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Abstract—In this paper we study p-adic dynamical systems generated by the function f(x) = a
x2

in the set of complex p-adic numbers. We find an explicit formula for the n-fold composition of f for
any n ≥ 1. Using this formula we give fixed points, periodic points, basin of attraction and Siegel
disk of each fixed (periodic) point depending on parameters p and a.
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1. INTRODUCTION

Nowadays the theory of p-adic numbers is one of very actively developing area in mathematics. It has
numerous applications in many branches of mathematics, biology, physics and other sciences (see for
example [4, 7, 12] and the references therein).

In this paper we continue our study of p-adic dynamical systems generated by rational functions (see
[1-10]) and references therein for motivations and history of p-adic dynamical systems).

Let us recall the main definition of the paper:
p-Adic numbers. Denote by (n,m) the greatest common divisor of the positive integers n and m.
Let Q be the field of rational numbers.
For each fixed prime number p, every rational number x �= 0 can be represented in the form x = pr n

m ,
where r, n ∈ Z, m is a positive integer, (p, n) = 1, (p,m) = 1.

The p-adic norm of x is given by

|x|p =

⎧
⎪⎨

⎪⎩

p−r, for x �= 0,

0, for x = 0.

It has the following properties:
1) |x|p ≥ 0 and |x|p = 0 if and only if x = 0,
2) |xy|p = |x|p|y|p,
3) the strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p},

3.1) if |x|p �= |y|p then |x+ y|p = max{|x|p, |y|p},

3.2) if |x|p = |y|p then for p = 2 we have |x+ y|p ≤ 1
2 |x|p (see [12]).

The completion of Q with respect to p-adic norm defines the p-adic field which is denoted by Qp (see
[5]).

The algebraic completion of Qp is denoted by Cp and it is called the set of complex p-adic numbers.
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For any a ∈ Cp and r > 0 denote

Ur(a) = {x ∈ Cp : |x− a|p < r}, Vr(a) = {x ∈ Cp : |x− a|p ≤ r},

Sr(a) = {x ∈ Cp : |x− a|p = r}.

Dynamical systems in Cp. To define a dynamical system we consider a function f : x ∈ U → f(x) ∈
U , (in this paper U = Ur(a) or Cp) (see for example [6]).

For x ∈ U denote by fn(x) the n-fold composition of f with itself (i.e. n times iteration of f to x):

fn(x) = f(f(f . . . (f
︸ ︷︷ ︸

n times

(x))) . . . ).

For arbitrary given x0 ∈ U and f : U → U the discrete-time dynamical system (also called the
trajectory) of x0 is the sequence of points

x0, x1 = f(x0), x2 = f2(x0), x3 = f3(x0), . . . (1.1)

The main problem: Given a function f and initial point x0 what ultimately happens with the sequence
(1.1). Does the limit limn→∞ xn exist? If not what is the set of limit points of the sequence?

A point x ∈ U is called a fixed point for f if f(x) = x. The point x is a periodic point of period m if
fm(x) = x. The least positive m for which fm(x) = x is called the prime period of x.

A fixed point x0 is called an attractor if there exists a neighborhood U(x0) of x0 such that for all
points x ∈ U(x0) it holds lim

n→∞
fn(x) = x0. If x0 is an attractor then its basin of attraction is

A(x0) = {x ∈ Cp : fn(x) → x0, n → ∞}.
A fixed point x0 is called repeller if there exists a neighborhood U(x0) of x0 such that |f(x)− x0|p >
|x− x0|p for x ∈ U(x0), x �= x0.

Let x0 be a fixed point of a function f(x). Put λ = f ′(x0). The point x0 is attractive if 0 < |λ|p < 1,
indifferent if |λ|p = 1, and repelling if |λ|p > 1.

The ballUr(x0) (contained in V ) is said to be a Siegel disk if each sphereSρ(x0), ρ < r is an invariant
sphere of f(x), i.e. if x ∈ Sρ(x0) then all iterated points fn(x) ∈ Sρ(x0) for all n = 1, 2 . . . . The union of
all Siegel disks with the center at x0 is called a maximum Siegel disk and is denoted by SI(x0).

In Section 2 we consider the function f(x) = a
x2 and study the dynamical systems generated by this

function in Cp. We give fixed points, periodic points, basin of attraction and Siegel disk of each fixed (and
periodic) point.

2. THE FUNCTION a/x2

Consider the dynamical system associated with the function f : Cp → Cp defined by

f(x) =
a

x2
, a �= 0, a ∈ Cp, (2.1)

where x �= 0.
Denote by θj,n, j = 1, . . . , n, the nth root of unity in Cp, while θ1,n = 1.

This function has three fixed points xk, k = 1, 2, 3, which are solutions to x3 = a in Cp.
For these fixed points we have

x3k = a ⇒ xk = θk,3a
1
3 ⇒ |x3k|p = |a|p ⇒ |xk|p = α ≡ (|a|p)1/3. (2.2)

Thus xk ∈ Sα(0), k = 1, 2, 3.
We have

f ′(x) =
−2a

x3
=

−2

x
· f(x).
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Therefore at a fixed point we get

f ′(xk) =
−2

xk
· f(xk) = −2.

|f ′(xk)|p =

⎧
⎪⎨

⎪⎩

1/2, if p = 2

1, if p ≥ 3

Hence the fixed point xk is an attractive for p = 2 and an indifferent for p ≥ 3. Therefore the fixed point
is never repeller.

We can explicitly calculate fn.

Lemma 2.1. For any x ∈ Cp \ {0} we have

fn(x) = a
1
3
(1−(−2)n) · x(−2)n , n ≥ 1.

Proof. We use induction over n. For n = 1, 2 the formula is clear. Assume it is true for n and show it for
n+ 1:

fn+1(x) = fn(f(x)) = a
1
3
(1−(−2)n) · (f(x))(−2)n

= a
1
3
(1−(−2)n) · ( a

x2
)(−2)n = a

1
3
(1−(−2)n+1) · x(−2)n+1

.

This completes the proof.

Recall α = (|a|p)1/3. For r > 0, take x ∈ Sr(0), i.e., |x|p = r. Then we have

|fn(x)|p =
∣
∣
∣a

1
3
(1−(−2)n) · x(−2)n

∣
∣
∣
p
= α1−(−2)n · r(−2)n , n ≥ 1. (2.3)

2.1. Dynamics on Cp \ Sα(0)

Lemma 2.2. For α defined in (2.2) the following assertions hold:

1. The sphere Sα(0) is invariant with respect to f , (i.e., f(Sα(0)) ⊂ Sα(0));

2. f(Uα(0)) ⊂ Cp \ Vα(0);

3. f(Cp \ Vα(0)) ⊂ Uα(0).

Proof. 1. If x ∈ Sα(0), i.e., |x|p = α, then

|f(x)|p = | a
x2

|p =
|a|p
α2

= α.

2. If x ∈ Uα(0), i.e., |x|p < α, then

|f(x)|p = | a
x2

|p >
|a|p
α2

= α.

Therefore, f(x) ∈ Cp \ Vα(0). Proof of the part 3 is similar.

Lemma 2.3. The function (2.1) does not have any periodic point in Cp \ Sα(0).
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Proof. We know that all three fixed points belong to Sα(0). Let x ∈ Cp \ Sα(0) be a m-periodic (m ≥ 2)
point for (2.1), i.e., x satisfies fm(x) = x. Then it is necessary that |fm(x)|p = |x|p. But for any
x ∈ Cp \ Sα(0) (i.e. |x|p = r �= α), by (2.3) we get

|fm(x)|p = α1−(−2)m · r(−2)m = α ·
( r

α

)(−2)m

�= r, ∀r �= α. (2.4)

Therefore, fm(x) = x is not satisfied for any x ∈ Cp \ Sα(0).

For given r > 0, denote

rn = α1−(−2)n · r(−2)n .

Then by (2.3) one can see that the trajectory fn(x), n ≥ 1 of x ∈ Sr(0) has the following sequence of
spheres on its route:

Sr(0) → Sr1(0) → Sr2(0) → Sr3(0) → . . .

Now we calculate the limits of rn.
Case of even n. From (2.3) it is easy to see that

lim
n→∞

|fn(x)|p = lim
n→∞

rn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if r < α

α, if r = α

+∞, if r > α.

Case of odd n. In this case we have

lim
n→∞

|fn(x)|p = lim
n→∞

rn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+∞, if r < α

α, if r = α

0, if r > α.

Summarizing above-mentioned results we obtain the following theorem:

Theorem 2.4. Let α be defined by (2.2). Then

1. if x ∈ Uα(0) then

lim
k→∞

f2k(x) = 0, lim
k→∞

|f2k−1(x)|p = +∞.

2. if x ∈ Sα(0) then fn(x) ∈ Sα(0), n ≥ 1.

3. if x ∈ Cp \ Vα(0) then

lim
k→∞

|f2k(x)|p = +∞, lim
k→∞

f2k−1(x) = 0.

Remark 2.5. Note that Theorem 2.4 is true for more general function: f(x) = a
xq , where q is a

natural number, q ≥ 2. In this case α = |a|1/(q+1)
p . The case q = 1 is simple: in this case any point

x ∈ Cp \ {0} is 2-periodic. That is f(f(x)) = x. Indeed,

f(f(x)) =
a
a
x

= a · x
a
= x.
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2.2. Dynamics on Sα(0)

By Theorem 2.4 it remains to study the dynamical system of f : Sα(0) → Sα(0). Recall that all fixed
points xk, k = 1, 2, 3 are in Sα(0).

Lemma 2.6. The distance between fixed points is

|x1 − x2|p = |x1 − x3|p = |x2 − x3|p =

⎧
⎪⎨

⎪⎩

α, if p �= 3

α√
3
, if p = 3.

(2.5)

Proof. Since x3i = a, i = 1, 2, 3, for xi �= xj we have

0 = x3i − x3j = (xi − xj)(x
2
i + xixj + x2j ) ⇒ x2i + xixj + x2j = 0

⇔ (xi − xj)
2 = −3xixj ⇒ |xi − xj |2p = |3xixj|p.

From the last equality, using |xi|p = |xj |p = α, we get (2.5).

Take x ∈ Sα(0) such that |x− x1|p = ρ, i.e., x = x1 + γ, with |γ|p = ρ. Note that ρ ≤ α. Then by
Lemma 2.1 we have

|fn(x)− x1|p = |fn(x)− fn(x1)|p = α1−(−2)n |x(−2)n − x
(−2)n

1 |p. (2.6)

Now we use the following formula

x2
n − y2

n
= (x− y)

n−1∏

j=0

(x2
j
+ y2

j
).

Then from (2.6) we get

|fn(x)− x1|p = α1−(−2)n ·

⎧
⎪⎨

⎪⎩

ρ
∏n−1

j=0 |(x1 + γ)2
j
+ x2

j

1 |p, if n is even

ρ
|xx1|p

∏n−1
j=0 |(x1 + γ)−2j + x−2j

1 |p, if n is odd.

(2.7)

We have

|(x1 + γ)2
j
+ x2

j

1 |p =
∣
∣
∣
∣
∣
2x2

j

1 +
∑

s=1

(
2j

s

)

x2
j−s

1 γs

∣
∣
∣
∣
∣
p

=

⎧
⎪⎨

⎪⎩

|2|pα2j , if ρ < α

≤ |2|pα2j , if ρ = α.

(2.8)

Here we used that

∣
∣
∣
∣

(
2j

s

)∣
∣
∣
∣
p

≤

⎧
⎪⎨

⎪⎩

1
2 , if p = 2

1, if p ≥ 3.

Using (2.8) we get

|(x1 + γ)−2j + x−2j

1 |p =
|(x1 + γ)2

j
+ x2

j

1 |p
|(x1 + γ)2jx2

j

1 |p
=

⎧
⎪⎨

⎪⎩

|2|pα−2j , if ρ < α

≤ |2|p 1

|(x1+γ)2
j |p

, if ρ = α.
(2.9)

In case of even n, by (2.8) from (2.7), we get

|fn(x)− x1|p = α1−2n · ρ
n−1∏

j=0

|(x1 + γ)2
j
+ x2

j

1 |p

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 3 2021



244 ROZIKOV

= ρ · α1−2n · |2|np
n−1∏

j=0

α2j ·

⎧
⎪⎨

⎪⎩

1, if ρ < α

≤ 1, if ρ = α

= ρ · |2|np ·

⎧
⎪⎨

⎪⎩

1, if ρ < α

≤ 1, if ρ = α.

(2.10)

Similarly, in case of odd n, by (2.9) from (2.7) we get

|fn(x)− x1|p = α1+2n · ρ

α2
· |2|np

n−1∏

j=0

α−2j = ρ · |2|np if ρ < α. (2.11)

The same formulas are also true for x2 and x3.

For fixed α (defined in (2.2)) and t ∈ Sα(0) denote

Sρ,t = Sα(0) ∩ Sρ(t) = {x ∈ Sα(0) : |x− t|p = ρ}.
Thus we have proved the following lemma

Lemma 2.7. Let ρ < α. Then for any x ∈ Sρ,xi (i = 1, 2, 3) we have

• if p = 2 then

fn(x) ∈ S2−nρ,xi
.

• if p ≥ 3 then

fn(x) ∈ Sρ,xi , n ≥ 1.

In particular, the set Sρ,xi is invariant with respect to f for any ρ < α.

Denote

Vρ,t =
⋃

0≤r<ρ

Sr,t = {x ∈ Sα(0) : |x− t|p < ρ}.

Lemma 2.8. If x ∈ Sρ,xi , for some i = 1, 2, 3, then:

i. If ρ is such that

ρ <

⎧
⎪⎨

⎪⎩

α, if p �= 3

α√
3
, if p = 3.

then

x ∈

⎧
⎪⎨

⎪⎩

S α√
3
,xj

, for p = 3

Sα,xj , for p �= 3,

j �= i.

ii. If p = 3 and ρ ≥ α√
3

then

x ∈

⎧
⎪⎨

⎪⎩

Vρ,xj , for ρ = α√
3

Sρ,xj , for ρ > α√
3
,

j �= i.
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Proof. For x ∈ Sρ,xi , using property of p-adic norm and formula (2.5) we get

|x− xj|p = |x− xi + xi − xj |p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if p �= 3

α√
3
, if p = 3, ρ < α√

3

≤ ρ, if p = 3, ρ = α√
3

ρ, if p = 3, ρ > α√
3

This completes the proof.

Denote

Uα = {x ∈ Sα(0) : |x− x1|p = |x− x2|p = |x− x3|p = α}.
As a corollary of Lemma 2.8 we have

Lemma 2.9. If p �= 3 then Sα(0) has the following partition

Sα(0) = Uα ∪
3⋃

i=1

Vα,xi .

Lemma 2.10. Let α be defined by (2.2). Then:

1. If p = 2 then the set Uα is invariant with respect to f .

2. If p ≥ 3 and x ∈ Uα then one of the following assertions holds:

2.a) There exists n0 and μn0 < α such that

fn(x) ∈ Uα, ∀n ≤ n0,

fn(x) ∈ Sμn0
(xi), ∀n > n0 for some i = 1, 2, 3.

2.b) fn(x) ∈ Uα, ∀n ≥ 1.

Proof. 1. For any x ∈ Uα we have

|f(x)− xi|p =
∣
∣
∣
∣
a

x2
− a

x2i

∣
∣
∣
∣
p

= |a|p
∣
∣
∣
∣
(xi − x)(xi + x)

x2x2i

∣
∣
∣
∣
p

= α3 · α|x+ xi|p
α4

= |x+ xi|p = |x− xi + 2xi|p =

⎧
⎪⎨

⎪⎩

α, if p = 2

μ1,i, if p ≥ 3,

(2.12)

where μ1,i ≤ α. The part 1 follows from this equality.
2. If in (2.12) there exists i such that μ1,i = |x+ xi|p < α, then f(x) ∈ Sμ1,i,xi . The set Sμ1,i,xi is

invariant with respect to f . In case of all μ1,i = α we have f(x) ∈ Uα. Then we note that

|f2(x)− xi|p = |f(x)− xi + 2xi|p =

⎧
⎪⎨

⎪⎩

α, if p = 2

μ2,i ≤ α, if p ≥ 3.

Thus we can repeat the above argument: if there exists i such that μ2,i < α, then f2(x) ∈ Sμ2,i,xi which
is invariant with respect to f . If all μ2,i = α then f2(x) ∈ Uα. Iterating this argument one proves the
part 2.
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Lemma 2.11. For k ∈ {1, 2, 3}, j ∈ {1, 2, 3} \ {k} and fixed points xk, xj we have

1. xj /∈ Vρ,xk
, if and only if

ρ ≤

⎧
⎪⎨

⎪⎩

α, if p �= 3

α√
3
, if p = 3.

2. if p = 2 then

Vα,xj ∩ Vα,xk
= ∅, for all j, k ∈ {1, 2, 3}, j �= k,

Proof. Follows from (2.5) and Lemma 2.7.

Summarizing above mentioned results we get

Theorem 2.12. If α is defined by (2.2). Then for the dynamical system generated by f : Sα(0) →
Sα(0) given in (2.1) the following assertions hold.

1. If p = 2 then A(xj) = Vα,xj , i.e.,

lim
n→∞

fn(x) = xj, for any x ∈ Vα,xj .

fn(x) ∈ Uα, n ≥ 1, for all x ∈ Uα.

2. If p ≥ 3 then

SI(xj) = Vα,xj , j ∈ {1, 2, 3}.
Moreover,

SI(x1) = SI(x2) = SI(x3), if p = 3.

SI(xj) ∩ SI(xk) = ∅, if p > 3.

3. If p ≥ 3 and x ∈ Uα then one of the following assertions holds

3.a) There exists n0 and μn0 < α such that

fn(x) ∈ Uα, ∀n ≤ n0,

fn(x) ∈ Sμn0
(xi), ∀n > n0 for some i = 1, 2, 3.

3.b) fn(x) ∈ Uα, ∀n ≥ 1.

This theorem does not give behavior of fn(x) ∈ Uα, n ≥ 1, i.e., in the case when the trajectory
remains in Uα (that is when p = 2 and in the case part 3.b of Theorem 2.12). Since there is not any fixed
point of f in Uα, below we are interested to periodic points of f in Uα: for a given natural m ≥ 2 the
m-periodic points of this set are solutions of the following system of equations

fm(x) = a
1
3
(1−(−2)m) · x(−2)m = x,

|x− x1|p = |x− x2|p = |x− x3|p = α.

(2.13)
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Remark 2.13. Note that in case m = 2, there is no any solution to the first equation of (2.13)
(except fixed points). Therefore below we consider the case m ≥ 3.

Denote

Mm =

⎧
⎪⎨

⎪⎩

{
(j, p) : |θk,3 − θj,2m−1|p = 1, ∀k = 1, 2, 3

}
if m is even,

{
(j, p) : |θk,3 − θj,2m+1|p = 1, ∀k = 1, 2, 3

}
if m is odd.

Lemma 2.14. The solutions of the system (2.13) in Cp are

x̂j = a
1
3 ·

⎧
⎪⎨

⎪⎩

θj,2m−1, if m is even,

1/θj,2m+1, if m is odd,
(2.14)

where (j, p) ∈ Mm.

Proof. From (2.13) we get
( x

a1/3

)(−2)m−1
= 1.

Which has solutions (2.14). The condition (j, p) ∈ Mm is needed to satisfy the second equation of the
system (2.13).

Remark 2.15. We note that:

• In the case p = 2, by part 1 of Theorem 2.12, it follows that all m-periodic points (except
fixed ones) mentioned in (2.14) belong to Uα.

• In the casem ≥ 3 and p ≥ 3 it is not clear to see Mm �= ∅. It is known that (see [2, Corollary
2.2.]) the equation xk = 1 has g = (k, p − 1) different roots in Qp. Using this fact and

assuming that a ∈ Qp and a
1
3 exists in Qp, one can see how many periodic solutions of

(2.13) exist in Qp. For example, if p = 31 then t3 = 1 (with t = x
a1/3

) has g = (3, 30) = 3,

i.e., all possible solutions in Qp and for m = 4 the equation t2
4−1 = 1 has g = (15, 30) = 15

distinct solutions in Qp. Three of 15 solutions coincide with solutions of t3 = 1, therefore
remains 12 distinct solutions to satisfy the second equation of (2.13). For these solutions
one can check the condition Mm �= ∅.

Lemma 2.16. If x∗ is a solution to (2.13) then

x∗ is

⎧
⎪⎨

⎪⎩

attracting, if p = 2

indifferent, if p ≥ 3.

Proof. We have
∣
∣(fm)′(x∗)

∣
∣
p
=

∣
∣
∣(−2)m · a 1

3
(1−(−2)m) · x(−2)m−1

∗

∣
∣
∣
p

=

∣
∣
∣
∣(−2)m · f

m(x∗)

x∗

∣
∣
∣
∣
p

=

⎧
⎪⎨

⎪⎩

1/2m, if p = 2

1, if p ≥ 3.

This completes the proof.
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Consider a m-periodic point x∗. It is clear that this point is a fixed point for the function ϕ(x) ≡
fm(x). The point x∗ generates m-cycle:

x∗, x
(1) = f(x∗), . . . , x

(m−1) = fm−1(x∗).

Clearly, each element of this cycle is fixed point for function ϕ. We use the following

Theorem 2.17. [2] Let x0 be a fixed point of an analytic function ϕ : U → U . The following
assertions hold:

1. if x0 is an attractive point of ϕ and if r > 0 satisfies the inequality

Q = max
1≤n<∞

∣
∣
∣
∣
1

n!

dnϕ

dxn
(x0)

∣
∣
∣
∣
p

rn−1 < 1

and Ur(x0) ⊂ U then Ur(x0) ⊂ A(x0);

2. if x0 is an indifferent point of ϕ then it is the center of a Siegel disk. If r satisfies the
inequality

S = max
2≤n<∞

∣
∣
∣
∣
1

n!

dnϕ

dxn
(x0)

∣
∣
∣
∣
p

rn−1 < |ϕ′(x0)|p

and Ur(x0) ⊂ U then Ur(x0) ⊂ SI(x0).

Lemma 2.16 suggests the following

Theorem 2.18. • If p = 2 then for any m = 2, 3, . . . , the m-cycles are attractors and open
balls with radius α are contained in the basins of attraction.

• If p ≥ 3 then for any m = 2, 3, . . . , every m-cycle is a center of a Siegel disk with radius α.

Proof. Let x∗ be a m-periodic point. Recall that |x∗|p = α. We use Theorem 2.17, by Lemma 2.1 we
get:

Q = max
1≤n<∞

∣
∣
∣
∣
1

n!

dnϕ

dxn
(x∗)

∣
∣
∣
∣
p

rn−1 = max
1≤n<∞

∣
∣
∣
∣
1

n!
a

1
3
(1−(−2)m) ·

n−1∏

s=0

((−2)m − s) · x(−2)m−n
∗

∣
∣
∣
∣
p

rn−1

= max
1≤n<∞

∣
∣
∣
∣
1

n!
·
n−1∏

s=0

((−2)m − s) · x∗
xn∗

∣
∣
∣
∣
p

rn−1

= max
1≤n<∞

∣
∣
∣
∣
1

n!
·
n−1∏

s=0

((−2)m − s)

∣
∣
∣
∣
p

( r

α

)n−1

= max
1≤n<∞

( r

α

)n−1
·

⎧
⎪⎨

⎪⎩

∣
∣
∣
(2m

n

)∣∣
∣
p
, if m− even

∣
∣
∣
(2m+n

2m

)∣∣
∣
p
, if m− odd

< 1. (2.15)

If r < α, this condition is satisfied. The second part is similar.
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