RESEARCH ARTICLES

p**-Adic Dynamical Systems of the Function** ax[−]²

U. A. Rozikov1, 2, 3*

1V.I.Romanovskiy Institute of Mathematics of Uzbek Academy of Sciences, Tashkent, Uzbekistan 2AKFA University, 1st Deadlock 10, Kukcha Darvoza, 100095, Tashkent, Uzbekistan 3Faculty of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan Received January 14, 2021; in final form, February 12, 2021; accepted February 12, 2021

Abstract—In this paper we study *p*-adic dynamical systems generated by the function $f(x) = \frac{a}{x^2}$ in the set of complex p -adic numbers. We find an explicit formula for the n -fold composition of f for any $n \geq 1$. Using this formula we give fixed points, periodic points, basin of attraction and Siegel disk of each fixed (periodic) point depending on parameters p and a .

DOI: 10.1134/S2070046621030067

Key words: *dynamical systems, fixed point, periodic point, Siegel disk, complex* p*-adic field.*

1. INTRODUCTION

Nowadays the theory of p -adic numbers is one of very actively developing area in mathematics. It has numerous applications in many branches of mathematics, biology, physics and other sciences (see for example [4, 7, 12] and the references therein).

In this paper we continue our study of p -adic dynamical systems generated by rational functions (see $[1-10]$) and references therein for motivations and history of p-adic dynamical systems).

Let us recall the main definition of the paper:

 p **-Adic numbers**. Denote by (n, m) the greatest common divisor of the positive integers n and m. Let $\mathbb Q$ be the field of rational numbers.

For each fixed prime number p, every rational number $x \neq 0$ can be represented in the form $x = p^r \frac{n}{m}$, where $r, n \in \mathbb{Z}$, m is a positive integer, $(p, n)=1$, $(p, m)=1$.

The *p*-adic norm of x is given by

$$
|x|_p = \begin{cases} p^{-r}, & \text{for } x \neq 0, \\ 0, & \text{for } x = 0. \end{cases}
$$

It has the following properties:

1) $|x|_p \ge 0$ and $|x|_p = 0$ if and only if $x = 0$,

2) $|xy|_p = |x|_p |y|_p$,

3) the strong triangle inequality

$$
|x+y|_p \le \max\{|x|_p, |y|_p\},\
$$

3.1) if $|x|_p \neq |y|_p$ then $|x + y|_p = \max\{|x|_p, |y|_p\},$

3.2) if $|x|_p = |y|_p$ then for $p = 2$ we have $|x + y|_p \leq \frac{1}{2}|x|_p$ (see [12]).

The completion of $\mathbb Q$ with respect to p-adic norm defines the p-adic field which is denoted by $\mathbb Q_p$ (see [5]).

The algebraic completion of \mathbb{Q}_p is denoted by \mathbb{C}_p and it is called the set of *complex p-adic numbers*.

^{*} E-mail: rozikovu@yandex.ru

For any $a \in \mathbb{C}_p$ and $r > 0$ denote

$$
U_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p < r \}, \ \ V_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p \le r \},
$$

$$
S_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p = r \}.
$$

Dynamical systems in \mathbb{C}_p . To define a dynamical system we consider a function $f : x \in U \to f(x) \in$ U, (in this paper $U = U_r(a)$ or \mathbb{C}_p) (see for example [6]).

For $x \in U$ denote by $f^{n}(x)$ the *n*-fold composition of f with itself (i.e. *n* times iteration of f to x):

$$
f^{n}(x) = \underbrace{f(f(f \dots (f(x))) \dots)}_{n \text{ times}}.
$$

For arbitrary given $x_0 \in U$ and $f: U \to U$ the discrete-time dynamical system (also called the trajectory) of x_0 is the sequence of points

$$
x_0, x_1 = f(x_0), x_2 = f^2(x_0), x_3 = f^3(x_0), \dots
$$
\n(1.1)

The main problem: Given a function f and initial point x_0 what ultimately happens with the sequence (1.1). Does the limit $\lim_{n\to\infty}x_n$ exist? If not what is the set of limit points of the sequence?

A point $x \in U$ is called a fixed point for f if $f(x) = x$. The point x is a periodic point of period m if $f^m(x) = x$. The least positive m for which $f^m(x) = x$ is called the prime period of x.

A fixed point x_0 is called an *attractor* if there exists a neighborhood $U(x_0)$ of x_0 such that for all points $x \in U(x_0)$ it holds $\lim_{n \to \infty} f^n(x) = x_0$. If x_0 is an attractor then its *basin of attraction* is

$$
\mathcal{A}(x_0) = \{ x \in \mathbb{C}_p : f^n(x) \to x_0, n \to \infty \}.
$$

A fixed point x_0 is called *repeller* if there exists a neighborhood $U(x_0)$ of x_0 such that $|f(x) - x_0|_p >$ $|x-x_0|_p$ for $x \in U(x_0), x \neq x_0$.

Let x_0 be a fixed point of a function $f(x)$. Put $\lambda = f'(x_0)$. The point x_0 is attractive if $0 < |\lambda|_p < 1$, *indifferent* if $|\lambda|_p = 1$, and repelling if $|\lambda|_p > 1$.

The ball $U_r(x_0)$ (contained in V) is said to be a *Siegel disk* if each sphere $S_\rho(x_0)$, $\rho < r$ is an invariant sphere of $f(x)$, i.e. if $x \in S_\rho(x_0)$ then all iterated points $f^n(x) \in S_\rho(x_0)$ for all $n = 1, 2, \ldots$. The union of all Siegel disks with the center at x_0 is called *a maximum Siegel disk* and is denoted by $SI(x_0)$.

In Section 2 we consider the function $f(x) = \frac{a}{x^2}$ and study the dynamical systems generated by this function in \mathbb{C}_p . We give fixed points, periodic points, basin of attraction and Siegel disk of each fixed (and periodic) point.

2. THE FUNCTION a/x^2

Consider the dynamical system associated with the function $f: \mathbb{C}_p \to \mathbb{C}_p$ defined by

$$
f(x) = \frac{a}{x^2}, \ a \neq 0, \ a \in \mathbb{C}_p,
$$
\n
$$
(2.1)
$$

where $x \neq 0$.

Denote by $\theta_{j,n}$, $j = 1, \ldots, n$, the *n*th root of unity in \mathbb{C}_p , while $\theta_{1,n} = 1$.

This function has three fixed points x_k , $k = 1, 2, 3$, which are solutions to $x^3 = a$ in \mathbb{C}_p . For these fixed points we have

$$
x_k^3 = a \implies x_k = \theta_{k,3} a^{\frac{1}{3}} \implies |x_k^3|_p = |a|_p \implies |x_k|_p = \alpha \equiv (|a|_p)^{1/3}.
$$
 (2.2)

Thus $x_k \in S_\alpha(0)$, $k = 1, 2, 3$.

We have

$$
f'(x) = \frac{-2a}{x^3} = \frac{-2}{x} \cdot f(x).
$$

Therefore at a fixed point we get

$$
f'(x_k) = \frac{-2}{x_k} \cdot f(x_k) = -2.
$$

$$
|f'(x_k)|_p = \begin{cases} 1/2, & \text{if } p = 2\\ 1, & \text{if } p \ge 3 \end{cases}
$$

Hence the fixed point x_k is an attractive for $p = 2$ and an indifferent for $p \geq 3$. Therefore the fixed point is never repeller.

We can explicitly calculate f^n .

Lemma 2.1. *For any* $x \in \mathbb{C}_p \setminus \{0\}$ *we have*

$$
f^{n}(x) = a^{\frac{1}{3}(1 - (-2)^{n})} \cdot x^{(-2)^{n}}, \ \ n \ge 1.
$$

Proof. We use induction over n. For $n = 1, 2$ the formula is clear. Assume it is true for n and show it for $n+1$:

$$
f^{n+1}(x) = f^{n}(f(x)) = a^{\frac{1}{3}(1 - (-2)^{n})} \cdot (f(x))^{(-2)^{n}}
$$

= $a^{\frac{1}{3}(1 - (-2)^{n})} \cdot (\frac{a}{x^{2}})^{(-2)^{n}} = a^{\frac{1}{3}(1 - (-2)^{n+1})} \cdot x^{(-2)^{n+1}}.$

This completes the proof.

Recall $\alpha = (|a|_p)^{1/3}$. For $r > 0$, take $x \in S_r(0)$, i.e., $|x|_p = r$. Then we have

$$
|f^{n}(x)|_{p} = \left| a^{\frac{1}{3}(1 - (-2)^{n})} \cdot x^{(-2)^{n}} \right|_{p} = \alpha^{1 - (-2)^{n}} \cdot r^{(-2)^{n}}, \quad n \ge 1.
$$
 (2.3)

2.1. Dynamics on $\mathbb{C}_p \setminus S_\alpha(0)$

Lemma 2.2. *For* α *defined in* (2.2) *the following assertions hold:*

- *1. The sphere* $S_\alpha(0)$ *is invariant with respect to f, (i.e.,* $f(S_\alpha(0)) \subset S_\alpha(0)$ *)*;
- 2. $f(U_\alpha(0)) \subset \mathbb{C}_p \setminus V_\alpha(0)$;
- *3.* $f(\mathbb{C}_p \setminus V_\alpha(0)) \subset U_\alpha(0)$.

Proof. 1. If $x \in S_\alpha(0)$, i.e., $|x|_p = \alpha$, then

$$
|f(x)|_p = |\frac{a}{x^2}|_p = \frac{|a|_p}{\alpha^2} = \alpha.
$$

2. If $x \in U_\alpha(0)$, i.e., $|x|_p < \alpha$, then

$$
|f(x)|_p = |\frac{a}{x^2}|_p > \frac{|a|_p}{\alpha^2} = \alpha.
$$

Therefore, $f(x) \in \mathbb{C}_p \setminus V_\alpha(0)$. Proof of the part 3 is similar.

Lemma 2.3. *The function (2.1) does not have any periodic point in* $\mathbb{C}_p \setminus S_\alpha(0)$ *.*

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 3 2021

Proof. We know that all three fixed points belong to $S_\alpha(0)$. Let $x \in \mathbb{C}_p \setminus S_\alpha(0)$ be a m-periodic $(m \ge 2)$ point for (2.1), i.e., x satisfies $f^m(x) = x$. Then it is necessary that $|f^m(x)|_p = |x|_p$. But for any $x \in \mathbb{C}_p \setminus S_\alpha(0)$ (i.e. $|x|_p = r \neq \alpha$), by (2.3) we get

$$
|f^m(x)|_p = \alpha^{1 - (-2)^m} \cdot r^{(-2)^m} = \alpha \cdot \left(\frac{r}{\alpha}\right)^{(-2)^m} \neq r, \ \forall r \neq \alpha. \tag{2.4}
$$

Therefore, $f^{m}(x) = x$ is not satisfied for any $x \in \mathbb{C}_{p} \setminus S_{\alpha}(0)$.

For given $r > 0$, denote

$$
r_n = \alpha^{1 - (-2)^n} \cdot r^{(-2)^n}.
$$

Then by (2.3) one can see that the trajectory $f^{n}(x)$, $n \ge 1$ of $x \in S_{r}(0)$ has the following sequence of spheres on its route:

$$
S_r(0) \to S_{r_1}(0) \to S_{r_2}(0) \to S_{r_3}(0) \to \ldots
$$

Now we calculate the limits of r_n .

Case of even n. From (2.3) it is easy to see that

$$
\lim_{n \to \infty} |f^n(x)|_p = \lim_{n \to \infty} r_n = \begin{cases} 0, & \text{if } r < \alpha \\ \alpha, & \text{if } r = \alpha \\ +\infty, & \text{if } r > \alpha. \end{cases}
$$

Case of odd *n*. In this case we have

$$
\lim_{n \to \infty} |f^n(x)|_p = \lim_{n \to \infty} r_n = \begin{cases} +\infty, & \text{if } r < \alpha \\ \alpha, & \text{if } r = \alpha \\ 0, & \text{if } r > \alpha. \end{cases}
$$

Summarizing above-mentioned results we obtain the following theorem:

Theorem 2.4. *Let* α *be defined by (2.2). Then*

1. if $x \in U_\alpha(0)$ *then*

$$
\lim_{k \to \infty} f^{2k}(x) = 0, \quad \lim_{k \to \infty} |f^{2k-1}(x)|_p = +\infty.
$$

- *2. if* $x \in S_\alpha(0)$ *then* $f^n(x) \in S_\alpha(0)$, $n \ge 1$.
- *3. if* $x \in \mathbb{C}_p \setminus V_\alpha(0)$ *then*

$$
\lim_{k \to \infty} |f^{2k}(x)|_p = +\infty, \quad \lim_{k \to \infty} f^{2k-1}(x) = 0.
$$

Remark 2.5. *Note that Theorem 2.4 is true for more general function:* $f(x) = \frac{a}{x^q}$, where q is a natural number, $q\geq 2$. In this case $\alpha=|a|_p^{1/(q+1)}$. The case $q=1$ is simple: in this case any point $x \in \mathbb{C}_p \setminus \{0\}$ is 2-periodic. That is $f(f(x)) = x$. Indeed,

$$
f(f(x)) = \frac{a}{\frac{a}{x}} = a \cdot \frac{x}{a} = x.
$$

$$
\Box
$$

2.2. Dynamics on $S_\alpha(0)$

By Theorem 2.4 it remains to study the dynamical system of $f : S_\alpha(0) \to S_\alpha(0)$. Recall that all fixed points x_k , $k = 1, 2, 3$ are in $S_\alpha(0)$.

Lemma 2.6. *The distance between fixed points is*

$$
|x_1 - x_2|_p = |x_1 - x_3|_p = |x_2 - x_3|_p = \begin{cases} \alpha, & \text{if } p \neq 3\\ \frac{\alpha}{\sqrt{3}}, & \text{if } p = 3. \end{cases}
$$
(2.5)

Proof. Since $x_i^3 = a$, $i = 1, 2, 3$, for $x_i \neq x_j$ we have

 $0 = x_i^3 - x_j^3 = (x_i - x_j)(x_i^2 + x_i x_j + x_j^2) \Rightarrow x_i^2 + x_i x_j + x_j^2 = 0$ \Leftrightarrow $(x_i - x_j)^2 = -3x_ix_j \Rightarrow |x_i - x_j|^2 = |3x_ix_j|_p.$

From the last equality, using $|x_i|_p = |x_j|_p = \alpha$, we get (2.5).

Take $x \in S_\alpha(0)$ such that $|x-x_1|_p = \rho$, i.e., $x = x_1 + \gamma$, with $|\gamma|_p = \rho$. Note that $\rho \leq \alpha$. Then by Lemma 2.1 we have

$$
|f^{n}(x) - x_{1}|_{p} = |f^{n}(x) - f^{n}(x_{1})|_{p} = \alpha^{1 - (-2)^{n}} |x^{(-2)^{n}} - x_{1}^{(-2)^{n}}|_{p}.
$$
\n(2.6)

Now we use the following formula

$$
x^{2^{n}} - y^{2^{n}} = (x - y) \prod_{j=0}^{n-1} (x^{2^{j}} + y^{2^{j}}).
$$

Then from (2.6) we get

$$
|f^{n}(x) - x_{1}|_{p} = \alpha^{1 - (-2)^{n}} \cdot \begin{cases} \rho \prod_{j=0}^{n-1} |(x_{1} + \gamma)^{2^{j}} + x_{1}^{2^{j}}|_{p}, & \text{if } n \text{ is even} \\ \frac{\rho}{|x_{1}|_{p}} \prod_{j=0}^{n-1} |(x_{1} + \gamma)^{-2^{j}} + x_{1}^{-2^{j}}|_{p}, & \text{if } n \text{ is odd.} \end{cases}
$$
(2.7)

We have

$$
|(x_1 + \gamma)^{2^j} + x_1^{2^j}|_p = \left| 2x_1^{2^j} + \sum_{s=1}^{\infty} {2^j \choose s} x_1^{2^j - s} \gamma^s \right|_p = \begin{cases} |2|_p \alpha^{2^j}, & \text{if } \rho < \alpha \\ \leq |2|_p \alpha^{2^j}, & \text{if } \rho = \alpha. \end{cases}
$$
(2.8)

Here we used that

$$
\left| \binom{2^j}{s} \right|_p \le \begin{cases} \frac{1}{2}, & \text{if } p = 2 \\ 1, & \text{if } p \ge 3. \end{cases}
$$

Using (2.8) we get

$$
|(x_1 + \gamma)^{-2^{j}} + x_1^{-2^{j}}|_{p} = \frac{|(x_1 + \gamma)^{2^{j}} + x_1^{2^{j}}|_{p}}{|(x_1 + \gamma)^{2^{j}}x_1^{2^{j}}|_{p}} = \begin{cases} |2|_{p}\alpha^{-2^{j}}, & \text{if } \rho < \alpha \\ \leq |2|_{p}\frac{1}{|(x_1 + \gamma)^{2^{j}}|_{p}}, & \text{if } \rho = \alpha. \end{cases}
$$
(2.9)

In **case of even** n , by (2.8) from (2.7) , we get

$$
|f^{n}(x) - x_1|_p = \alpha^{1-2^{n}} \cdot \rho \prod_{j=0}^{n-1} |(x_1 + \gamma)^{2^{j}} + x_1^{2^{j}}|_p
$$

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 3 2021

244 ROZIKOV

$$
= \rho \cdot \alpha^{1-2^n} \cdot |2|_p^n \prod_{j=0}^{n-1} \alpha^{2^j} \cdot \begin{cases} 1, & \text{if } \rho < \alpha \\ \leq 1, & \text{if } \rho = \alpha \end{cases} = \rho \cdot |2|_p^n \cdot \begin{cases} 1, & \text{if } \rho < \alpha \\ \leq 1, & \text{if } \rho = \alpha. \end{cases} \tag{2.10}
$$

Similarly, in **case of odd** n, by (2.9) from (2.7) we get

$$
|f^{n}(x) - x_{1}|_{p} = \alpha^{1+2^{n}} \cdot \frac{\rho}{\alpha^{2}} \cdot |2|_{p}^{n} \prod_{j=0}^{n-1} \alpha^{-2^{j}} = \rho \cdot |2|_{p}^{n} \text{ if } \rho < \alpha. \tag{2.11}
$$

The same formulas are also true for x_2 and x_3 .

For fixed α (defined in (2.2)) and $t \in S_{\alpha}(0)$ denote

$$
S_{\rho,t} = S_{\alpha}(0) \cap S_{\rho}(t) = \{ x \in S_{\alpha}(0) : |x - t|_p = \rho \}.
$$

Thus we have proved the following lemma

Lemma 2.7. *Let* $\rho < \alpha$ *. Then for any* $x \in \mathcal{S}_{\rho,x_i}$ $(i = 1,2,3)$ we have

• *if* $p = 2$ *then*

$$
f^n(x)\in \mathcal{S}_{2^{-n}\rho,x_i}.
$$

• *if* $p \geq 3$ *then*

$$
f^{n}(x) \in \mathcal{S}_{\rho,x_{i}}, \ \ n \ge 1.
$$

In particular, the set S_{ρ,x_i} *is invariant with respect to f for any* $\rho < \alpha$ *.*

Denote

$$
\mathcal{V}_{\rho,t} = \bigcup_{0 \le r < \rho} \mathcal{S}_{r,t} = \{ x \in S_\alpha(0) : |x - t|_p < \rho \}.
$$

Lemma 2.8. *If* $x \in \mathcal{S}_{\rho,x_i}$, for some $i = 1, 2, 3$, then:

i. If ρ *is such that*

$$
\rho < \begin{cases} \alpha, & \text{if } p \neq 3 \\ \frac{\alpha}{\sqrt{3}}, & \text{if } p = 3. \end{cases}
$$

then

$$
x \in \begin{cases} \n\mathbb{S}_{\frac{\alpha}{\sqrt{3}}, x_j}, & \text{for } p = 3 \\ \n\mathbb{S}_{\alpha, x_j}, & \text{for } p \neq 3, \n\end{cases} \quad j \neq i.
$$

ii. If $p = 3$ and $\rho \ge \frac{\alpha}{\sqrt{3}}$ then

$$
x \in \begin{cases} \n\mathcal{V}_{\rho,x_j}, & \text{for } \rho = \frac{\alpha}{\sqrt{3}} \\ \n\mathcal{S}_{\rho,x_j}, & \text{for } \rho > \frac{\alpha}{\sqrt{3}}, \n\end{cases} \quad j \neq i.
$$

Proof. For $x \in \mathcal{S}_{\rho,x_i}$, using property of p-adic norm and formula (2.5) we get

$$
|x - x_j|_p = |x - x_i + x_i - x_j|_p = \begin{cases} \alpha, & \text{if } p \neq 3 \\ \frac{\alpha}{\sqrt{3}}, & \text{if } p = 3, \ \rho < \frac{\alpha}{\sqrt{3}} \\ \leq \rho, & \text{if } p = 3, \ \rho = \frac{\alpha}{\sqrt{3}} \\ \rho, & \text{if } p = 3, \ \rho > \frac{\alpha}{\sqrt{3}} \end{cases}
$$

This completes the proof.

Denote

$$
\mathcal{U}_{\alpha} = \{ x \in S_{\alpha}(0) : |x - x_1|_p = |x - x_2|_p = |x - x_3|_p = \alpha \}.
$$

As a corollary of Lemma 2.8 we have

Lemma 2.9. *If* $p \neq 3$ *then* $S_\alpha(0)$ *has the following partition*

$$
S_{\alpha}(0) = \mathcal{U}_{\alpha} \cup \bigcup_{i=1}^{3} \mathcal{V}_{\alpha, x_i}.
$$

Lemma 2.10. *Let* α *be defined by (2.2). Then:*

- *1.* If $p = 2$ *then the set* \mathcal{U}_{α} *is invariant with respect to f.*
- *2. If* $p \geq 3$ *and* $x \in \mathcal{U}_{\alpha}$ *then one of the following assertions holds:*
- *2.a)* There exists n_0 *and* $\mu_{n_0} < \alpha$ *such that*

$$
f^{n}(x) \in \mathfrak{U}_{\alpha}, \ \forall n \leq n_0,
$$

$$
f^{n}(x) \in \mathcal{S}_{\mu_{n_0}}(x_i), \ \forall n > n_0 \ \text{for some} \ i = 1, 2, 3.
$$

2.b) $f^{n}(x) \in \mathcal{U}_{\alpha}, \forall n > 1.$

Proof. 1. For any $x \in \mathcal{U}_{\alpha}$ we have

$$
|f(x) - x_i|_p = \left| \frac{a}{x^2} - \frac{a}{x_i^2} \right|_p = |a|_p \left| \frac{(x_i - x)(x_i + x)}{x^2 x_i^2} \right|_p
$$

= $\alpha^3 \cdot \frac{\alpha |x + x_i|_p}{\alpha^4} = |x + x_i|_p = |x - x_i + 2x_i|_p = \begin{cases} \alpha, & \text{if } p = 2\\ \mu_{1,i}, & \text{if } p \ge 3, \end{cases}$ (2.12)

where $\mu_{1,i} \leq \alpha$. The part 1 follows from this equality.

2. If in (2.12) there exists i such that $\mu_{1,i} = |x + x_i|_p < \alpha$, then $f(x) \in \mathcal{S}_{\mu_{1,i},x_i}$. The set $\mathcal{S}_{\mu_{1,i},x_i}$ is invariant with respect to f. In case of all $\mu_{1,i} = \alpha$ we have $f(x) \in \mathcal{U}_{\alpha}$. Then we note that

$$
|f^{2}(x) - x_{i}|_{p} = |f(x) - x_{i} + 2x_{i}|_{p} = \begin{cases} \alpha, & \text{if } p = 2 \\ \mu_{2,i} \leq \alpha, & \text{if } p \geq 3. \end{cases}
$$

Thus we can repeat the above argument: if there exists i such that $\mu_{2,i} < \alpha$, then $f^2(x) \in \mathcal{S}_{\mu_{2,i},x_i}$ which is invariant with respect to f. If all $\mu_{2,i} = \alpha$ then $f^2(x) \in \mathcal{U}_\alpha$. Iterating this argument one proves the part 2. \Box

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 3 2021

Lemma 2.11. *For* $k \in \{1, 2, 3\}$, $j \in \{1, 2, 3\} \setminus \{k\}$ *and fixed points* x_k , x_j *we have*

1. $x_j \notin V_{o,x_k}$, *if and only if*

$$
\rho \le \begin{cases} \alpha, & \text{if } p \neq 3 \\ \frac{\alpha}{\sqrt{3}}, & \text{if } p = 3. \end{cases}
$$

2. if p = 2 *then*

$$
\mathcal{V}_{\alpha,x_j} \cap \mathcal{V}_{\alpha,x_k} = \emptyset, \text{ for all } j,k \in \{1,2,3\}, \ j \neq k,
$$

Proof. Follows from (2.5) and Lemma 2.7.

Summarizing above mentioned results we get

Theorem 2.12. *If* α *is defined by (2.2). Then for the dynamical system generated by* $f : S_\alpha(0) \rightarrow$ $S_\alpha(0)$ given in (2.1) the following assertions hold.

1. If
$$
p = 2
$$
 then $\mathcal{A}(x_j) = \mathcal{V}_{\alpha, x_j}$, i.e.,
\n
$$
\lim_{n \to \infty} f^n(x) = x_j, \text{ for any } x \in \mathcal{V}_{\alpha, x_j}.
$$
\n
$$
f^n(x) \in \mathcal{U}_{\alpha}, \ n \ge 1, \text{ for all } x \in \mathcal{U}_{\alpha}.
$$

2. If $p \geq 3$ *then*

$$
SI(x_j) = \mathcal{V}_{\alpha, x_j}, \ \ j \in \{1, 2, 3\}.
$$

Moreover,

$$
SI(x_1) = SI(x_2) = SI(x_3), \text{ if } p = 3.
$$

$$
SI(x_j) \cap SI(x_k) = \emptyset, \text{ if } p > 3.
$$

- *3. If* $p \geq 3$ *and* $x \in \mathcal{U}_{\alpha}$ *then one of the following assertions holds*
- *3.a)* There exists n_0 *and* $\mu_{n_0} < \alpha$ *such that*

$$
f^{n}(x) \in \mathfrak{U}_{\alpha}, \ \forall n \leq n_{0},
$$

$$
f^{n}(x) \in \mathcal{S}_{\mu_{n_{0}}}(x_{i}), \ \forall n > n_{0} \ \text{for some} \ i = 1, 2, 3.
$$

3.b) $f^{n}(x) \in \mathcal{U}_{\alpha}, \forall n \geq 1.$

This theorem does not give behavior of $f^{n}(x) \in \mathcal{U}_{\alpha}$, $n \geq 1$, i.e., in the case when the trajectory remains in \mathcal{U}_{α} (that is when $p = 2$ and in the case part 3.b of Theorem 2.12). Since there is not any fixed point of f in \mathfrak{U}_{α} , below we are interested to periodic points of f in \mathfrak{U}_{α} : for a given natural $m \geq 2$ the m -periodic points of this set are solutions of the following system of equations

$$
f^{m}(x) = a^{\frac{1}{3}(1 - (-2)^{m})} \cdot x^{(-2)^{m}} = x,
$$

\n
$$
|x - x_{1}|_{p} = |x - x_{2}|_{p} = |x - x_{3}|_{p} = \alpha.
$$
\n(2.13)

Remark 2.13. *Note that in case* $m = 2$, *there is no any solution to the first equation of (2.13) (except fixed points). Therefore below we consider the case* $m \geq 3$ *.*

Denote

$$
M_m = \begin{cases} \left\{ (j, p) : |\theta_{k,3} - \theta_{j,2^m - 1}|_p = 1, \ \forall k = 1, 2, 3 \right\} & \text{if } m \text{ is even,} \\ \left\{ (j, p) : |\theta_{k,3} - \theta_{j,2^m + 1}|_p = 1, \ \forall k = 1, 2, 3 \right\} & \text{if } m \text{ is odd.} \end{cases}
$$

Lemma 2.14. *The solutions of the system (2.13) in* \mathbb{C}_p *are*

$$
\hat{x}_j = a^{\frac{1}{3}} \cdot \begin{cases} \theta_{j,2^m-1}, & \text{if } m \text{ is even,} \\ 1/\theta_{j,2^m+1}, & \text{if } m \text{ is odd,} \end{cases}
$$
\n(2.14)

where $(j, p) \in M_m$.

Proof. From (2.13) we get

$$
\left(\frac{x}{a^{1/3}}\right)^{(-2)^m - 1} = 1.
$$

Which has solutions (2.14). The condition $(j, p) \in M_m$ is needed to satisfy the second equation of the system (2.13). \Box

Remark 2.15. *We note that:*

- In the case $p = 2$, by part 1 of Theorem 2.12, it follows that all m-periodic points (except *fixed ones) mentioned in (2.14) belong to* \mathfrak{U}_{α} .
- *In the case* $m \geq 3$ *and* $p \geq 3$ *it is not clear to see* $M_m \neq \emptyset$. *It is known that (see [2, Corollary 2.2.]) the equation* $x^k = 1$ *has* $g = (k, p - 1)$ *different roots in* \mathbb{Q}_p *. Using this fact and* assuming that $a \in \mathbb{Q}_p$ and $a^{\frac{1}{3}}$ exists in \mathbb{Q}_p , one can see how many periodic solutions of *(2.13) exist in* \mathbb{Q}_p *. For example, if* $p = 31$ *then* $t^3 = 1$ *(with* $t = \frac{x}{a^{1/3}}$ *) has* $g = (3, 30) = 3$ *, i.e., all possible solutions in* \mathbb{Q}_p *and for* $m = 4$ *the equation* $t^{2^4-1} = 1$ *has* $g = (15, 30) = 15$ *distinct solutions in* \mathbb{Q}_p *. Three of 15 solutions coincide with solutions of* $t^3 = 1$ *, therefore remains 12 distinct solutions to satisfy the second equation of (2.13). For these solutions one can check the condition* $M_m \neq \emptyset$ *.*

Lemma 2.16. *If* x_* *is a solution to (2.13) then*

$$
x_* is \begin{cases} \text{attracting, if } p = 2\\ \text{indifferent, if } p \ge 3. \end{cases}
$$

Proof. We have

$$
\left| (f^m)'(x_*) \right|_p = \left| (-2)^m \cdot a^{\frac{1}{3}(1 - (-2)^m)} \cdot x_*^{(-2)^m - 1} \right|_p
$$

$$
= \left| (-2)^m \cdot \frac{f^m(x_*)}{x_*} \right|_p = \begin{cases} 1/2^m, & \text{if } p = 2\\ 1, & \text{if } p \ge 3. \end{cases}
$$

This completes the proof.

248 ROZIKOV

Consider a m-periodic point x_* . It is clear that this point is a fixed point for the function $\varphi(x) \equiv$ $f^m(x)$. The point x_* generates m-cycle:

$$
x_*, x^{(1)} = f(x_*), \dots, x^{(m-1)} = f^{m-1}(x_*).
$$

Clearly, each element of this cycle is fixed point for function φ . We use the following

Theorem 2.17. [2] Let x_0 be a fixed point of an analytic function $\varphi: U \to U$. The following *assertions hold:*

1. if x_0 *is an attractive point of* φ *and if* $r > 0$ *satisfies the inequality*

$$
Q = \max_{1 \le n < \infty} \left| \frac{1}{n!} \frac{d^n \varphi}{dx^n}(x_0) \right|_p r^{n-1} < 1
$$

and $U_r(x_0) \subset U$ *then* $U_r(x_0) \subset \mathcal{A}(x_0)$ *;*

2. if x_0 *is an indifferent point of* φ *then it is the center of a Siegel disk. If* r *satisfies the inequality*

$$
S = \max_{2 \le n < \infty} \left| \frac{1}{n!} \frac{d^n \varphi}{dx^n}(x_0) \right|_p r^{n-1} < |\varphi'(x_0)|_p
$$

and $U_r(x_0) \subset U$ *then* $U_r(x_0) \subset SI(x_0)$ *.*

Lemma 2.16 suggests the following

- **Theorem 2.18.** If $p = 2$ then for any $m = 2, 3, \ldots$, the m-cycles are attractors and open *balls with radius* α *are contained in the basins of attraction.*
	- *If* $p \geq 3$ *then for any* $m = 2, 3, \ldots$, *every* m -cycle is a center of a Siegel disk with radius α .

Proof. Let x_* be a m-periodic point. Recall that $|x_*|_p = \alpha$. We use Theorem 2.17, by Lemma 2.1 we get:

$$
Q = \max_{1 \le n < \infty} \left| \frac{1}{n!} \frac{d^n \varphi}{dx^n} (x_*) \right|_p r^{n-1} = \max_{1 \le n < \infty} \left| \frac{1}{n!} a^{\frac{1}{3}(1-(-2)^m)} \cdot \prod_{s=0}^{n-1} ((-2)^m - s) \cdot x_*^{(-2)^m - n} \right|_p r^{n-1}
$$
\n
$$
= \max_{1 \le n < \infty} \left| \frac{1}{n!} \cdot \prod_{s=0}^{n-1} ((-2)^m - s) \cdot \frac{x_*}{x_*^n} \right|_p r^{n-1}
$$
\n
$$
= \max_{1 \le n < \infty} \left| \frac{1}{n!} \cdot \prod_{s=0}^{n-1} ((-2)^m - s) \right|_p \left(\frac{r}{\alpha} \right)^{n-1}
$$
\n
$$
= \max_{1 \le n < \infty} \left(\frac{r}{\alpha} \right)^{n-1} \cdot \left\{ \left| \frac{2^m}{n} \right|_p, \text{ if } m - \text{even} \right\} < 1. \tag{2.15}
$$

If $r < \alpha$, this condition is satisfied. The second part is similar.

REFERENCES

- 1. S. Albeverio, U. A. Rozikov and I. A. Sattarov, "p-adic (2, 1)-rational dynamical systems," J. Math. Anal. Appl. **398** (2), 553–566 (2013).
- 2. S. Albeverio, B. Tirozzi, A. Yu. Khrennikov and S. de Shmedt, "p-adic dynamical systems," Theor. Math. Phys. **114** (3), 276–287 (1998).
- 3. V. Anashin and A. Khrennikov, *Applied Algebraic Dynamics*, de Gruyter Expositions in Mathematics **49** (Walter de Gruyter, Berlin-New York, 2009).
- 4. A.Yu. Khrennikov, K. Oleschko and M. de Jesús Correa López, "Applications of p -adic numbers: from physics to geology," in *Advances in non-Archimedean Analysis*, Contemp. Math. **665**, 121–131 (Amer. Math. Soc., Providence, RI, 2016).
- 5. N. Koblitz, p*-Adic Numbers,* p*-Adic Analysis and Zeta-Function* (Springer, Berlin, 1977).
- 6. H.-O. Peitgen, H. Jungers and D. Saupe, *Chaos Fractals* (Springer, Heidelberg-New York, 1992).
- 7. U. A. Rozikov, "What are p-adic numbers? What are they used for?," Asia Pac. Math. Newsl. **3** (4), 1–6 (2013).
- 8. U. A. Rozikov and I. A. Sattarov, "On a non-linear p-adic dynamical system," p-Adic Num. Ultrametr. Anal. Appl. **6** (1), 53–64 (2014).
- 9. U. A. Rozikov and I. A. Sattarov, "p-adic dynamical systems of (2, 2)-rational functions with unique fixed point," Chaos Solit. Fract. **105**, 260–270 (2017).
- 10. U. A. Rozikov and I. A. Sattarov, "Dynamical systems of the p -adic $(2, 2)$ -rational functions with two fixed points," Res. Math. **75** (3), 37 (2020).
- 11. U. A. Rozikov, I. A. Sattarov and S. Yam, "p-adic dynamical systems of the function $\frac{ax}{x^2+a}$," p-Adic Num. Ultrametr. Anal. Appl. **11** (1), 77–87 (2019).
- 12. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p*-Adic Analysis and Mathematical Physics* (World Scientific, River Edge, N. J., 1994).