Skip to main content

Advertisement

Log in

Platelets in Kawasaki disease: mediators of vascular inflammation

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1β production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte–platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.

Key points

  • Platelets are essential for haemostasis and thrombosis; however, platelets also have multifaceted roles in regulating immune responses and contributing to the pathogenesis of inflammatory diseases.

  • Thrombocytosis is usually reported in Kawasaki disease, a systemic paediatric vasculitis, and has been associated with increased risk of developing coronary artery aneurysms.

  • Levels of monocyte–platelet aggregates (MPAs) and neutrophil–platelet aggregates (NPAs) increase during Kawasaki disease; these leukocyte–platelet aggregates (LPAs) might amplify Kawasaki disease pathogenesis through their pro-inflammatory and thrombotic functions and have been related to the development of coronary artery aneurysms in Kawasaki disease.

  • Although aspirin therapy does not reduce MPA formation, studies suggest that targeting the P-selectin–PSGL1 axis or inhibiting the P2Y12 receptor might attenuate platelet-induced monocyte activation.

  • Platelets are active participants and mediators of cardiovascular inflammation during Kawasaki disease vasculitis, not innocent bystanders. Hence, platelets might be promising therapeutic targets for Kawasaki disease vasculitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Pathophysiology and immune responses of Kawasaki disease.
Fig. 2: Platelets boost IL-1 inflammation and cardiovascular diseases.
Fig. 3: Antiplatelet therapy and Kawasaki disease.

Similar content being viewed by others

References

  1. McCrindle, B. W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 135, e927–e999 (2017).

    Article  PubMed  Google Scholar 

  2. Soni, P. R., Noval Rivas, M. & Arditi, M. A comprehensive update on Kawasaki disease vasculitis and myocarditis. Curr. Rheumatol. Rep. 22, 6 (2020).

    Article  PubMed  Google Scholar 

  3. Kawasaki, T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 16, 178–222 (1967).

    CAS  PubMed  Google Scholar 

  4. Orenstein, J. M. et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS ONE 7, e38998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dionne, A. & Dahdah, N. Myocarditis and Kawasaki disease. Int. J. Rheum. Dis. 21, 45–49 (2017).

    Article  PubMed  Google Scholar 

  6. Dahdah, N. Not just coronary arteritis, Kawasaki disease is a myocarditis, too. J. Am. Coll. Cardiol. 55, 1507 (2010).

    Article  PubMed  Google Scholar 

  7. Daniels, L. B. et al. Prevalence of Kawasaki disease in young adults with suspected myocardial ischemia. Circulation 125, 2447–2453 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daniels, L. B. et al. Long-term health outcomes in young adults after Kawasaki disease. Int. J. Cardiol. Heart Vasc. 40, 101039 (2022).

    PubMed  PubMed Central  Google Scholar 

  9. Gordon, J. B. et al. The spectrum of cardiovascular lesions requiring intervention in adults after Kawasaki disease. JACC Cardiovasc. Interv. 9, 687–696 (2016).

    Article  PubMed  Google Scholar 

  10. Gordon, J. B., Kahn, A. M. & Burns, J. C. When children with Kawasaki disease grow up: myocardial and vascular complications in adulthood. J. Am. Coll. Cardiol. 54, 1911–1920 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scherlinger, M., Richez, C., Tsokos, G. C., Boilard, E. & Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nat. Rev. Immunol. 23, 409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ribeiro, L. S., Migliari Branco, L. & Franklin, B. S. Regulation of innate immune responses by platelets. Front. Immunol. 10, 1320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noval Rivas, M. & Arditi, M. Kawasaki disease: pathophysiology and insights from mouse models. Nat. Rev. Rheumatol. 16, 391–405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Popper, S. J. et al. Gene-expression patterns reveal underlying biological processes in Kawasaki disease. Genome Biol. 8, R261 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoang, L. T. et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 6, 541 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jaggi, P. et al. Whole blood transcriptional profiles as a prognostic tool in complete and incomplete Kawasaki disease. PLoS ONE 13, e0197858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, Z. et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat. Commun. 12, 5444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shulman, S. T. & Rowley, A. H. Kawasaki disease: insights into pathogenesis and approaches to treatment. Nat. Rev. Rheumatol. 11, 475–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Sato, W., Yokouchi, Y., Oharaseki, T., Asakawa, N. & Takahashi, K. The pathology of Kawasaki disease aortitis: a study of 37 cases. Cardiovasc. Pathol. 51, 107303 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Rowley, A. H., Eckerley, C. A., Jack, H. M., Shulman, S. T. & Baker, S. C. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J. Immunol. 159, 5946–5955 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, T. J. et al. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J. Infect. Dis. 184, 940–943 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Yilmaz, A. et al. Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease. Exp. Mol. Pathol. 83, 93–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi, K., Oharaseki, T. & Yokouchi, Y. Histopathological aspects of cardiovascular lesions in Kawasaki disease. Int. J. Rheum. Dis. 21, 31–35 (2017).

    Article  PubMed  Google Scholar 

  24. Furukawa, S. et al. Peripheral blood monocyte/macrophages and serum tumor necrosis factor in Kawasaki disease. Clin. Immunol. Immunopathol. 48, 247–251 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Leung, D. Y. et al. Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet 2, 1298–1302 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Leung, D. Y. et al. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J. Exp. Med. 164, 1958–1972 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Brodeur, K. E. et al. Elevation of IL-17 cytokines distinguishes Kawasaki disease from other pediatric inflammatory disorders. Arthritis Rheumatol. 76, 285–292 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi, N. et al. Intravenous gamma-globulin therapy improves hypercytokinemia in the acute phase of Kawasaki disease. Mod. Rheumatol. 14, 447–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi, K., Oharaseki, T., Yokouchi, Y., Naoe, S. & Saji, T. Kawasaki disease: basic and pathological findings. Clin. Exp. Nephrol. 17, 690–693 (2013).

    Article  PubMed  Google Scholar 

  30. He, M. et al. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: therapeutic implications in Kawasaki disease. Circ. Res. 120, 354–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu, C. et al. The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease. Hum. Pathol. 44, 189–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Kato, H. et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94, 1379–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki, A. et al. Functional behavior and morphology of the coronary artery wall in patients with Kawasaki disease assessed by intravascular ultrasound. J. Am. Coll. Cardiol. 27, 291–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Shimizu, C. et al. Cardiovascular pathology in 2 young adults with sudden, unexpected death due to coronary aneurysms from Kawasaki disease in childhood. Cardiovasc. Pathol. 24, 310–316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wagner, D. D. & Burger, P. C. Platelets in inflammation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 23, 2131–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Machlus, K. R. & Italiano, J. E. Jr The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol. 201, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Semple, J. W., Italiano, J. E. Jr. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Patel, S. R., Hartwig, J. H. & Italiano, J. E. Jr The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Invest. 115, 3348–3354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miura, N., Terai, M., Meng, Y. G., Sato, T. & Niimi, H. Serum thrombopoietin levels in Kawasaki disease. Br. J. Haematol. 100, 387–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Ishiguro, A. et al. Elevation of serum thrombopoietin precedes thrombocytosis in Kawasaki disease. Thromb. Haemost. 79, 1096–1100 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kaushansky, K. Thrombopoiesis. Semin. Hematol. 52, 4–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Wu, Y. et al. Interleukin-6 is prone to be a candidate biomarker for predicting incomplete and IVIG nonresponsive Kawasaki disease rather than coronary artery aneurysm. Clin. Exp. Med. 19, 173–181 (2019).

    Article  PubMed  Google Scholar 

  43. Ueno, Y. et al. The acute phase nature of interleukin 6: studies in Kawasaki disease and other febrile illnesses. Clin. Exp. Immunol. 76, 337–342 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsubara, T. Interleukin 6 activities and tumor necrosis factor-alpha levels in serum of patients with Kawasaki disease. Arerugi 40, 147–154 (1991).

    CAS  PubMed  Google Scholar 

  45. Maury, C. P., Salo, E. & Pelkonen, P. Circulating interleukin-1 β in patients with Kawasaki disease. N. Engl. J. Med. 319, 1670–1671 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Alphonse, M. P. et al. Inositol-triphosphate 3-kinase c mediates inflammasome activation and treatment response in Kawasaki disease. J. Immunol. 197, 3481–3489 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Lefrançais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pariser, D. N. et al. Lung megakaryocytes are immune modulatory cells. J. Clin. Invest. 131, e137377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Livada, A. C., Pariser, D. N. & Morrell, C. N. Megakaryocytes in the lung: history and future perspectives. Res. Pract. Thromb. Haemost. 7, 100053 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharma, G. K. & Talbot, I. C. Pulmonary megakaryocytes: “missing link” between cardiovascular and respiratory disease? J. Clin. Pathol. 39, 969–976 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaufman, R. M., Airo, R., Pollack, S. & Crosby, W. H. Circulating megakaryocytes and platelet release in the lung. Blood 26, 720–731 (1965).

    Article  CAS  PubMed  Google Scholar 

  52. Nakai, S., Aihara, K. & Hirai, Y. Interleukin-1 potentiates granulopoiesis and thrombopoiesis by producing hematopoietic factors in vivo. Life Sci. 45, 585–591 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Kimura, H. et al. Interleukin-1 β (IL-1 β) induces thrombocytosis in mice: possible implication of IL-6. Blood 76, 2493–2500 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Chuen, C. K. et al. Interleukin-1β up-regulates the expression of thrombopoietin and transcription factors c-Jun, c-Fos, GATA-1, and NF-E2 in megakaryocytic cells. J. Lab. Clin. Med. 143, 75–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Beaulieu, L. M. et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler. Thromb. Vasc. Biol. 34, 552–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cognasse, F. et al. Platelets as key factors in inflammation: focus on CD40L/CD40. Front. Immunol. 13, 825892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kraemer, B. F. et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog. 7, e1002355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ambrosio, A. L. & Di Pietro, S. M. Storage pool diseases illuminate platelet dense granule biogenesis. Platelets 28, 138–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Morrell, C. N., Pariser, D. N., Hilt, Z. T. & Vega Ocasio, D. The platelet Napoleon complex — small cells, but big immune regulatory functions. Annu. Rev. Immunol. 37, 125–144 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zuchtriegel, G. et al. Platelets guide leukocytes to their sites of extravasation. PLoS Biol. 14, e1002459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alard, J.-E. et al. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Sci. Transl Med. 7, 317ra196 (2015).

    Article  PubMed  Google Scholar 

  63. Badrnya, S. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 34, 571–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Szczuko, M., Kozioł, I., Kotlęga, D., Brodowski, J. & Drozd, A. The role of thromboxane in the course and treatment of ischemic stroke: review. Int. J. Mol. Sci. 22, 11644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maouia, A., Rebetz, J., Kapur, R. & Semple, J. W. The immune nature of platelets revisited. Transf. Med. Rev. 34, 209–220 (2020).

    Article  Google Scholar 

  68. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Assinger, A. et al. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J. Thromb. Haemost. 9, 799–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Andonegui, G. et al. Inhibition of human neutrophil apoptosis by platelets. J. Immunol. 158, 3372–3377 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Elzey, B. D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19, 9–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Carestia, A. et al. Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep. 28, 896–908.e895 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Rolfes, V. et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep. 31, 107615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hawwari, I. et al. Platelet-derived transcription factors license human monocyte inflammation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.10.503291 (2023).

  75. Totani, L. & Evangelista, V. Platelet–leukocyte interactions in cardiovascular disease and beyond. Arterioscler. Thromb. Vasc. Biol. 30, 2357–2361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaiser, R., Escaig, R., Erber, J. & Nicolai, L. Neutrophil–platelet interactions as novel treatment targets in cardiovascular disease. Front. Cardiovasc. Med. 8, 824112 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Rolling, C. C., Barrett, T. J. & Berger, J. S. Platelet–monocyte aggregates: molecular mediators of thromboinflammation. Front. Cardiovasc. Med. 10, 960398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Passacquale, G. et al. Monocyte–platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS ONE 6, e25595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi, P. et al. Platelet-specific p38α deficiency improved cardiac function after myocardial infarction in mice. Arterioscler. Thromb. Vasc. Biol. 37, e185–e196 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Abhilasha, K. V. et al. p38 MAP-kinase inhibitor protects against platelet-activating factor-induced death in mice. Free Radic. Biol. Med. 143, 275–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Margraf, A. & Zarbock, A. Platelets in inflammation and resolution. J. Immunol. 203, 2357–2367 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Scopelliti, F., Cattani, C., Dimartino, V., Mirisola, C. & Cavani, A. Platelet derivatives and the immunomodulation of wound healing. Int. J. Mol. Sci. 23, 8370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiang, B. et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun. 4, 264 (2013).

    Article  Google Scholar 

  84. Schroer, A. B. et al. Platelet factors attenuate inflammation and rescue cognition in ageing. Nature 620, 1071–1079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arora, K., Guleria, S., Jindal, A. K., Rawat, A. & Singh, S. Platelets in Kawasaki disease: is this only a numbers game or something beyond? Genes Dis. 7, 62–66 (2020).

    Article  PubMed  Google Scholar 

  86. Corrigan, J. J. Jr Kawasaki disease and the plight of the platelet. Am. J. Dis. Child. 140, 1223–1224, (1986).

    PubMed  Google Scholar 

  87. Park, J. H. & Choi, H. J. Clinical implications of thrombocytosis in acute phase Kawasaki disease. Eur. J. Pediatr. 180, 1841–1846 (2021).

    Article  PubMed  Google Scholar 

  88. Burns, J. C., Glode, M. P., Clarke, S. H., Wiggins, J. Jr. & Hathaway, W. E. Coagulopathy and platelet activation in Kawasaki syndrome: identification of patients at high risk for development of coronary artery aneurysms. J. Pediatr. 105, 206–211 (1984).

    Article  CAS  PubMed  Google Scholar 

  89. Levin, M. et al. Platelet immune-complex interaction in pathogenesis of Kawasaki disease and childhood polyarteritis. Brit Med. J. 290, 1456–1460 (1985).

    Article  CAS  Google Scholar 

  90. Tremoulet, A. H. et al. Evolution of laboratory values in patients with Kawasaki disease. Pediatr. Infect. Dis. J. 30, 1022–1026 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hara, T. et al. Thrombocytopenia: a complication of Kawasaki disease. Eur. J. Pediatr. 147, 51–53 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Niwa, K. et al. Thrombocytopenia: a risk factor for acute myocardial infarction during the acute phase of Kawasaki disease. Coron. Artery Dis. 6, 857–864 (1995).

    CAS  PubMed  Google Scholar 

  93. Ae, R. et al. Platelet count variation and risk for coronary artery abnormalities in Kawasaki disease. Pediatr. Infect. Dis. J. 39, 197–203 (2020).

    Article  PubMed  Google Scholar 

  94. Taki, M. et al. Spontaneous platelet aggregation in Kawasaki disease using the particle counting method. Pediatr. Int. 45, 649–652 (2003).

    Article  PubMed  Google Scholar 

  95. Yahata, T., Suzuki, C., Yoshioka, A., Hamaoka, A. & Ikeda, K. Platelet activation dynamics evaluated using platelet-derived microparticles in Kawasaki disease. Circ. J. 78, 188–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Yokoyama, T., Kato, H. & Ichinose, E. Aspirin treatment and platelet function in Kawasaki disease. Kurume Med. J. 27, 57–61 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. Straface, E. et al. Oxidative stress and defective platelet apoptosis in naive patients with Kawasaki disease. Biochem. Biophys. Res. Commun. 392, 426–430 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, X., Wu, W., Zhang, Y. & Wu, G. Changes in and significance of platelet function and parameters in Kawasaki disease. Sci. Rep. 9, 17641 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu, R., Gao, F., Huo, J. & Yi, Q. Study on the relationship between mean platelet volume and platelet distribution width with coronary artery lesion in children with Kawasaki disease. Platelets 23, 11–16 (2012).

    Article  PubMed  Google Scholar 

  100. Nofech-Mozes, Y. & Garty, B. Z. Thrombocytopenia in Kawasaki disease: a risk factor for the development of coronary artery aneurysms. Pediatr. Hematol. Oncol. 20, 597–601 (2003).

    Article  PubMed  Google Scholar 

  101. Kobayashi, T. et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 113, 2606–2612 (2006).

    Article  PubMed  Google Scholar 

  102. Egami, K. et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J. Pediatr. 149, 237–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Sano, T. et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur. J. Pediatr. 166, 131–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Rigante, D. et al. Critical overview of the risk scoring systems to predict non-responsiveness to intravenous immunoglobulin in Kawasaki syndrome. Int. J. Mol. Sci. 17, 278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kanegaye, J. T. et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics 123, e783–789, (2009).

    Article  PubMed  Google Scholar 

  106. Takahashi, M. in Kawasaki Disease: Current Understanding of the Mechanism and Evidence-Based Treatment (eds Saji, B. T. et al.) 355–372 (Springer, 2017).

  107. Hidaka, T., Nakano, M., Ueta, T., Komatsu, Y. & Yamamoto, M. Increased synthesis of thromboxane A2 by platelets from patients with Kawasaki disease. J. Pediatr. 102, 94–96 (1983).

    Article  CAS  PubMed  Google Scholar 

  108. Yamada, K., Fukumoto, T., Shinkai, A., Shirahata, A. & Meguro, T. The platelet functions in acute febrile mucocutaneous lymph node syndrome and a trial of prevention for thrombosis by antiplatelet agent. Nihon Ketsueki Gakkai Zasshi 41, 791–802 (1978).

    CAS  PubMed  Google Scholar 

  109. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Laurito, M. et al. Endothelial and platelet function in children with previous Kawasaki disease. Angiology 65, 716–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Shah, V. et al. Cardiovascular status after Kawasaki disease in the UK. Heart 101, 1646–1655 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Qiu, Y., Zhang, Y., Li, Y., Hua, Y. & Zhang, Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front. Cardiovasc. Med. 9, 981010 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dhillon, R. et al. Endothelial dysfunction late after Kawasaki disease. Circulation 94, 2103–2106 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Burns, J. C. et al. Conjunctival biopsy in patients with Kawasaki disease. Pediatr. Pathol. Lab. Med. 15, 547–553 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Irazuzta, J. E., Elbl, F. & Rees, A. R. Factor VIII related antigen (von Willebrand’s factor) in Kawasaki disease. Clin. Pediatr. 29, 347–348 (1990).

    Article  CAS  Google Scholar 

  116. Luo, L. et al. Serum levels of syndecan-1 in patients with Kawasaki disease. Pediatr. Infect. Dis. J. 38, 89–94 (2019).

    Article  PubMed  Google Scholar 

  117. Takeshita, S. et al. Elevated serum levels of matrix metalloproteinase-9 (MMP-9) in Kawasaki disease. Clin. Exp. Immunol. 125, 340–344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tian, F. et al. Correlation between matrix metalloproteinases with coronary artery lesion caused by kawasaki disease. Front. Pediatr. 10, 802217 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Verheul, H. M. et al. Platelet: transporter of vascular endothelial growth factor. Clin. Cancer Res. 3, 2187–2190 (1997).

    CAS  PubMed  Google Scholar 

  120. Geindreau, M., Ghiringhelli, F. & Bruchard, M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int. J. Mol. Sci. 22, 4871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ueno, K. et al. Platelet vascular endothelial growth factor is a useful predictor for prognosis in Kawasaki syndrome. Br. J. Haematol. 148, 285–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Maeno, N. et al. Increased serum levels of vascular endothelial growth factor in Kawasaki disease. Pediatr. Res. 44, 596–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Ohno, T. et al. Serum vascular endothelial growth factor: a new predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur. J. Pediatr. 159, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Terai, M. et al. Vascular endothelial growth factor in acute Kawasaki disease. Am. J. Cardiol. 83, 337–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Eicher, J. D. et al. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 27, 230–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Rowley, J. W. et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118, e101–e111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kocatürk, B. et al. Platelets exacerbate cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight 8, e169855 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Y. et al. Reduced platelet miR-223 induction in kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRβ vascular smooth muscle cell axis. Circ. Res. 127, 855–873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, C. L. et al. Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics 111, E140–E147 (2003).

    Article  PubMed  Google Scholar 

  130. Pi, L. et al. Immature platelets and antiplatelet therapy response to aspirin in Kawasaki disease. Drug Des. Devel. Ther. 12, 1353–1362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fu, L. et al. Thymic stromal lymphopoietin induces platelet mitophagy and promotes thrombosis in Kawasaki disease. Br. J. Haematol. 200, 776–791 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Inamo, Y. Studies on plasma thromboxane B2 levels in patients with Kawasaki disease; as an indicator of coronary aneurysm formation. Pediatr. Int. 25, 230–236 (1983).

    Article  Google Scholar 

  133. Furui, J. Soluble forms of P-, E- and L-selectin in children with Kawasaki disease. Kurume Med. J. 48, 135–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Furui, J. et al. Soluble forms of the selectin family in children with Kawasaki disease: prediction for coronary artery lesions. Acta Paediatr. 91, 1183–1188 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Yi, L., Zhang, J., Zhong, J. & Zheng, Y. Elevated levels of platelet activating factor and its acetylhydrolase indicate high risk of Kawasaki disease. J. Interferon Cytokine Res. 40, 159–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Wilson, H. M. SOCS proteins in macrophage polarization and function. Front. Immunol. 5, 357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Barrett, T. J. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci. Transl Med. 11, eaax0481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Porritt, R. A. et al. Interleukin-1β-mediated sex differences in Kawasaki disease vasculitis development and response to treatment. Arterioscler. Thromb. Vasc. Biol. 40, 802–818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shimizu, C. et al. Differential expression of miR-145 in children with Kawasaki disease. PLoS ONE 8, e58159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rowley, A. H. et al. A study of cardiovascular miRNA biomarkers for Kawasaki disease. Pediatr. Infect. Dis. J. 33, 1296–1299 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kuo, H.-C. et al. Next-generation sequencing identifies micro-RNA-based biomarker panel for Kawasaki disease. J. Allergy Clin. Immunol. 138, 1227–1230 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Ebina-Shibuya, R. & Leonard, W. J. Role of thymic stromal lymphopoietin in allergy and beyond. Nat. Rev. Immunol. 23, 24–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Truchetet, M. E. et al. Platelets induce thymic stromal lymphopoietin production by endothelial cells: contribution to fibrosis in human systemic sclerosis. Arthritis Rheumatol. 68, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Pietraforte, D. et al. Platelets in Kawasaki patients: two different populations with different mitochondrial functions. Int. J. Cardiol. 172, 526–528 (2014).

    Article  PubMed  Google Scholar 

  145. Ueno, K. et al. Circulating platelet–neutrophil aggregates play a significant role in Kawasaki disease. Circ. J. 79, 1349–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Vignesh, P. et al. Monocyte platelet aggregates in children with Kawasaki disease- a preliminary study from a tertiary care centre in North-West India. Pediatr. Rheumatol. Online J. 19, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Finsterbusch, M., Schrottmaier, W. C., Kral-Pointner, J. B., Salzmann, M. & Assinger, A. Measuring and interpreting platelet–leukocyte aggregates. Platelets 29, 677–685 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kral, J. B., Schrottmaier, W. C., Salzmann, M. & Assinger, A. Platelet interaction with innate immune cells. Transfus. Med. Hemother. 43, 78–88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Allen, N. et al. Circulating monocyte–platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 282, 11–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Klinkhardt, U. et al. Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet–leukocyte aggregates in patients with atherosclerotic vascular disease. Clin. Pharmacol. Ther. 73, 232–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Dorsam, R. T. & Kunapuli, S. P. Central role of the P2Y12 receptor in platelet activation. J. Clin. Invest. 113, 340–345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rolling, C. C. et al. P2Y12 inhibition suppresses proinflammatory platelet–monocyte interactions. Thromb. Haemost. 123, 231–244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lehman, T. J., Walker, S. M., Mahnovski, V. & McCurdy, D. Coronary arteritis in mice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension. Arthritis Rheum. 28, 652–659 (1985).

    Article  CAS  PubMed  Google Scholar 

  155. Murata, H. Experimental candida-induced arteritis in mice. Relation to arteritis in the mucocutaneous lymph node syndrome. Microbiol. Immunol. 23, 825–831 (1979).

    Article  CAS  PubMed  Google Scholar 

  156. Nishio, H. et al. Nod1 ligands induce site-specific vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 1093–1099 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, Y. et al. Interleukin-1β is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125, 1542–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Porritt, R. A. et al. NLRP3 inflammasome mediates immune–stromal interactions in vasculitis. Circ. Res. 129, e183–e200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lin, I. C. et al. Vascular endothelial growth factor-a in Lactobacillus casei cell wall extract-induced coronary arteritis of a murine model. Circ. J. 78, 752–762 (2014).

    Article  PubMed  Google Scholar 

  160. Anzai, F. et al. Crucial role of NLRP3 inflammasome in a murine model of Kawasaki disease. J. Mol. Cell Cardiol. 138, 185–196 (2019).

    Article  PubMed  Google Scholar 

  161. Lee, Y. et al. IL-1 signaling is critically required in stromal cells in Kawasaki disease vasculitis mouse model: role of both IL-1α and IL-1β. Arterioscler. Thromb. Vasc. Biol. 35, 2605–2616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wakita, D. et al. Role of interleukin-1 signaling in a mouse model of Kawasaki disease-associated abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 36, 886–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Marek-Iannucci, S. et al. Autophagy–mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight 6, e151981 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lee, S. H. et al. Inducing mitophagy in diabetic platelets protects against severe oxidative stress. EMBO Mol. Med. 8, 779–795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kimura, M. Y., Koyama-Nasu, R., Yagi, R. & Nakayama, T. A new therapeutic target: the CD69–Myl9 system in immune responses. Semin. Immunopathol. 41, 349–358 (2019).

    Article  PubMed  Google Scholar 

  166. Kobayashi, H. et al. Increased myosin light chain 9 expression during Kawasaki disease vasculitis. Front. Immunol. 13, 1036672 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Burns, J. C. et al. Review: found in translation: international initiatives pursuing interleukin-1 blockade for treatment of acute Kawasaki disease. Arthritis Rheumatol. 69, 268–276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Dusser, P. & Kone-Paut, I. IL-1 inhibition may have an important role in treating refractory Kawasaki disease. Front. Pharmacol. 8, 163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kone-Paut, I. et al. The use of interleukin 1 receptor antagonist (anakinra) in Kawasaki disease: a retrospective cases series. Autoimmun. Rev. 17, 768–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Newburger, J. W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110, 2747–2771 (2004).

    Article  PubMed  Google Scholar 

  171. Baumer, J. H. et al. Salicylate for the treatment of Kawasaki disease in children. Cochrane Database Syst. Rev. 2006, Cd004175 (2006).

    PubMed  PubMed Central  Google Scholar 

  172. Terai, M. & Shulman, S. T. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose. J. Pediatr. 131, 888–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Kuo, H. C., Lo, M. H., Hsieh, K. S., Guo, M. M. & Huang, Y. H. High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes in Kawasaki disease. PLoS ONE 10, e0144603 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Amarilyo, G. et al. High-dose aspirin for Kawasaki disease: outdated myth or effective aid? Clin. Exp. Rheumatol. 35, 209–212 (2017).

    PubMed  Google Scholar 

  175. Lee, G., Lee, S. E., Hong, Y. M. & Sohn, S. Is high-dose aspirin necessary in the acute phase of Kawasaki disease? Korean Circ. J. 43, 182–186, (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dallaire, F. et al. Aspirin dose and prevention of coronary abnormalities in Kawasaki disease. Pediatrics 139, 249 (2017).

    Article  Google Scholar 

  177. Burns, J. C. & Franco, A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev. Clin. Immunol. 11, 819–825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nadig, P. L. et al. Intravenous immunoglobulin in Kawasaki disease — evolution and pathogenic mechanisms. Diagnostics 13, 2338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhu, Y. P. et al. Immune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C. J. Clin. Invest 131, e147046 (2021).

    Article  Google Scholar 

  180. Inagaki, M. & Yamada, K. Inhibitory effects of high doses of intravenous gamma-globulin on platelet interaction with the vessel wall in Kawasaki disease. Acta Paediatr. Jpn 33, 791–798 (1991).

    Article  CAS  PubMed  Google Scholar 

  181. Thomas, M. R. et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler. Thromb. Vasc. Biol. 35, 2562–2570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Low, T. et al. Bleeding risk associated with combination thromboprophylaxis therapy is low for patients with coronary artery aneurysms after Kawasaki disease. Int. J. Cardiol. 321, 6–11 (2020).

    Article  PubMed  Google Scholar 

  184. Gupta, M. et al. Serum interleukin-6 (IL-6) levels in children with Kawasaki’s disease (KD) [abstract 115]. Pediatr. Res. 43, 22–22 (1998).

    Article  Google Scholar 

  185. Porritt, R. A. et al. Inhibition of IL-6 in the LCWE mouse model of Kawasaki disease inhibits acute phase reactant serum amyloid A but fails to attenuate vasculitis. Front. Immunol. 12, 630196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ishida-Okawara, A. et al. Neutrophil activation and arteritis induced by C. albicans water-soluble mannoprotein-β-glucan complex (CAWS). Exp. Mol. Pathol. 82, 220–226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ohashi, R. et al. Characterization of a murine model with arteritis induced by Nod1 ligand, FK565: a comparative study with a CAWS-induced model. Mod. Rheumatol. 27, 1024–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Moshe Arditi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Jane Burns, Tessa Barrett and Ho-Chang Kuo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noval Rivas, M., Kocatürk, B., Franklin, B.S. et al. Platelets in Kawasaki disease: mediators of vascular inflammation. Nat Rev Rheumatol 20, 459–472 (2024). https://doi.org/10.1038/s41584-024-01119-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01119-3

  • Springer Nature Limited

Navigation