FORMULATION OF THE PROBLEM

We consider a waveguide with a constant rectangular cross-section V = {(x, y) ∈ S : x ∈ (0, a), y ∈ (0, b), z\(\mathbb{R}\)}, where z is the waveguide axis.

Electromagnetic field inside the waveguide is described by the Maxwell equations

$$\begin{gathered} {\text{curl}}{\mathbf{H}} = ik{\mathbf{H}}, \\ {\text{curl}}{\mathbf{H}} = - ik{\mathbf{E}}, \\ {\text{div}}{\mathbf{E}} = 0, \\ {\text{div}}{\mathbf{H}} = 0 \\ \end{gathered} $$
((1))

with the Schukin–Leontovich [1] boundary conditions on the side boundary of the waveguide,

$$[{\mathbf{n}},{\mathbf{E}}]{{{\text{|}}}_{{\partial V}}} = {{Z}_{s}}[{\mathbf{n}},[{\mathbf{n}},{\mathbf{H}}]]{{{\text{|}}}_{{\partial V}}}.$$
((2))

Here, n is the unit normal to the ∂V boundary. For the rectangular area this conditions can be presented as

$$\begin{gathered} {{E}_{x}} = {{Z}_{s}}{{H}_{z}},\quad {{E}_{z}} = - {{Z}_{s}}{{H}_{x}},\quad y = 0, \\ {{E}_{x}} = - {{Z}_{s}}{{H}_{z}},\quad {{E}_{z}} = {{Z}_{s}}{{H}_{x}},\quad y = b, \\ {{E}_{y}} = {{Z}_{s}}{{H}_{z}},\quad {{E}_{z}} = - {{Z}_{s}}{{H}_{y}},\quad x = 0, \\ {{E}_{y}} = - {{Z}_{s}}{{H}_{z}},\quad {{E}_{z}} = {{Z}_{s}}{{H}_{y}},\quad x = a, \\ \end{gathered} $$
((3))

where Zs is the impedance of the material of the waveguide walls.

To find the general solution of the problem (1)–(3) we use the incomplete Galerkin method. Let \({\mathbf{G}}_{{nm}}^{{(e1)}}\), \({\mathbf{G}}_{{nm}}^{{(e2)}}\), \({\mathbf{G}}_{{nm}}^{{(h3)}}\) be the basis functions of the electric type [2] of an ideal waveguide, 0 < nN, 0 < mM.

\({\mathbf{G}}_{{nm}}^{{(h1)}}\), \({\mathbf{G}}_{{nm}}^{{(h2)}}\), \({\mathbf{G}}_{{nm}}^{{(e3)}}\) are the basis functions of the magnetic type [2] of an ideal waveguide, 0 < nN, 0 < m ≤ M, n + m > 0.

Let us introduce additional basis functions \({\mathbf{G}}_{{nm}}^{{(ex)}}\), \({\mathbf{G}}_{{nm}}^{{(ey)}}\), \({\mathbf{G}}_{{nm}}^{{(ezx)}}\), \({\mathbf{G}}_{{nm}}^{{(ezy)}}\), 0 < nN, 0 < mM, n + m > 0 with a nonzero tangential component of the electric field on boundary ∂S, which provide fulfillment of the Schukin–Leontovich conditions [3].

Let us denote the summation over multi-index (nm) for the cases of electric- and magnetic-type fields as

$$\sum\limits_{n = 0}^N {\sum\limits_{m = 0}^M {{{q}_{{nm}}}} = \sum\limits_{(e)} {{{q}_{{nm}}}} } ,$$
$$\sum\limits_{n + m > 0}^{N,M} {{{q}_{{nm}}} = \sum\limits_{(h)} {{{q}_{{nm}}}} } .$$

We assume electromagnetic fields in the cross-section of a waveguide in the form

$${{{\mathbf{H}}}_{z}} = \sum\limits_{(h)} {W_{{nm}}^{{(h1)}}(z){\mathbf{G}}_{{nm}}^{{(h1)}}} ,$$
((4))
$$\begin{gathered} {{{\mathbf{E}}}_{ \bot }} = \sum\limits_{(e)} {W_{{nm}}^{{(e2)}}(z){\mathbf{G}}_{{nm}}^{{(e2)}}} + \sum\limits_{(h)} {W_{{nm}}^{{(e3)}}(z){\mathbf{G}}_{{nm}}^{{(e3)}}} \\ \, + \sum\limits_{(h)} {W_{{nm}}^{{(ex)}}(z){\mathbf{G}}_{{nm}}^{{(ex)}}} + \sum\limits_{(h)} {W_{{nm}}^{{(ey)}}(z){\mathbf{G}}_{{nm}}^{{(ey)}}} , \\ \end{gathered} $$
((5))
$$\begin{gathered} {{{\mathbf{E}}}_{z}} = \sum\limits_{(e)} {W_{{nm}}^{{(e1)}}(z){\mathbf{G}}_{{nm}}^{{(e1)}}} + \sum\limits_{(h)} {W_{{nm}}^{{(ezx)}}(z){\mathbf{G}}_{{nm}}^{{(ezx)}}} \\ \, + \sum\limits_{(h)} {W_{{nm}}^{{(ezy)}}(z){\mathbf{G}}_{{nm}}^{{(ezy)}}} , \\ \end{gathered} $$
((6))
$${{{\mathbf{H}}}_{ \bot }} = \sum\limits_{(e)} {W_{{nm}}^{{(h3)}}(z){\mathbf{G}}_{{nm}}^{{(h3)}}} + \sum\limits_{(h)} {W_{{nm}}^{{(h2)}}(z){\mathbf{G}}_{{nm}}^{{(h2)}}} .$$
((7))

By substituting the field representation (4)–(7) in the Maxwell equations (1) and boundary conditions (3) and using the properties of the constructed basis [3] one obtains a differential-algebraic system of linear equations with respect to unknown coefficients Wnm.

$$\begin{gathered} \frac{{dW_{{nm}}^{{(e2)}}}}{{dz}} = - ik\left( {1 - \frac{{\kappa _{{nm}}^{2}}}{{{{k}^{2}}}}} \right)W_{{nm}}^{{(h3)}} \\ \, + \frac{1}{b}\sum\limits_{m' = 0}^M {\frac{{2\pi m}}{{{{\kappa }_{{nm}}}b}}[{{{( - 1)}}^{{m'}}} - 1]W_{{nm'}}^{{(ezy)}}} \\ \, + \frac{1}{a}\sum\limits_{n' = 0}^N {\frac{{2\pi n}}{{{{\kappa }_{{nm}}}a}}[{{{( - 1)}}^{{n'}}} - 1]W_{{n'm}}^{{(ezx)}}} , \\ \end{gathered} $$
((8))
$$\frac{{dW_{{nm}}^{{(h3)}}}}{{dz}} = - ikW_{{nm}}^{{(e2)}},$$
((9))
$$\begin{gathered} \frac{{dW_{{nm}}^{{(h2)}}}}{{dz}} = - ik\left( {1 - \frac{{\kappa _{{nm}}^{2}}}{{{{k}^{2}}}}} \right)W_{{nm}}^{{(e3)}} \\ \, + \frac{{{{\kappa }_{{nm}}}{{Z}_{s}}}}{{ik}}\left\{ { - \frac{2}{b}\sum\limits_{m' = 0}^M {[{{{( - 1)}}^{{m + m'}}} + 1]W_{{nm'}}^{{(h1)}}} } \right. \\ \left. {\, + \frac{2}{a}\sum\limits_{n' = 0}^N {[{{{( - 1)}}^{{n + n'}}} + 1]W_{{n'm}}^{{(h1)}}} } \right\}, \\ \end{gathered} $$
((10))
$$\begin{gathered} \frac{{dW_{{nm}}^{{(e3)}}}}{{dz}} = - ikW_{{nm}}^{{(h2)}} + \frac{1}{b}\sum\limits_{m' = 0}^M {\frac{{\pi n}}{{{{\kappa }_{{nm}}}b}}[{{{( - 1)}}^{{m'}}} - 1]W_{{nm'}}^{{(ezy)}}} \\ \, - \frac{1}{a}\sum\limits_{n' = 0}^N {\frac{{\pi m}}{{{{\kappa }_{{nm}}}a}}[{{{( - 1)}}^{{n'}}} - 1]W_{{n'm}}^{{(ezx)}}} , \\ \end{gathered} $$
((11))
$$\begin{gathered} W_{{nm}}^{{(h1)}} = \frac{{{{\kappa }_{{nm}}}}}{{ik}}W_{{nm}}^{{(e3)}} - \frac{{{{Z}_{s}}}}{{ik}}\left\{ {\frac{2}{b}\sum\limits_{m' = 0}^M {[{{{( - 1)}}^{{m + m'}}} + 1]W_{{nm'}}^{{(h1)}}} } \right. \\ \left. {\, + \frac{2}{a}\sum\limits_{n = 0}^N {[{{{( - 1)}}^{{n + n'}}} + 1]W_{{n'm}}^{{(h1)}}} } \right\}, \\ \end{gathered} $$
((12))
$$W_{{nm}}^{{(e1)}} = - \frac{{{{\kappa }_{{nm}}}}}{{ik}}W_{{nm}}^{{(h3)}},$$
((13))
$$W_{{nm}}^{{(ezx)}} = {{Z}_{s}}\left( {\frac{{\pi n}}{{{{\kappa }_{{nm}}}a}}W_{{nm}}^{{(h2)}} - \frac{{\pi m}}{{{{\kappa }_{{nm}}}b}}W_{{nm}}^{{(h3)}}} \right),$$
((14))
$$W_{{nm}}^{{(ezy)}} = {{Z}_{s}}\left( {\frac{{\pi n}}{{{{\kappa }_{{nm}}}a}}W_{{nm}}^{{(h2)}} + \frac{{\pi m}}{{{{\kappa }_{{nm}}}b}}W_{{nm}}^{{(h3)}}} \right),$$
((15))
$$W_{{nm}}^{{(ex)}} = - \frac{{{{Z}_{s}}{{\kappa }_{{nm}}}}}{{ik}}W_{{nm}}^{{(e3)}},$$
((16))
$$W_{{nm}}^{{(ey)}} = - \frac{{{{Z}_{s}}{{\kappa }_{{nm}}}}}{{ik}}W_{{nm}}^{{(h3)}},$$
((17))

where κnm = \(\sqrt {{{{\left( {\frac{{\pi n}}{a}} \right)}}^{2}} + {{{\left( {\frac{{\pi m}}{b}} \right)}}^{2}}} \). The system of equation (8)–(7) can be transformed into a system of differential equations.

Introduce column \(\tilde {C}\) = (W(e2), W(h3), W(h2), W(e3), W(e1), W(h1), W(ex), W(ey), W(exz), W(eyz))T with all sought coefficients, column C = (W(e2), W(h3), W(h2), W(e3))T with the coefficients under the differentiation sign in respect to z in (9)–(18) and column \(\hat {C}\) = (W(e1), W(h1), W(ex), W(ey), W(exz), W(eyz))T.

Thus, \(\tilde {C}\) = (CT, \({{\hat {C}}^{T}}\))T. Let P and \(\tilde {P}\) be the height of columns C and \(\tilde {C}\), respectively.

The system differential equations (8)–(11) in the introduced notations has the form

$$\frac{{dC}}{{dz}} = D\tilde {C},$$
((18))

where D is a P × \(\tilde {P}\) matrix.

Algebraic equations (12)–(17) can be written in the form

$$A\tilde {C} = 0,$$
((19))

where A is matrix (\(\tilde {P}\)P) × \(\tilde {P}\). Then, system (19) can be written in the form

$$BC + K\tilde {C} = 0,$$
((20))

where A = [B, K], K is a square matrix of (\(\tilde {P}\)P) × (\(\tilde {P}\) – P) (Fig. 1).

Fig. 1.
figure 1

The structure of the matrix of the system of differential-algebraic equations.

Let us express \(\hat {C}\) via C:

$$\hat {C} = - {{K}^{{ - 1}}}BC.$$
((21))

Thus, a complete column with unknowns \(\tilde {C}\) = (C, \(\hat {C}\))T can be expressed in terms of a column of unknowns of a system of homogeneous differential equations (SHDE) C,

$$\tilde {C} = QC = \left( \begin{gathered} I \\ - {{K}^{{ - 1}}}B \\ \end{gathered} \right)C,$$
((22))

where I is a unit matrix of dimension P × P, and ‒K–1B is a matrix of dimension (\(\tilde {P}\)P) × P.

Substitution of (22) into (18) gives SHDE with respect to column C with a square matrix T,

$$\frac{{dC}}{{dz}} = D\tilde {C} = DQC = TC.$$
((23))

Calculation of the eigen-vectors and eigen-values of matrix T gives the set of eigen modes of the waveguide. Consequent application of the algorithm for a selected frequency range k ∈ [k1, k2] yields the dispersion characteristics of the waveguide.

NUMERICAL EXPERIMENT

We calculated the dispersion characteristics of a rectangular waveguide with a cross-section of 10 cm by 20 cm. At Zs = 0 system (23) transforms to a system of equations for an ideal waveguide and the dispersion characteristics agree with those calculated analytically (Figs. 2a, 2b).

Fig. 2.
figure 2

The dispersion characteristics of (a, b) an ideal infinite waveguide obtained (+) analytically and (circles) using the proposed method at Zs = 0; (c, d) (+) ideal infinite waveguide and (circles) a waveguide with losses at an impedance value of Zs = 0.05(1 – i); (e, f) (+) ideal infinite waveguide and (circles) waveguide with losses at an impedance value of Zs = 0.25(1 – i).

With a nonzero impedance the dispersion characteristics become distorted and attenuation of the mode emerges (Figs. 2c–2f).

CONCLUSIONS

A mathematical vector model of a waveguide with a rectangular cross-section has been developed. An algorithm for its calculation on a computer has been created and the dispersion characteristics were obtained. The proposed algorithm also allows calculations of ladder-type waveguide systems, which are widely used in designing klystron systems.