMed  Google Scholar 

  30. Hideshima T, Richardson P, Chauhan D, et al. (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61: 3071–3076.

    PubMed  CAS  Google Scholar 

  31. Adams J, Palombella VJ, Sausville EA, et al. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59: 2615–2622.

    PubMed  CAS  Google Scholar 

  32. Sun J, Nam S, Lee CS, et al. (2001) CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice. Cancer Res. 61: 1280–1284.

    PubMed  CAS  Google Scholar 

  33. Cusack, Jr JC, Liu R, Houston M, et al. (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. 61: 3535–3540.

    PubMed  CAS  Google Scholar 

  34. Thompson JE, Phillips RJ, Erdjument-Bromage H, et al. (1995) I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 80: 573–582.

    Article  CAS  PubMed  Google Scholar 

  35. Perkins ND. (2000) The Rel/NF-kappa B family: friend and foe. Trends Biochem. Sci. 25: 434–440.

    Article  CAS  PubMed  Google Scholar 

  36. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78: 773–785.

    Article  CAS  PubMed  Google Scholar 

  37. Nam S, Smith D and Dou Q. (2001) Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol. Biomarkers Prev. 10: 1083–1088.

    CAS  Google Scholar 

  38. Green DR, Reed JC. (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  39. Chang YC, Lee YS, Tejima T, et al. (1998) mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ. 9: 79–84.

    PubMed  CAS  Google Scholar 

  40. Li L, Chan TH. (2001) Enantioselective synthesis of epigallocatechin-3-gallate (EGCG), the active polyphenol component from green tea. Org. Lett. 3: 739–741.

    Article  CAS  PubMed  Google Scholar 

  41. Menter DG, Sabichi AL and Lippman SM. (2000) Selenium effects on prostate cell growth. Cancer Epidemiol Biomarkers Prev 9: 1171–1182.

    PubMed  CAS  Google Scholar 

  42. Polyak K, Lee MH, Erdjument-Bromage H, et al. (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66.

    Article  CAS  PubMed  Google Scholar 

  43. Toyoshima H, Hunter T. (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  44. Hinz M, Krappmann D, Eichten A, et al. (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19: 2690–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guttridge DC, Albanese C, Reuther JY, et al. (1999) NF-kap-paB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19: 5785–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haldar S, Chintapalli J, Croce CM. (1996) Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56: 1253–1255.

    PubMed  CAS  Google Scholar 

  47. Rokhlin OW, Glover RA, Cohen MB. (1998) Fas-mediated apoptosis in human prostatic carcinoma cell lines occurs via activation of caspase-8 and caspase-7. Cancer Res. 58: 5870–5875.

    PubMed  CAS  Google Scholar 

  48. Tang DG, Li L, Chopra DP, Porter AT. (1998) Extended survivability of prostate cancer cells in the absence of trophic factors: increased proliferation, evasion of apoptosis, and the role of apoptosis proteins. Cancer Res. 58: 3466–3479.

    PubMed  CAS  Google Scholar 

  49. Nakagawa K, Miyazawa T. (1997) Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (−)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal. Biochem. 248: 41–49.

    Article  CAS  PubMed  Google Scholar 

  50. Van Amelsvoort JM, Van Hof KH, Mathot JN, et al. (2001) Plasma concentrations of individual tea catechins after a single oral dose in humans. Xenobiotica 31: 891–901.

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Lee MJ, Sheng S, et al. (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem. Res. Toxicol. 13: 177–184.

    CAS  Google Scholar 

  52. Smith DM, Dou QP. (2001) Green tea polyphenol epigallo-catechin inhibits DNA replication and consequently induces leukemia cell apoptosis. Int. J. Mol. Med. 7: 645–652.

    PubMed  CAS  Google Scholar 

  53. Yang GY, Liao J, Kim K, et al. (1998) Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19: 611–616.

    Article  CAS  PubMed  Google Scholar 

  54. Ahmad N, Feyes DK, Nieminen AL, et al. (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst. 89: 1881–1886.

    Article  CAS  PubMed  Google Scholar 

  55. Paschka AG, Butler R, Young CY. (1998) Induction of apoptosis in prostate cancer cell lines by the green tea component, (−)-epigallocatechin-3-gallate. Cancer Lett. 130: 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by research grants from the National Cancer Institute-National Institutes of Health, the United States Army Medical Research and Material Commend, and H. Lee Moffitt Cancer Center & Research Institute (to Q. P. D.) and the Natural Science and Engineering Research Council of Canada (to T. H. C.). We thank the Flow Cytometry and Molecular Imaging Facilities at H. Lee Moffitt Cancer Center & Research Institute for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Ping Dou.

Additional information

Communicated by A. Pardee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.M., Wang, Z., Kazi, A. et al. Synthetic Analogs of Green Tea Polyphenols as Proteasome Inhibitors. Mol Med 8, 382–392 (2002). https://doi.org/10.1007/BF03402019

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402019

Keywords

Navigation