Skip to main content

Advertisement

Log in

Parallel Induction of Heme Oxygenase-1 and Chemoprotective Phase 2 Enzymes by Electrophiles and Antioxidants: Regulation by Upstream Antioxidant-Responsive Elements (ARE)

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Heme oxygenase (HO; EC 1.14.99.3) catalyzes the conversion of heme to biliverdin, which is reduced enzymatically to bilirubin. Since bilirubin is a potent antioxidant and heme a pro-oxidant, HO may protect cells against oxidative damage. HO-1 is highly inducible by diverse chemical agents, resembling those evoking induction of phase 2 enzymes (i.e., Michael reaction acceptors, heavy metals, trivalent arsenicals, and sulfhydryl reagents). Phase 2 enzymes (glutathione transferases; NAD(P)H:quinone reductase; glucuronosyltransferases) are regulated by antioxidant-responsive elements (ARE), and their induction protects against chemical carcinogenesis. Is HO-1 regulated by chemical agents and enhancer elements similar to those controlling phase 2 enzymes?

Materials and Methods

Induction of HO-1 by phorbol ester and heavy metals is transcriptionally controlled through a 268-bp SX2 fragment, containing two phorbol ester-responsive (TRE) sites (TGAC/GT C/AA) which overlap ARE consensus sequences (TGACNNNGC). Therefore, mutations of the SX2 element designed to distinguish ARE from TRE were inserted into chloramphenicol acetyltransferase (CAT) reporter plasmids, and the response of the CAT activity of murine hepatoma cells stably transfected with these constructs was examined with a wide range of inducers of phase 2 enzymes.

Results

All compounds raised HO-1 mRNA and CAT expression constructs containing wild-type SX2. When the SX2 region was mutated to alter TRE consensus sequences without destroying the ARE consensus, full inducibility was preserved. Conversely, when the ARE consensus was disturbed, inducibility was abolished.

Conclusions

Induction of heme oxygenase-1 is regulated by several chemically distinct classes of inducers (mostly electrophiles), which also induce phase 2 enzymes, and these inductions are mediated by similar AREs. These findings support the importance of HO-1 as a protector against oxidative damage and suggest that HO-1 induction is part of a more generalized protective cellular response that involves phase 2 enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The electrophile-responsive element (EpRE) was so named because it was shown to be activated by dimethyl fumarate, trans-4-phenylbut-3-en-2-one, and tert-butylhydroquinone (4). These compounds all have (or can easily acquire) Michael reaction acceptor groups, which are reactive electrophiles. In addition to its electrophilic potential, tert-butylhydroquinone is a well-known antioxidant and can engage in redox cycling reactions. The antioxidant responsive element (ARE) (5) was so named because it was responsive to redox-active quinone precursors (catechol, hydroquinone) or 1,4-benzoquinone itself, but failed to respond to a redox-inactive diphenol (resorcinol). Redox-active quinones, however, share a common property with most other monofunctional phase 2 enzyme inducers, in that they are also Michael reaction acceptors and thus are powerful electrophiles (6). Consequently, we prefer the term electrophile-responsive element (EpRE), as we have previously shown (68) that the common chemical characteristic of nearly all monofunctional phase 2 enzyme inducers is that they are electrophiles. Nevertheless, we respect the originally proposed nomenclature and have elsewhere referred to the enhancer element as ARE/EpRE (9). In this paper, it is less cumbersome to designate this element as ARE.

  2. Two classes of enzymes metabolize xenobiotics: (i) phase 1 enzymes (mostly cytochromes P450), which functionalize molecules by introducing hydroxyl or epoxide groups; and (ii) phase 2 enzymes (10), which detoxify by either conjugating these functionalized molecules with endogenous ligands (e.g., glutathione), thus facilitating their excretion, or by destroying their reactive centers (e.g., hydrolysis of epoxides by epoxide hydrolase, or reduction of quinones by QR). Reasons for considering QR a phase 2 enzyme are presented elsewhere (1113).

    Inducers of enzymes of xenobiotic metabolism belong to two families (14): (i) Bifunctional inducers, which bind to the Aryl hydrocarbon (Ah) receptor and induce both certain phase 1 enzymes and phase 2 enzymes; and (ii) Monofunctional inducers, which induce phase 2 enzymes independently of the Ah receptor.

References

  1. Maines MD. (1992) Heme Oxygenase. Clinical Applications and Functions. CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Stocker R, Glazer AN, Ames BN. (1987) Antioxidant activity of albumin-bound bilirubin. Proc. Natl. Acad. Sci. U.S.A. 84: 5918–5922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046.

    Article  CAS  PubMed  Google Scholar 

  4. Friling RS, Bensimon A, Tichauer Y, Daniel V. (1990) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile responsive element. Proc. Natl. Acad. Sci. U.S.A. 87: 6258–6262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rushmore TH, Morton MR, Pickett CB. (1991) The antioxidant response element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266: 11632–11639.

    PubMed  CAS  Google Scholar 

  6. Talalay P, De Long MJ, Prochaska HJ. (1988) Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 85: 8261–8265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prestera T, Holtzclaw WD, Zhang Y, Talalay P. (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. U.S.A. 90: 2965–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prestera T, Spencer SR, Wilczak C, Zhang Y, Talalay P. (1993) The electrophile counterattack response: Protection against neoplasia and toxicity. Adv. Enzyme Regul. 33: 281–296.

    Article  CAS  PubMed  Google Scholar 

  9. Prestera T, Talalay P. (1995) Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. U.S.A. 92: 8965–8969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jakoby WB, Ziegler DM. (1990) The enzymes of detoxication. J. Biol. Chem. 265: 20715–20718.

    PubMed  CAS  Google Scholar 

  11. Prochaska HJ, Talalay P. (1991) The role of NAD(P)H:quinone reductase in protection against the toxicity of quinones and related agents. In: Sies H (ed). Oxidative Stress. Oxidants and Antioxidants. Academic Press, London, pp. 195–211.

    Google Scholar 

  12. Favreau LV, Pickett CB. (1991) Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J. Biol. Chem. 266: 4556–4561.

    PubMed  CAS  Google Scholar 

  13. Jaiswal AK. (1991) Human NAD(P)H:quinone oxidoreductase (NQO) gene structure and induction by dioxin. Biochemistry 30: 10647–10653.

    Article  CAS  PubMed  Google Scholar 

  14. Prochaska HJ, Talalay P. (1988) Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res. 48: 4776–4782.

    PubMed  CAS  Google Scholar 

  15. Applegate LA, Luscher P, Tyrell RM. (1991) Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells. Cancer Res. 51: 974–978.

    PubMed  CAS  Google Scholar 

  16. Vile GF, Basu-Modak S, Waltner C, Tyrrell RM. (1994) Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 91: 2607–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee T-C, Ho I-C. (1994) Expression of heme oxygenase in arsenic-resistant human lung adenocarcinoma cells. Cancer Res. 54: 1660–1664.

    PubMed  CAS  Google Scholar 

  18. Talalay P, De Long MJ, Prochaska HJ. (1987) Molecular mechanisms in protection against carcinogenesis. In: Cory JG, Szentivanyi A (eds). Cancer Biology and Therapeutics. Plenum Press, New York, pp. 197–216.

    Chapter  Google Scholar 

  19. Talalay P. (1989) Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Regul. 28: 237–250.

    Article  CAS  PubMed  Google Scholar 

  20. Friling RS, Bergelson S, Daniel V. (1992) Two adjacent AP-1-like binding sites from the electrophile-responsive element of the murine glutathione 5-transferase Ya subunit gene. Proc. Natl. Acad. Sci. U.S.A. 89: 668–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Jaiswal AK. (1994) Human antioxidant-response-element-mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Effect of sulfhydryl modifying agents. Eur. J. Biochem. 226: 31–39.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen T, Rushmore TH, Pickett CB. (1994) Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. J. Biol. Chem. 269: 13656–13662.

    CAS  PubMed  Google Scholar 

  23. Yoshioka K, Deng T, Cavigelli M, Karin M. (1995) Antitumor promotion by phenolic antioxidants: Inhibition of AP-1 activity through induction of Fra expression. Proc. Natl. Acad. Sci. U.S.A. 92: 4972–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang B, Williamson G. (1994) Detection of a nuclear protein which binds specifically to the antioxidant responsive element (ARE) of the human NAD(P)H:quinone oxidoreductase gene. Biochim. Biophys. Acta 1219: 645–652.

    Article  PubMed  Google Scholar 

  25. Alam J. (1994) Multiple elements within the 5′ distal enhancer of the mouse heme oxygenase-1 gene mediate induction by heavy metals. J. Biol. Chem. 269: 25049–25056.

    PubMed  CAS  Google Scholar 

  26. Alam J, Zhining D. (1992) Distal AP-1 binding sites mediate basal level enhancement and TPA induction of the mouse heme oxygenase-1 gene. J. Biol. Chem. 267: 21894–21900.

    PubMed  CAS  Google Scholar 

  27. Alam J, Cai J, Smith A. (1994) Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5′ sequences are required for induction by heme or heavy metals. J. Biol. Chem. 269: 1001–1009.

    PubMed  CAS  Google Scholar 

  28. Zhang Y, Talalay P, Cho C-G, Posner GH. (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. U.S.A. 89: 2399–2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Church GM, Gilbert W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. U.S.A. 81: 1991–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradford MM. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  31. Deng WP, Nickoloff JA. (1992) Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200: 81–88.

    Article  CAS  PubMed  Google Scholar 

  32. Graham FL, van der Eb AJ. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.

    Article  CAS  PubMed  Google Scholar 

  33. Southern PJ, Berg P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Gen. 1: 327–341.

    CAS  Google Scholar 

  34. Egner PA, Kensler TW, Prestera T, et al. (1994) Regulation of phase 2 enzyme induction by oltipraz and other dithiolethiones. Carcinogenesis 15: 177–181.

    Article  CAS  PubMed  Google Scholar 

  35. Alam J, Yu N, Irias S, Cook JL, Vig E. (1991) Reduced chloramphenicol acetyltransferase activity observed with vectors containing an upstream SphI recognition sequence. Bio-Techniques 10: 423–425.

    Google Scholar 

  36. Putzer RR, Zhang Y, Prestera T, Holtzclaw WD, Wade KL, Talalay P. (1995) Mercurials and dimercaptans: Synergism in the induction of chemoprotective enzymes. Chem. Res. Toxicol. 8: 103–110.

    Article  CAS  PubMed  Google Scholar 

  37. Landschulz WH, Johnson PF, McKnight SL. (1988) The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies by TP and PT were supported by a grant from the National Cancer Institute, Department of Health and Human Services (PO1 CA44530). AMKC was supported by a Physician Scientist award (NIH/NIA K11 AG00516) and a research grant from the American Lung Association. JA was supported by a National Institutes of Health grant (RO1 DK43135). TP was supported by a fellowship from the National Cancer Institute (T32 CA09243), and PJL was supported by a Multidisciplinary Training Grant (NHLBI 07534). We thank Gale Doremus for preparing the manuscript and illustrations.

Author information

Authors and Affiliations

Authors

Additional information

Contributed by Paul Talalay on August 25, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestera, T., Talalay, P., Alam, J. et al. Parallel Induction of Heme Oxygenase-1 and Chemoprotective Phase 2 Enzymes by Electrophiles and Antioxidants: Regulation by Upstream Antioxidant-Responsive Elements (ARE). Mol Med 1, 827–837 (1995). https://doi.org/10.1007/BF03401897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401897

Navigation