1. Introduction

Nowadays the theory of \(p\)-adic numbers is one of very actively developing area in mathematics. It has numerous applications in many branches of mathematics, biology, physics and other sciences (see for example [4, 7, 12] and the references therein).

In this paper we continue our study of \(p\)-adic dynamical systems generated by rational functions (see [1-10]) and references therein for motivations and history of \(p\)-adic dynamical systems).

Let us recall the main definition of the paper:

\(p\)-Adic numbers. Denote by \((n,m)\) the greatest common divisor of the positive integers \(n\) and \(m\).

Let \(\mathbb{Q}\) be the field of rational numbers.

For each fixed prime number \(p\), every rational number \(x\neq 0\) can be represented in the form \(x=p^r\frac{n}{m}\), where \(r,n\in\mathbb{Z}\), \(m\) is a positive integer, \((p,n)=1\), \((p,m)=1\).

The \(p\)-adic norm of \(x\) is given by

$$|x|_p=\left\{ \begin{array}{ll} p^{-r}, & \ \textrm{~for~} x\neq 0, \\ 0, &\ \textrm{~for~} x=0.\\ \end{array} \right.$$

It has the following properties:

1) \(|x|_p\geq 0\) and \(|x|_p=0\) if and only if \(x=0\),

2) \(|xy|_p=|x|_p|y|_p\),

3) the strong triangle inequality

$$|x+y|_p\leq\max\{|x|_p,|y|_p\},$$

3.1) if \(|x|_p\neq |y|_p\) then \(|x+y|_p=\max\{|x|_p,|y|_p\}\),

3.2) if \(|x|_p=|y|_p\) then for \(p=2\) we have \(|x+y|_p\leq {1\over 2}|x|_p\) (see [12]).

The completion of \(\mathbb{Q}\) with respect to \(p\)-adic norm defines the \(p\)-adic field which is denoted by \(\mathbb{Q}_p\) (see [5]).

The algebraic completion of \(\mathbb{Q}_p\) is denoted by \({\mathbb C}_p\) and it is called the set of complex \(p\)-adic numbers.

For any \(a\in{\mathbb C}_p\) and \(r>0\) denote

$$U_r(a)=\{x\in{\mathbb C}_p : |x-a|_p<r\},\ \ V_r(a)=\{x\in{\mathbb C}_p : |x-a|_p\leq r\},$$
$$S_r(a)=\{x\in{\mathbb C}_p : |x-a|_p= r\}.$$

Dynamical systems in \({\mathbb C}_p\). To define a dynamical system we consider a function \(f: x\in U\to f(x)\in U\), (in this paper \(U=U_r(a)\) or \({\mathbb C}_p\)) (see for example [6]).

For \(x\in U\) denote by \(f^n(x)\) the \(n\)-fold composition of \(f\) with itself (i.e. \(n\) times iteration of \(f\) to \(x\)):

$$f^n(x)=\underbrace{f(f(f\dots (f}_{n \,{\rm times}}(x)))\dots).$$

For arbitrary given \(x_0\in U\) and \(f:U\to U\) the discrete-time dynamical system (also called the trajectory) of \(x_0\) is the sequence of points

$$ x_0, x_1=f(x_0), x_2=f^2(x_0), x_3=f^3(x_0), \dots$$
(1.1)

The main problem: Given a function \(f\) and initial point \(x_0\) what ultimately happens with the sequence (1.1). Does the limit \(\lim_{n\to\infty} x_n\) exist? If not what is the set of limit points of the sequence?

A point \(x\in U\) is called a fixed point for \(f\) if \(f(x)=x\). The point \(x\) is a periodic point of period \(m\) if \(f^m(x) = x\). The least positive \(m\) for which \(f^m(x) = x\) is called the prime period of \(x\).

A fixed point \(x_0\) is called an attractor if there exists a neighborhood \(U(x_0)\) of \(x_0\) such that for all points \(x\in U(x_0)\) it holds \(\lim\limits_{n\to\infty}f^n(x)=x_0\). If \(x_0\) is an attractor then its basin of attraction is

$$\mathcal A(x_0)=\{x\in {\mathbb C}_p :\ f^n(x)\to x_0, \ n\to\infty\}.$$

A fixed point \(x_0\) is called repeller if there exists a neighborhood \(U(x_0)\) of \(x_0\) such that \(|f(x)-x_0|_p>|x-x_0|_p\) for \(x\in U(x_0)\), \(x\neq x_0\).

Let \(x_0\) be a fixed point of a function \(f(x)\). Put \(\lambda=f'(x_0)\). The point \(x_0\) is attractive if \(0<|\lambda|_p < 1\), indifferent if \(|\lambda|_p = 1\), and repelling if \(|\lambda|_p > 1\).

The ball \(U_r(x_0)\) (contained in \(V\)) is said to be a Siegel disk if each sphere \(S_{ \rho }(x_0)\), \( \rho <r\) is an invariant sphere of \(f(x)\), i.e. if \(x\in S_{ \rho }(x_0)\) then all iterated points \(f^n(x)\in S_{ \rho }(x_0)\) for all \(n=1,2\dots\). The union of all Siegel disks with the center at \(x_0\) is called a maximum Siegel disk and is denoted by \(SI(x_0)\).

In Section 2 we consider the function \(f(x)={a\over x^2}\) and study the dynamical systems generated by this function in \({\mathbb C}_p\). We give fixed points, periodic points, basin of attraction and Siegel disk of each fixed (and periodic) point.

2. The function \(a/x^2\)

Consider the dynamical system associated with the function \(f:{\mathbb C}_p\to{\mathbb C}_p\) defined by

$$ f(x)=\frac{a}{x^2}, \ \ a\neq 0, \ \ a\in {\mathbb C}_p,$$
(2.1)

where \(x\ne 0\).

Denote by \(\theta_{j,n}\), \(j = 1,\dots, n\), the \(n\)th root of unity in \({\mathbb C}_p\), while \(\theta_{1,n} = 1\).

This function has three fixed points \(x_k\), \(k=1,2,3\), which are solutions to \(x^3=a\) in \({\mathbb C}_p\).

For these fixed points we have

$$ x^3_k=a \ \ \Rightarrow \ \ x_k=\theta_{k,3}a^{1\over 3} \ \ \Rightarrow \ \ |x^3_k|_p=|a|_p \ \ \Rightarrow \ \ |x_k|_p=\alpha\equiv(|a|_p)^{1/3}.$$
(2.2)

Thus \(x_k\in S_\alpha(0)\), \(k=1,2,3\).

We have

$$f'(x)={-2a\over x^3}= {-2\over x}\cdot f(x).$$

Therefore at a fixed point we get

$$f'(x_k)={-2\over x_k}\cdot f(x_k)=-2.$$
$$|f'(x_k)|_p=\left\{\begin{array}{ll} 1/2, \ \ \mbox{if} \ \ p=2 \\ 1, \ \ \mbox{if} \ \ p\geq 3 \end{array}\right.$$

Hence the fixed point \(x_k\) is an attractive for \(p=2\) and an indifferent for \(p\geq 3\). Therefore the fixed point is never repeller.

We can explicitly calculate \(f^n\).

Lemma 2.1.

For any \(x\in {\mathbb C}_p\setminus \{0\}\) we have

$$f^n(x)=a^{{1\over 3}(1-(-2)^n)}\cdot x^{(-2)^n}, \ \ n\geq 1.$$

Proof.

We use induction over \(n\). For \(n=1,2\) the formula is clear. Assume it is true for \(n\) and show it for \(n+1\):

$$\begin{aligned} \, \nonumber f^{n+1}(x)&=f^n(f(x))=a^{{1\over 3}(1-(-2)^n)}\cdot (f(x))^{(-2)^n} \\ &= a^{{1\over 3}(1-(-2)^n)}\cdot ({a\over x^2})^{(-2)^n}=a^{{1\over 3}(1-(-2)^{n+1})}\cdot x^{(-2)^{n+1}}. \nonumber \end{aligned}$$

This completes the proof. \(\square\)

Recall \(\alpha=(|a|_p)^{1/3}\). For \(r>0\), take \(x\in S_r(0)\), i.e., \(|x|_p=r\). Then we have

$$ |f^n(x)|_p=\left|a^{{1\over 3}(1-(-2)^n)}\cdot x^{(-2)^n}\right|_p =\alpha^{1-(-2)^n}\cdot r^{(-2)^n}, \ \ n\geq 1.$$
(2.3)

2.1. Dynamics on \({\mathbb C}_p\setminus S_\alpha(0)\)

Lemma 2.2.

For \(\alpha\) defined in ( 2.2 ) the following assertions hold:

  1. 1.

    The sphere \(S_\alpha(0)\) is invariant with respect to \(f\) , (i.e., \(f(S_\alpha(0))\subset S_\alpha(0)\) );

  2. 2.

    \(f(U_\alpha(0))\subset {\mathbb C}_p\setminus V_\alpha(0)\) ;

  3. 3.

    \(f({\mathbb C}_p\setminus V_\alpha(0))\subset U_\alpha(0)\) .

Proof.

1. If \(x\in S_\alpha(0)\), i.e., \(|x|_p=\alpha\), then

$$|f(x)|_p=|\frac{a}{x^2}|_p={|a|_p\over \alpha^2}=\alpha.$$

2. If \(x\in U_\alpha(0)\), i.e., \(|x|_p<\alpha\), then

$$|f(x)|_p=|\frac{a}{x^2}|_p>{|a|_p\over \alpha^2}=\alpha.$$

Therefore, \(f(x)\in {\mathbb C}_p\setminus V_\alpha(0)\). Proof of the part 3 is similar. \(\square\)

Lemma 2.3.

The function ( 2.1 ) does not have any periodic point in \({\mathbb C}_p\setminus S_\alpha(0)\) .

Proof.

We know that all three fixed points belong to \(S_\alpha(0)\). Let \(x\in {\mathbb C}_p\setminus S_\alpha(0)\) be a \(m\)-periodic (\(m\geq 2\)) point for (2.1), i.e., \(x\) satisfies \(f^m(x)=x\). Then it is necessary that \(|f^m(x)|_p=|x|_p\). But for any \(x\in {\mathbb C}_p\setminus S_\alpha(0)\) (i.e. \(|x|_p=r\ne \alpha\)), by (2.3) we get

$$ |f^m(x)|_p=\alpha^{1-(-2)^m}\cdot r^{(-2)^m}=\alpha \cdot \left(r\over \alpha\right)^{(-2)^m}\ne r, \ \ \forall r\ne \alpha.$$
(2.4)

Therefore, \(f^m(x)=x\) is not satisfied for any \(x\in {\mathbb C}_p\setminus S_\alpha(0)\). \(\square\)

For given \(r>0\), denote

$$r_n= \alpha^{1-(-2)^n}\cdot r^{(-2)^n}.$$

Then by (2.3) one can see that the trajectory \(f^n(x)\), \(n\geq 1\) of \(x\in S_r(0)\) has the following sequence of spheres on its route:

$$S_r(0) \rightarrow S_{r_1}(0)\rightarrow S_{r_2}(0)\rightarrow S_{r_3}(0)\rightarrow\dots$$

Now we calculate the limits of \(r_n\).

Case of even \(n\). From (2.3) it is easy to see that

$$\lim_{n\to \infty} |f^n(x)|_p=\lim_{n\to \infty} r_n=\left\{\begin{array}{lll} 0, \ \ \mbox{if} \ \ r<\alpha \\ \alpha, \ \ \mbox{if} \ \ r=\alpha \\ +\infty, \ \ \mbox{if} \ \ r>\alpha . \end{array} \right.$$

Case of odd \(n\). In this case we have

$$\lim_{n\to \infty} |f^n(x)|_p=\lim_{n\to \infty} r_n=\left\{\begin{array}{lll} +\infty, \ \ \mbox{if} \ \ r<\alpha \\ \alpha, \ \ \mbox{if} \ \ r=\alpha \\ 0, \ \ \mbox{if} \ \ r>\alpha . \end{array} \right.$$

Summarizing above-mentioned results we obtain the following theorem:

Theorem 2.4.

Let \(\alpha\) be defined by ( 2.2 ). Then

  1. 1.

    if \(x\in U_\alpha(0)\) then

    $$\lim_{k\to \infty}f^{2k}(x)=0, \ \ \ \lim_{k\to \infty}|f^{2k-1}(x)|_p=+\infty.$$
  2. 2.

    if \(x\in S_\alpha(0)\) then \(f^n(x)\in S_\alpha(0), \, n\geq 1.\)

  3. 3.

    if \(x\in {\mathbb C}_p\setminus V_\alpha(0)\) then

    $$\lim_{k\to \infty}|f^{2k}(x)|_p=+\infty, \ \ \ \lim_{k\to \infty}f^{2k-1}(x)=0.$$

Remark 2.5.

Note that Theorem 2.4 is true for more general function: \(f(x)={a\over x^q}\), where \(q\) is a natural number, \(q\geq 2\). In this case \(\alpha=|a|_p^{1/(q+1)}\). The case \(q=1\) is simple: in this case any point \(x\in {\mathbb C}_p\setminus \{0\}\) is 2-periodic. That is \(f(f(x))=x\). Indeed,

$$f(f(x))={a\over {a\over x}}=a\cdot {x\over a}=x.$$

2.2. Dynamics on \(S_\alpha(0)\)

By Theorem 2.4 it remains to study the dynamical system of \(f:S_\alpha(0)\to S_\alpha(0)\). Recall that all fixed points \(x_k\), \(k=1,2,3\) are in \(S_\alpha(0)\).

Lemma 2.6.

The distance between fixed points is

$$ |x_1-x_2|_p= |x_1-x_3|_p=|x_2-x_3|_p=\left\{\begin{array}{ll} \alpha, \ \ \mbox{if} \ \ p\ne 3 \\ {\alpha\over \sqrt{3}}, \ \ \mbox{if} \ \ p=3 . \end{array} \right.$$
(2.5)

Proof.

Since \(x_i^3=a\), \(i=1,2,3\), for \(x_i\ne x_j\) we have

$$0=x_i^3-x_j^3=(x_i-x_j)(x_i^2+x_ix_j+x_j^2) \ \ \Rightarrow \ \ x_i^2+x_ix_j+x_j^2=0$$
$$\Leftrightarrow \ \ (x_i-x_j)^2=-3x_ix_j \ \ \Rightarrow \ \ |x_i-x_j|_p^2=|3x_ix_j|_p.$$

From the last equality, using \(|x_i|_p=|x_j|_p=\alpha\), we get (2.5). \(\square\)

Take \(x\in S_\alpha(0)\) such that \(|x-x_1|_p=\rho\), i.e., \(x=x_1+\gamma\), with \(|\gamma|_p=\rho\). Note that \(\rho\leq \alpha\). Then by Lemma 2.1 we have

$$ |f^n(x)-x_1|_p= |f^n(x)-f^n(x_1)|_p=\alpha^{1-(-2)^n}|x^{(-2)^n}-x_1^{(-2)^n}|_p.$$
(2.6)

Now we use the following formula

$$x^{2^n}-y^{2^n}=(x-y)\prod_{j=0}^{n-1}(x^{2^j}+y^{2^j}).$$

Then from (2.6) we get

$$ |f^n(x)-x_1|_p= \alpha^{1-(-2)^n}\cdot \left\{\begin{array}{ll} \rho\prod_{j=0}^{n-1}|(x_1+\gamma)^{2^j}+x_1^{2^j}|_p, \ \ \mbox{if} \ \ n \ \ \mbox{is even} \\ {\rho\over |xx_1|_p}\prod_{j=0}^{n-1}|(x_1+\gamma)^{-2^j}+x_1^{-2^j}|_p, \ \ \mbox{if} \ \ n \ \ \mbox{is odd}. \end{array}\right.$$
(2.7)

We have

$$ |(x_1+\gamma)^{2^j}+x_1^{2^j}|_p=\left|2x_1^{2^j}+\sum_{s=1}{2^j\choose s}x_1^{2^j-s}\gamma^s\right|_p=\left\{\begin{array}{ll} |2|_p\alpha^{2^j}, \ \ \mbox{if} \ \ \rho<\alpha \\ \leq |2|_p\alpha^{2^j}, \ \ \mbox{if} \ \ \rho=\alpha. \end{array} \right.$$
(2.8)

Here we used that

$$\left|{2^j\choose s}\right|_p\leq \left\{\begin{array}{ll} {1\over 2}, \ \ \mbox{if} \ \ p=2 \\ 1, \ \ \mbox{if} \ \ p\geq 3 . \end{array}\right.$$

Using (2.8) we get

$$ |(x_1+\gamma)^{-2^j}+x_1^{-2^j}|_p= {|(x_1+\gamma)^{2^j}+x_1^{2^j}|_p \over |(x_1+\gamma)^{2^j}x_1^{2^j}|_p}= \left\{\begin{array}{lll} |2|_p\alpha^{-2^j}, \ \ \mbox{if} \ \ \rho<\alpha \\ \leq |2|_p {1\over |(x_1+\gamma)^{2^j}|_p}, \ \ \mbox{if} \ \ \rho=\alpha. \end{array} \right.$$
(2.9)

In case of even \(n\), by (2.8) from (2.7), we get

$$|f^n(x)-x_1|_p= \alpha^{1-2^n}\cdot \rho\prod_{j=0}^{n-1}|(x_1+\gamma)^{2^j}+x_1^{2^j}|_p$$
$$ =\rho\cdot \alpha^{1-2^n}\cdot |2|_p^n \prod_{j=0}^{n-1}\alpha^{2^j}\cdot\left\{\begin{array}{ll} 1, \ \ \mbox{if} \ \ \rho<\alpha \\ \leq 1, \ \ \mbox{if} \ \ \rho=\alpha \end{array}\right. =\rho\cdot |2|_p^n\cdot\left\{\begin{array}{ll} 1, \ \ \mbox{if} \ \ \rho<\alpha \\ \leq 1, \ \ \mbox{if} \ \ \rho=\alpha . \end{array}\right.$$
(2.10)

Similarly, in case of odd \(n\), by (2.9) from (2.7) we get

$$ |f^n(x)-x_1|_p= \alpha^{1+2^n}\cdot {\rho\over \alpha^2}\cdot |2|_p^n\prod_{j=0}^{n-1}\alpha^{-2^j} =\rho \cdot |2|_p^n\ \ \mbox{if} \ \ \rho<\alpha.$$
(2.11)

The same formulas are also true for \(x_2\) and \(x_3\).

For fixed \(\alpha\) (defined in (2.2)) and \(t\in S_\alpha(0)\) denote

$$\mathcal S_{\rho,t}=S_\alpha(0)\cap S_\rho(t)=\{x\in S_\alpha(0): |x-t|_p=\rho\}.$$

Thus we have proved the following lemma

Lemma 2.7.

Let \(\rho<\alpha\) . Then for any \(x\in \mathcal S_{\rho, x_i}\) ( \(i=1,2,3\) ) we have

  1. if \(p=2\) then

    $$f^n(x)\in \mathcal S_{2^{-n}\rho, x_i}.$$
  2. if \(p\geq 3\) then

    $$f^n(x)\in \mathcal S_{\rho, x_i}, \ \ n\geq 1.$$

    In particular, the set \(\mathcal S_{\rho, x_i}\) is invariant with respect to \(f\) for any \(\rho< \alpha\) .

Denote

$$\mathcal V_{\rho, t}=\bigcup_{0\leq r< \rho}\mathcal S_{r,t}=\{x\in S_\alpha(0): |x-t|_p<\rho\}.$$

Lemma 2.8.

If \(x\in \mathcal S_{\rho, x_i}\) , for some \(i=1,2,3\) , then:

  1. i.

    If \(\rho\) is such that

    $$\rho<\left\{\begin{array}{ll} \alpha, \ \ \mbox{if} \ \ p\ne 3 \\ {\alpha\over \sqrt{3}}, \ \ \mbox{if} \ \ p=3. \end{array}\right.$$

    then

    $$x\in \left\{\begin{array}{ll} \mathcal S_{{\alpha\over \sqrt{3}}, x_j}, \ \ \mbox{for} \ \ p=3 \\ \mathcal S_{\alpha, x_j}, \ \ \mbox{for} \ \ p\ne 3, \end{array}\right. \ \ j\ne i.$$
  2. ii.

    If \(p=3\) and \(\rho\geq {\alpha\over \sqrt{3}}\) then

    $$x\in \left\{\begin{array}{ll} \mathcal V_{\rho, x_j}, \ \ \mbox{for} \ \ \rho= {\alpha\over \sqrt{3}} \\ \mathcal S_{\rho, x_j}, \ \ \mbox{for} \ \ \rho> {\alpha\over \sqrt{3}}, \end{array}\right. \ \ j\ne i.$$

Proof.

For \(x\in \mathcal S_{\rho, x_i}\), using property of \(p\)-adic norm and formula (2.5) we get

$$|x-x_j|_p=|x-x_i+x_i-x_j|_p=\left\{\begin{array}{llll} \alpha, \ \ \mbox{if} \ \ p\ne 3 \\ {\alpha\over \sqrt{3}}, \ \ \mbox{if} \ \ p=3, \ \ \rho<{\alpha\over \sqrt{3}} \\ \leq\rho, \ \ \mbox{if} \ \ p=3, \ \ \rho={\alpha\over \sqrt{3}} \\ \rho, \ \ \mbox{if} \ \ p=3, \ \ \rho>{\alpha\over \sqrt{3}} \end{array} \right.$$

This completes the proof. \(\square\)

Denote

$$\mathcal U_\alpha=\{x\in S_\alpha(0): |x-x_1|_p=|x-x_2|_p=|x-x_3|_p=\alpha\}.$$

As a corollary of Lemma 2.8 we have

Lemma 2.9.

If \(p\ne 3\) then \(S_\alpha(0)\) has the following partition

$$S_\alpha(0)=\mathcal U_\alpha\cup \bigcup_{i=1}^3\mathcal V_{\alpha, x_i}.$$

Lemma 2.10.

Let \(\alpha\) be defined by ( 2.2 ). Then:

  1. 1.

    If \(p=2\) then the set \(\mathcal U_\alpha\) is invariant with respect to \(f\) .

  2. 2.

    If \(p\geq 3\) and \(x\in \mathcal U_\alpha\) then one of the following assertions holds:

  3. 2.a)

    There exists \(n_0\) and \(\mu_{n_0}< \alpha\) such that

    $$\begin{array}{ll} f^n(x)\in \mathcal U_\alpha, \ \ \forall n\leq n_0, \\ f^n(x)\in \mathcal S_{\mu_{n_0}}(x_i), \ \ \forall n>n_0\ \ \mbox{for some} \ \ i=1,2,3. \end{array}$$
  4. 2.b)

    \(f^n(x)\in \mathcal U_\alpha, \ \ \forall n\geq 1.\)

Proof.

1. For any \(x\in \mathcal U_\alpha\) we have

$$|f(x)-x_i|_p=\left|{a\over x^2}-{a\over x_i^2}\right|_p=|a|_p\left|{(x_i-x)(x_i+x)\over x^2x_i^2}\right|_p$$
$$ =\alpha^3\cdot {\alpha |x+x_i|_p\over \alpha^4}=|x+x_i|_p=|x-x_i+2x_i|_p=\left\{\begin{array}{ll} \alpha, \ \ \mbox{if} \ \ p=2 \\ \mu_{1,i}, \ \ \mbox{if} \ \ p\geq 3, \end{array}\right.$$
(2.12)

where \(\mu_{1,i}\leq \alpha.\) The part 1 follows from this equality.

2. If in (2.12) there exists \(i\) such that \(\mu_{1,i}=|x+x_i|_p<\alpha\), then \(f(x)\in \mathcal S_{\mu_{1,i}, x_i}\). The set \(\mathcal S_{\mu_{1,i}, x_i}\) is invariant with respect to \(f\). In case of all \(\mu_{1,i}=\alpha\) we have \(f(x)\in \mathcal U_\alpha\). Then we note that

$$|f^2(x)-x_i|_p=|f(x)-x_i+2x_i|_p=\left\{\begin{array}{ll} \alpha, \ \ \mbox{if} \ \ p=2 \\ \mu_{2,i}\leq \alpha, \ \ \mbox{if} \ \ p\geq 3 . \end{array}\right.$$

Thus we can repeat the above argument: if there exists \(i\) such that \(\mu_{2,i}<\alpha\), then \(f^2(x)\in \mathcal S_{\mu_{2,i}, x_i}\) which is invariant with respect to \(f\). If all \(\mu_{2,i}=\alpha\) then \(f^2(x)\in \mathcal U_\alpha\). Iterating this argument one proves the part 2. \(\square\)

Lemma 2.11.

For \(k\in \{1,2,3\}\) , \(j\in \{1,2,3\}\setminus \{k\}\) and fixed points \(x_k\) , \(x_j\) we have

  1. 1.

    \(x_j\notin \mathcal V_{\rho, x_k},\) if and only if

    $$\rho\leq\left\{\begin{array}{ll} \alpha, \ \ \mbox{if} \ \ p\ne 3 \\ {\alpha\over \sqrt{3}}, \ \ \mbox{if} \ \ p=3. \end{array} \right.$$
  2. 2.

    if \(p=2\) then

    $$\mathcal V_{\alpha, x_j}\cap \mathcal V_{\alpha, x_k}=\emptyset, \ \ \mbox{for all} \ \ j, k\in \{1,2,3\}, \, j\ne k,$$

Proof.

Follows from (2.5) and Lemma 2.7. \(\square\)

Summarizing above mentioned results we get

Theorem 2.12.

If \(\alpha\) is defined by ( 2.2 ). Then for the dynamical system generated by \(f: S_\alpha(0)\to S_\alpha(0)\) given in ( 2.1 ) the following assertions hold.

  1. 1.

    If \(p=2\) then \(\mathcal A(x_j)= \mathcal V_{\alpha, x_j}\) , i.e.,

    $$\lim_{n\to \infty}f^{n}(x)=x_j, \ \ \mbox{for any} \ \ x\in \mathcal V_{\alpha, x_j}.$$
    $$f^n(x)\in \mathcal U_\alpha, \ \ n\geq 1, \ \ \mbox{for all} \ \ x\in \mathcal U_\alpha.$$
  2. 2.

    If \(p\geq 3\) then

    $$SI(x_j)=\mathcal V_{\alpha, x_j}, \ \ j\in \{1,2,3\}.$$

    Moreover,

    $$SI(x_1)=SI(x_2)=SI(x_3), \ \ \mbox{if} \ \ p=3.$$
    $$SI(x_j)\cap SI(x_k)=\emptyset, \ \ \mbox{if} \ \ p>3.$$
  3. 3.

    If \(p\geq 3\) and \(x\in \mathcal U_\alpha\) then one of the following assertions holds

  4. 3.a)

    There exists \(n_0\) and \(\mu_{n_0}< \alpha\) such that

    $$\begin{array}{ll} f^n(x)\in \mathcal U_\alpha, \ \ \forall n\leq n_0, \\ f^n(x)\in \mathcal S_{\mu_{n_0}}(x_i), \ \ \forall n>n_0\ \ \mbox{for some} \ \ i=1,2,3. \end{array}$$
  5. 3.b)

    \(f^n(x)\in \mathcal U_\alpha, \ \ \forall n\geq 1.\)

This theorem does not give behavior of \(f^n(x)\in \mathcal U_\alpha, \ \ n\geq 1\), i.e., in the case when the trajectory remains in \(\mathcal U_\alpha\) (that is when \(p=2\) and in the case part 3.b of Theorem 2.12). Since there is not any fixed point of \(f\) in \(\mathcal U_\alpha\), below we are interested to periodic points of \(f\) in \(\mathcal U_\alpha\): for a given natural \(m\geq 2\) the \(m\)-periodic points of this set are solutions of the following system of equations

$$ \begin{array}{ll} f^m(x)=a^{{1\over 3}(1-(-2)^m)}\cdot x^{(-2)^m}=x, \\ |x-x_1|_p=|x-x_2|_p=|x-x_3|_p=\alpha. \end{array}$$
(2.13)

Remark 2.13.

Note that in case \(m=2\), there is no any solution to the first equation of (2.13) (except fixed points). Therefore below we consider the case \(m\geq 3\).

Denote

$$M_m=\left\{\begin{array}{ll} \left\{(j,p): \left|\theta_{k,3}-\theta_{j, 2^m-1}\right|_p=1, \ \ \forall k=1,2,3\right\} \ \ \mbox{if} \ \ m \ \ \mbox{is even} , \\ \left\{(j,p): \left|\theta_{k,3}-\theta_{j, 2^m+1}\right|_p=1, \ \ \forall k=1,2,3\right\} \ \ \mbox{if} \ \ m \ \ \mbox{is odd}. \end{array} \right.$$

Lemma 2.14.

The solutions of the system ( 2.13 ) in \({\mathbb C}_p\) are

$$ \hat x_j=a^{1\over 3}\cdot \left\{\begin{array}{ll} \theta_{j, 2^m-1}, \ \ \mbox{if} \ \ m \ \ \mbox{is even} , \\ 1/\theta_{j, 2^m+1}, \ \ \mbox{if} \ \ m \ \ \mbox{is odd} , \end{array} \right.$$
(2.14)

where \((j,p)\in M_m\) .

Proof.

From (2.13) we get

$$\left({x\over a^{1/3}}\right)^{(-2)^m-1}=1.$$

Which has solutions (2.14). The condition \((j,p)\in M_m\) is needed to satisfy the second equation of the system (2.13). \(\square\)

Remark 2.15.

We note that:

  1. In the case \(p=2\), by part 1 of Theorem 2.12, it follows that all \(m\)-periodic points (except fixed ones) mentioned in (2.14) belong to \(\mathcal U_\alpha\).

  2. In the case \(m\geq 3\) and \(p\geq 3\) it is not clear to see \(M_m\ne \emptyset\). It is known that (see [2, Corollary 2.2.]) the equation \(x^k = 1\) has \(g = (k, p - 1)\) different roots in \(\mathbb Q_p\). Using this fact and assuming that \(a\in \mathbb Q_p\) and \(a^{1\over 3}\) exists in \(\mathbb Q_p\), one can see how many periodic solutions of (2.13) exist in \(\mathbb Q_p\). For example, if \(p=31\) then \(t^3=1\) (with \(t={x\over a^{1/3}}\)) has \(g=(3, 30)=3\), i.e., all possible solutions in \(\mathbb Q_p\) and for \(m=4\) the equation \(t^{2^4-1}=1\) has \(g=(15,30)=15\) distinct solutions in \(\mathbb Q_p\). Three of 15 solutions coincide with solutions of \(t^3=1\), therefore remains 12 distinct solutions to satisfy the second equation of (2.13). For these solutions one can check the condition \(M_m\ne \emptyset\).

Lemma 2.16.

If \(x_*\) is a solution to ( 2.13 ) then

$$x_* \ is \ \left\{\begin{array}{ll} {\rm attracting}, \ \ \mbox{if} \ \ p=2 \\ {\rm indifferent}, \ \ \mbox{if} \ \ p\geq 3. \end{array} \right.$$

Proof.

We have

$$\left|(f^m)'(x_*)\right|_p=\left|(-2)^m\cdot a^{{1\over 3}(1-(-2)^m)}\cdot x_*^{(-2)^m-1}\right|_p$$
$$=\left|(-2)^m\cdot {f^m(x_*)\over x_*}\right|_p=\left\{\begin{array}{ll} 1/2^m, \ \ \mbox{if} \ \ p=2 \\ 1, \ \ \mbox{if} \ \ p\geq 3 . \end{array}\right.$$

This completes the proof. \(\square\)

Consider a \(m\)-periodic point \(x_*\). It is clear that this point is a fixed point for the function \(\varphi(x)\equiv f^m(x)\). The point \(x_*\) generates \(m\)-cycle:

$$x_*, x^{(1)}=f(x_*), \dots, x^{(m-1)}=f^{m-1}(x_*).$$

Clearly, each element of this cycle is fixed point for function \(\varphi\). We use the following

Theorem 2.17.

[2] Let \(x_0\) be a fixed point of an analytic function \(\varphi:U\to U\). The following assertions hold:

  1. 1.

    if \(x_0\) is an attractive point of \(\varphi\) and if \(r>0\) satisfies the inequality

    $$Q=\max_{1\leq n<\infty}\bigg|\frac{1}{n!}\frac{d^n\varphi}{dx^n}(x_0)\bigg|_pr^{n-1}<1$$

    and \(U_r(x_0)\subset U\) then \(U_r(x_0)\subset \mathcal A(x_0)\);

  2. 2.

    if \(x_0\) is an indifferent point of \(\varphi\) then it is the center of a Siegel disk. If \(r\) satisfies the inequality

    $$S=\max_{2\leq n<\infty}\bigg|\frac{1}{n!}\frac{d^n\varphi}{dx^n}(x_0)\bigg|_pr^{n-1}<|\varphi'(x_0)|_p$$

    and \(U_r(x_0)\subset U\) then \(U_r(x_0)\subset SI(x_0)\).

Lemma 2.16 suggests the following

Theorem 2.18.

  1. If \(p=2\) then for any \(m = 2, 3,\dots\) , the \(m\) -cycles are attractors and open balls with radius \(\alpha\) are contained in the basins of attraction.

  2. If \(p\geq 3\) then for any \(m = 2, 3,\dots\) , every \(m\) -cycle is a center of a Siegel disk with radius \(\alpha\) .

Proof.

Let \(x_*\) be a \(m\)-periodic point. Recall that \(|x_*|_p=\alpha\). We use Theorem 2.17, by Lemma 2.1 we get:

$$\begin{aligned} \, \nonumber Q=\max_{1\leq n<\infty}\bigg|\frac{1}{n!}\frac{d^n\varphi}{dx^n}(x_*)\bigg|_pr^{n-1} &= \max_{1\leq n<\infty}\bigg|\frac{1}{n!}a^{{1\over 3}(1-(-2)^m)}\cdot \prod_{s=0}^{n-1}\left((-2)^{m}-s\right)\cdot x_*^{(-2)^m-n}\bigg|_pr^{n-1} \nonumber \\ &= \max_{1\leq n<\infty}\bigg|\frac{1}{n!}\cdot \prod_{s=0}^{n-1}\left((-2)^{m}-s\right)\cdot {x_*\over x_*^n}\bigg|_pr^{n-1} \nonumber \\ &= \max_{1\leq n<\infty}\bigg|\frac{1}{n!}\cdot \prod_{s=0}^{n-1}\left((-2)^{m}-s\right)\bigg|_p\left({r\over \alpha}\right)^{n-1} \nonumber \\ &=\max_{1\leq n<\infty}\left({r\over \alpha}\right)^{n-1}\cdot\left\{ \begin{array}{ll}\left|{2^m\choose n}\right|_p, \ \ \mbox{if} \ \ m-{\rm even} \\ \left|{2^m+n\choose 2^m}\right|_p, \ \ \mbox{if} \ \ m-{\rm odd} \end{array}\right.<1. \end{aligned}$$
(2.15)

If \(r <\alpha\), this condition is satisfied. The second part is similar. \(\square\)