Skip to main content
Log in

Inhibition of Astrocyte Glutamate Uptake by Reactive Oxygen Species: Role of Antioxidant Enzymes

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system.

Materials and Methods

The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes.

Results

Hydrogen peroxide and peroxynitrite inhibited glutamate uptake in a concentration-dependent manner. Addition of copper ions and ascorbate increased the potency and the efficacy of the hydrogen peroxide effect, supporting the potential neurotoxicity of the hydroxyl radical. The free radical scavenger dimethylthiourea effectively eliminated the inhibitory potential of a mixture containing hydrogen peroxide, copper sulphate, and ascorbate on the rate of glutamate transport into astrocytes The inhibitory effect of hydrogen peroxide on glutamate uptake was not altered by the inhibition of glutathione peroxidase, whereas the inhibition of catalase by sodium azide clearly potentiated this effect. Superoxide and nitric oxide had no effect by themselves on the rate of glutamate uptake by astrocytes. The absence of an effect of nitric oxide is not due to an inability of astrocytes to respond to this substance, since the same cultures did respond to nitric oxide with a sustained increase in cytoplasmic free calcium.

Conclusion

These results confirm that reactive oxygen species have a potential neurotoxicity by means of impairing glutamate transport into astrocytes, and they suggest that preventing the accumulation of hydrogen peroxide in the extracellular space of the brain, especially during conditions that favor hydroxyl radical formation, could be therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC. (1989) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.

    Google Scholar 

  2. Przedborski S, Donaldson D, Jakowec M, et al. (1996) Brain superoxide dismutase, catalase, and glutathione peroxidase activities in amyotrophic lateral sclerosis. Ann. Neurol. 39: 158–165.

    Article  CAS  PubMed  Google Scholar 

  3. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14: 2924–2932.

    Article  CAS  PubMed  Google Scholar 

  4. Piani D, Frei K, Pfister HW, Fontana A. (1993) Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J. Neuroimmunol. 48: 99–104.

    Article  CAS  PubMed  Google Scholar 

  5. Fonnum F. (1984) Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42: 1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Hamberger A. (1971) Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res. 31: 169–178.

    Article  CAS  PubMed  Google Scholar 

  7. Choi DW. (1992) Amyotrophic lateral sclerosis and glutamate—Too much of a good thing? New Engl. J. Med. 326: 1493–1495.

    Article  CAS  PubMed  Google Scholar 

  8. Rothman SM. (1992) Excitotoxins: Possible mechanisms of action. Ann. N.Y. Acad. Sci. 648: 132–139.

    Article  CAS  PubMed  Google Scholar 

  9. Coyle JT, Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695.

    Article  CAS  PubMed  Google Scholar 

  10. Sorg O, Magistretti PJ. (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res. 563: 227–233.

    Article  CAS  PubMed  Google Scholar 

  11. Stoyanov T, Martin JL, Magistretti PJ. (1988) VIP binding sites in primary cultures of astrocytes. Eur. J. Neurosci. S1: 111–110.

    Google Scholar 

  12. Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram 439 quantities of protein using the principle of protein-dye binding. Ann. Biochem. 72: 248254.

    Article  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  14. Williams DA, Fogarty KE, Tsien RY, Fay FS. (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature 318: 558–561.

    Article  CAS  PubMed  Google Scholar 

  15. Qiu Z, Parsons KL, Gruol DL. (1995) Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons. J. Neurosci. 15: 6688–6699.

    Article  CAS  PubMed  Google Scholar 

  16. Gruol DL, Curry JG. (1995) Calcium signals elicited by quisqualate in cultured Purkinje neurons show developmental changes in sensitivity to acute alcohol. Brain Res. 673: 1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Greenwald RA, Moy WW. (1979) Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum. 22: 251–259.

    Article  CAS  PubMed  Google Scholar 

  18. Royall JA, Ischiropoulos H. (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348–355.

    Article  CAS  PubMed  Google Scholar 

  19. DeMaster EG, Quast BJ, Redfern B, Nagasawa HT. (1995) Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry 34: 11494–11499.

    Article  CAS  PubMed  Google Scholar 

  20. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834–842.

    Article  CAS  PubMed  Google Scholar 

  21. Ueno S, Sugiyama M, Susa N, Furukawa Y. (1995) Effect of dimethylthiourea on chromium (VI)-induced DNA single-strand breaks in Chinese hamster V-79 cells. Mutat. Res. 346: 247–253.

    Article  CAS  PubMed  Google Scholar 

  22. Halliwell B, Gutteridge JMC. (1989) Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity. In: Halliwell B, Gutteridge, JMC (eds). Free Radicals in Biology and Medicine. Oxford University Press, Oxford, pp. 86–187.

    Google Scholar 

  23. Vanella A, Campisi A, Castorina C, et al. (1991) Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: Effect of deferoxamine. Pharmacol. Res. 24: 25–31.

    Article  CAS  PubMed  Google Scholar 

  24. Tappel AL. (1978) Glutathione peroxidase and hydroperoxides. Methods Enzymol. 52: 506–513.

    Article  CAS  PubMed  Google Scholar 

  25. Devesa A, O’Connor JE, Garciá C, Puertes IR, Viña JR. (1993) Glutathione metabolism in primary astrocyte cultures: Flow cytometric evidence of heterogeneous distribution of GSH content. Brain Res. 618: 181–189.

    Article  CAS  PubMed  Google Scholar 

  26. Yudkoff M, Pleasure D, Cregar L, Lin ZP, Nissim I, Stern J. (1990) Glutathione turnover in cultured astrocytes: Studies with [15N]glutamate. J. Neurochem. 55: 137–145.

    Article  CAS  PubMed  Google Scholar 

  27. Kiechle FL, Malinski T. (1993) Nitric oxide. Biochemistry, pathophysiology, and detection. Am. J. Clin. Pathol. 100: 567–575.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis RS, Deen WM. (1994) Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem. Res. Toxicol. 7: 568–574.

    Article  CAS  PubMed  Google Scholar 

  29. McCord JM, Fridovich I. (1969) Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  30. Gutteridge JMC. (1993) Invited review: Free radicals in disease processes: A compilation of cause and consequence. Free Radic. Res. Commun. 19: 141–158.

    Article  CAS  PubMed  Google Scholar 

  31. Halliwell B, Gutteridge JMC. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheeseman KH, Slater TF. (1993) Free radicals in medicine. Br. Med. Bull. 49: 479–724.

    Article  Google Scholar 

  33. Szent-Gyorgyi A. (1978) The living state and cancer. Ciba Found. Symp. 67: 3–18.

    Google Scholar 

  34. Moyer VD, Cistulli CA, Vaslet CA, Kane AB. (1994) Oxygen radicals and asbestos carcinogenesis. Environ. Health Persped. 102(Suppl. 10): 131–136.

    Article  CAS  Google Scholar 

  35. Wei H. (1992) Activation of oncogenes and/or inactivation of anti-oncogenes by reactive oxygen species. Med. Hypotheses 39: 267–270.

    Article  CAS  PubMed  Google Scholar 

  36. Downey JM. (1990) Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu. Rev. Physiol. 52: 487–504.

    Article  CAS  PubMed  Google Scholar 

  37. Ransohoff J. (1978) Free radicals in cerebral ischemia. Stroke 9: 445–447.

    Article  PubMed  Google Scholar 

  38. Johnson KJ, Weinberg JM. (1993) Postischemic renal injury due to oxygen radicals. Curr. Opin. Nephrol. Hypertension 2: 625–635.

    Article  CAS  Google Scholar 

  39. Chiueh CC, Gilbert DL, Colton CA. (1994) The Neurobiology of NO and OH. The New York Academy of Sciences, New York, Vol. 738.

    Google Scholar 

  40. Gutteridge JMC. (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. N.Y. Acad. Sci. 738: 201–213.

    Article  CAS  PubMed  Google Scholar 

  41. Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neuro-chem. 59: 1609–1623.

    CAS  Google Scholar 

  42. Shinar E, Navok T, Chevion M. (1983) The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper. J. Biol. Chem. 258: 14778–14783.

    PubMed  CAS  Google Scholar 

  43. Holmberg P. (1984) The physics and chemistry of free radicals. Med. Biol. 62: 68–70.

    PubMed  CAS  Google Scholar 

  44. Grisham MB. (1995) Interaction between nitric oxide and superoxide: Role in modulating leukocyte adhesion in the postischemic microvasculature. Transplant. Proc. 27: 2842–2843.

    PubMed  CAS  Google Scholar 

  45. Huie RE, Padmaja S. (1993) The reaction of NO with superoxide. Free Radic. Res. Commun. 18: 195–199.

    Article  CAS  PubMed  Google Scholar 

  46. Squadrito GL, Pryor WA. (1995) The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chemico-Biol. Int. 96: 203–206.

    Article  CAS  Google Scholar 

  47. Trotti D, Rossi D, Gjesdal O, et al. (1996) Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 271: 5976–5979.

    Article  CAS  PubMed  Google Scholar 

  48. Preclik G, Stange EF, Ditschuneit H. (1992) Limited utilization of exogenous arachidonic acid by the prostaglandin cyclooxygenase in gastric mucosa: The role of protein binding, glutathione peroxidase, and hydrogen peroxides. Prostaglandins 44: 177–197.

    Article  CAS  PubMed  Google Scholar 

  49. Chaudière J, Wilhelmsen EC, Tappel AL. (1984) Mechanism of selenium-glutathione peroxidase and its inhibition by mercapto-carboxylic acids and other mercaptans. J. Biol. Chem. 259: 1043–1050.

    PubMed  Google Scholar 

  50. Scott MD, Wagner TC, Chiu DT. (1993) Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim. Biophys. Acta 1181: 163–168.

    Article  CAS  PubMed  Google Scholar 

  51. Volterra A, Trotti D, Cassutti P, et al. (1992) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J. Neurochem. 59: 600–606.

    Article  CAS  PubMed  Google Scholar 

  52. Yu ACH, Chan PH, Fishman RA. (1986) Effects of arachidonic acid on glutamate and γ-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 47: 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  53. Stella N, Tencé M, Glowinski J, Prémont J. (1994) Glutamate induces the release of arachidonic acid by interacting with an atypical metabotropic receptor present on mouse brain astrocytes. Renal Physiol. Biochem. 17: 153–156.

    PubMed  CAS  Google Scholar 

  54. Rees R, Smith D, Li TD, et al. (1994) The role of xanthine oxidase and xanthine dehydrogenase in skin ischemia. J. Surg. Res. 56:162–167.

    Article  CAS  PubMed  Google Scholar 

  55. McCord JM. (1985) Oxygen-derived free radicals in postischemic tissue injury. New Engl. J. Med. 312: 159–163.

    Article  CAS  PubMed  Google Scholar 

  56. Ogata T, Nakamura Y, Tsuji K, Okumura H, Kataoka K, Shibata T. (1996) Role of aspartate in ischemic spinal cord damage. J. Or-thopaed. Res. 14: 504–510.

    Article  CAS  Google Scholar 

  57. Duffy S, McVicar BA. (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci. 16: 71–81.

    Article  CAS  PubMed  Google Scholar 

  58. Mitani A, Yanase H, Namba S, Shudo M, Kataoka K. (1995) In vitro ischemia-induced intracellular Ca2+ elevation in cerebellar slices: A comparative study with the values found in hippocampal slices. Acta Neuropathol. 89: 2–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by MH47680 (F.E.B., N.Y., D.L.G.), Deutscher Akademischer Austauschdienst (T.F.W.H.), and Swiss National Fund (O.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd E. Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorg, O., Horn, T.F.W., Yu, N. et al. Inhibition of Astrocyte Glutamate Uptake by Reactive Oxygen Species: Role of Antioxidant Enzymes. Mol Med 3, 431–440 (1997). https://doi.org/10.1007/BF03401690

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401690

Keywords

Navigation