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Abstract—We propose a model of an infinite waveguide of constant rectangular cross section with losses in
the walls which are described by the Schukin–Leontovich boundary conditions. The waveguide is analyzed
using the non-complete Galerkin method. We use the standard basis for waveguide with ideally conducting
walls supplemented with functions providing precise fulfillment of the boundary conditions. The eigen modes
of the waveguide in the THz range are calculated and dispersion characteristics are obtained.
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FORMULATION OF THE PROBLEM
We consider a waveguide with a constant rectangu-

lar cross-section V = {(x, y) ∈ S : x ∈ (0, a), y ∈ (0, b),
z ∈ }, where z is the waveguide axis.

Electromagnetic field inside the waveguide is
described by the Maxwell equations

(1)

with the Schukin–Leontovich [1] boundary condi-
tions on the side boundary of the waveguide,

(2)
Here, n is the unit normal to the ∂V boundary. For the
rectangular area this conditions can be presented as

(3)

where Zs is the impedance of the material of the wave-
guide walls.

To find the general solution of the problem (1)–(3)
we use the incomplete Galerkin method. Let ,

,  be the basis functions of the electric type [2]
of an ideal waveguide, 0 < n ≤ N, 0 < m ≤ M.

, ,  are the basis functions of the mag-
netic type [2] of an ideal waveguide, 0 < n ≤ N, 0 <
m ≤ M, n + m > 0.

Let us introduce additional basis functions ,
, , , 0 < n ≤ N, 0 < m ≤ M, n + m > 0 with

a nonzero tangential component of the electric field
on boundary ∂S, which provide fulfillment of the
Schukin–Leontovich conditions [3].

Let us denote the summation over multi-index
(n, m) for the cases of electric- and magnetic-type
fields as

We assume electromagnetic fields in the cross-sec-
tion of a waveguide in the form

(4)

(5)

(6)

(7)

By substituting the field representation (4)–(7) in
the Maxwell equations (1) and boundary conditions
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Fig. 1. The structure of the matrix of the system of differ-
ential-algebraic equations.
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(3) and using the properties of the constructed basis
[3] one obtains a differential-algebraic system of linear
equations with respect to unknown coefficients Wnm.
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(15)

(16)

(17)

where κnm = . The system of equation

(8)–(7) can be transformed into a system of differen-
tial equations.

Introduce column  = (W(e2), W(h3), W(h2), W(e3),
W(e1), W(h1), W(ex), W(ey), W(exz), W(eyz))T with all sought
coefficients, column C = (W(e2), W(h3), W(h2), W(e3))T

with the coefficients under the differentiation sign in
respect to z in (9)–(18) and column  = (W(e1), W(h1),
W(ex), W(ey), W(exz), W(eyz))T.

Thus,  = (CT, )T. Let P and  be the height of
columns C and , respectively.

The system differential equations (8)–(11) in the
introduced notations has the form

(18)

where D is a P ×  matrix.
Algebraic equations (12)–(17) can be written in the

form

(19)

where A is matrix (  – P) × . Then, system (19) can
be written in the form

(20)

where A = [B, K], K is a square matrix of (  – P) ×
( – P) (Fig. 1).

Let us express  via C:

(21)

Thus, a complete column with unknowns  = (C, )T

can be expressed in terms of a column of unknowns of
a system of homogeneous differential equations
(SHDE) C,

(22)

where I is a unit matrix of dimension P × P, and
‒K–1B is a matrix of dimension (  – P) × P.

Substitution of (22) into (18) gives SHDE with
respect to column C with a square matrix T,
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Fig. 2. The dispersion characteristics of (a, b) an ideal infinite waveguide obtained (+) analytically and (circles) using the pro-
posed method at Zs = 0; (c, d) (+) ideal infinite waveguide and (circles) a waveguide with losses at an impedance value of Zs =
0.05(1 – i); (e, f) (+) ideal infinite waveguide and (circles) waveguide with losses at an impedance value of Zs = 0.25(1 – i).
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Calculation of the eigen-vectors and eigen-values
of matrix T gives the set of eigen modes of the wave-
guide. Consequent application of the algorithm for a
selected frequency range k ∈ [k1, k2] yields the disper-
sion characteristics of the waveguide.

NUMERICAL EXPERIMENT

We calculated the dispersion characteristics of a
rectangular waveguide with a cross-section of 10 cm by
20 cm. At Zs = 0 system (23) transforms to a system of
equations for an ideal waveguide and the dispersion
characteristics agree with those calculated analytically
(Figs. 2a, 2b).
MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol. 73 
With a nonzero impedance the dispersion charac-
teristics become distorted and attenuation of the mode
emerges (Figs. 2c–2f).

CONCLUSIONS
A mathematical vector model of a waveguide with a

rectangular cross-section has been developed. An
algorithm for its calculation on a computer has been
created and the dispersion characteristics were
obtained. The proposed algorithm also allows calcula-
tions of ladder-type waveguide systems, which are
widely used in designing klystron systems.
 No. 6  2018
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