Skip to main content

Advertisement

Log in

Regulation of activated T cell survival in rheumatic autoimmune diseases

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.

Key points

  • Chronic target-organ inflammation directly affects disease expression.

  • The quantity and temporality of antigen modulates the ensuing immune response.

  • The balance between stemness and exhaustion might underlie the chronicity of self-directed immune responses.

  • Resistance to apoptosis and/or exhaustion might enable self-reactive T cells to persist in target organs and perpetuate local disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Proliferation and apoptosis determine the magnitude and length of immune responses.
Fig. 2: Cytokines and other environmental stimuli regulate activated T cell survival.
Fig. 3: Antigen abundance and persistence induce exhaustion and limit pro-inflammatory functions in T cells.
Fig. 4: Proposed mechanisms that promote T cell survival in the setting of autoimmune disease and possible therapeutic targets.
Fig. 5: Persistently expressed antigens induce T cell inactivation through different mechanisms.

Similar content being viewed by others

References

  1. Bluestone, J. A. & Anderson, M. Tolerance in the age of immunotherapy. N. Engl. J. Med. 383, 1156–1166 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivera-Correa, J. & Rodriguez, A. Divergent roles of antiself antibodies during infection. Trends Immunol. 39, 515–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    CAS  PubMed  Google Scholar 

  4. Flores-Mendoza, G., Sansón, S. P., Rodríguez-Castro, S., Crispín, J. C. & Rosetti, F. Mechanisms of tissue injury in lupus nephritis. Trends Mol. Med. 24, 364–378 (2018).

    CAS  PubMed  Google Scholar 

  5. Franciszkiewicz, K. et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res. 73, 617–628 (2013).

    CAS  PubMed  Google Scholar 

  6. Rodríguez-Rodríguez, N. et al. Protein phosphatase 2A B55β limits CD8+ T cell lifespan following cytokine withdrawal. J. Clin. Invest. 130, 5989–6004 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Trefzer, A. et al. Dynamic adoption of anergy by antigen-exhausted CD4+ T cells. Cell Rep. 34, 108748 (2021).

    CAS  PubMed  Google Scholar 

  8. Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wagle, M. V. et al. Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nat. Commun. 12, 1–15 (2021).

    Google Scholar 

  10. Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    CAS  PubMed  Google Scholar 

  12. Snow, A. L., Pandiyan, P., Zheng, L., Krummey, S. M. & Lenardo, M. J. The power and the promise of restimulation-induced cell death in human immune diseases. Immunol. Rev. 236, 68–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Restifo, N. P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25, 556–563 (2013).

    CAS  PubMed  Google Scholar 

  14. Youngblood, B., Hale, J. S. & Ahmed, R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139, 277–284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    CAS  PubMed  Google Scholar 

  16. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Buchholz, V. R., Schumacher, T. N. M. & Busch, D. H. T cell fate at the single-cell level. Annu. Rev. Immunol. 34, 65–92 (2016).

    CAS  PubMed  Google Scholar 

  19. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422–432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassmann, S. et al. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat. Immunol. 21, 1563–1573 (2020).

    PubMed  Google Scholar 

  21. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    CAS  PubMed  Google Scholar 

  22. Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Roychoudhuri, R. et al. Transcriptional profiles reveal a stepwise developmental program of memory CD8+ T cell differentiation. Vaccine 33, 914–923 (2015).

    CAS  PubMed  Google Scholar 

  24. Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    CAS  PubMed  Google Scholar 

  25. Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    CAS  PubMed  Google Scholar 

  26. Taniuchi, I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu. Rev. Immunol. 36, 579–601 (2018).

    CAS  PubMed  Google Scholar 

  27. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Larsen, S. E., Voss, K., Laing, E. D. & Snow, A. L. Differential cytokine withdrawal-induced death sensitivity of effector T cells derived from distinct human CD8+ memory subsets. Cell Death Discov. 3, 17031 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yajima, T. et al. IL-15 regulates CD8+ T cell contraction during primary infection. J. Immunol. 176, 507–515 (2006).

    CAS  PubMed  Google Scholar 

  30. Hashimoto, M., Im, S. J., Araki, K. & Ahmed, R. Cytokine-mediated regulation of CD8 T-cell responses during acute and chronic viral infection. Cold Spring Harb. Perspect. Biol. 11, a028464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hart, J. R. & Vogt, P. K. Phosphorylation of AKT: a mutational analysis. Oncotarget 2, 467 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Ross, S. H. et al. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8+ T cells. Immunity 45, 685–700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Crispín, J. C., Apostolidis, S. A., Finnell, M. I. & Tsokos, G. C. Induction of PP2A Bβ, a regulator of IL-2 deprivation-induced T-cell apoptosis, is deficient in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 108, 12443–12448 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Snow, A. L. et al. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J. Clin. Invest. 119, 2976–2989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dwyer, C. J. et al. Fueling cancer immunotherapy with common gamma chain cytokines. Front. Immunol. 10, 263 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Whyte, C. E. et al. Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. Preprint at bioRxiv https://doi.org/10.1101/2020.12.18.423431 (2020).

    Article  Google Scholar 

  38. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    CAS  PubMed  Google Scholar 

  39. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997.e22 (2021).

    CAS  PubMed  Google Scholar 

  41. Szymczak-Workman, A. L., Delgoffe, G. M., Green, D. R. & Vignali, D. A. A. Cutting edge: regulatory T cells do not mediate suppression via programmed cell death pathways. J. Immunol. 187, 4416–4420 (2011).

    CAS  PubMed  Google Scholar 

  42. Baatar, D. et al. Human peripheral blood T regulatory cells (Tregs), functionally primed CCR4+ Tregs and unprimed CCR4 Tregs, regulate effector T cells using FasL. J. Immunol. 178, 4891–4900 (2007).

    CAS  PubMed  Google Scholar 

  43. Ren, X. et al. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells. Cell Death Differ. 14, 2076–2084 (2007).

    CAS  PubMed  Google Scholar 

  44. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    CAS  PubMed  Google Scholar 

  45. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  46. Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8+ T cells. Trends Immunol. 41, 17–28 (2020).

    CAS  PubMed  Google Scholar 

  49. Steinbach, K., Vincenti, I. & Merkler, D. Resident-memory T cells in tissue-restricted immune responses: for better or worse? Front. Immunol. 9, 2827 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Thome, J. J. C. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, M. et al. JAK/STAT signaling controls the fate of CD8+ CD103+ tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 109, 102424 (2020).

    CAS  PubMed  Google Scholar 

  52. Ryan, G. E., Harris, J. E. & Richmond, J. M. Resident memory T cells in autoimmune skin diseases. Front. Immunol. 12, 652191 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, H. et al. Pathogenic role of tissue-resident memory T cells in autoimmune diseases. Autoimmun. Rev. 17, 906–911 (2018).

    CAS  PubMed  Google Scholar 

  54. Chang, M. H. et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 37, 109902 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grayson, J. M., Zajac, A. J., Altman, J. D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000).

    CAS  PubMed  Google Scholar 

  56. Grayson, J. M., Harrington, L. E., Lanier, J. G., Wherry, E. J. & Ahmed, R. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol. 169, 3760–3770 (2002).

    CAS  PubMed  Google Scholar 

  57. Wang, X. Z. et al. Virus-specific CD8 T cells in peripheral tissues are more resistant to apoptosis than those in lymphoid organs. Immunity 18, 631–642 (2003).

    CAS  PubMed  Google Scholar 

  58. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    CAS  PubMed  Google Scholar 

  59. Voss, K., Larsen, S. E. & Snow, A. L. Metabolic reprogramming and apoptosis sensitivity: defining the contours of a T cell response. Cancer Lett. 408, 190–196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Windt, G. J. W. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Van Der Windt, G. J. W. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    CAS  PubMed  Google Scholar 

  64. Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    CAS  PubMed  Google Scholar 

  65. Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020).

    CAS  PubMed  Google Scholar 

  69. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Thommen, D. S. & Schumacher, T. N. Cancer cell perspective T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018).

    CAS  PubMed  Google Scholar 

  73. Wyss, L. et al. Affinity for self antigen selects Treg cells with distinct functional properties. Nat. Immunol. 17, 1093–1101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    CAS  PubMed  Google Scholar 

  75. Rodríguez-Rodríguez, N. et al. Programmed cell death 1 and Helios distinguish TCR-αβ+ double-negative (CD4CD8) T cells that derive from self-reactive CD8 T cells. J. Immunol. 194, 4207–4214 (2015).

    PubMed  Google Scholar 

  76. Joeris, T. et al. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs. Sci. Immunol. 6, eabd3774 (2021).

    CAS  PubMed  Google Scholar 

  77. Chiu, Y. M. et al. PD-1 and PD-L1 up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 38, 2069–2078 (2018).

    CAS  PubMed  Google Scholar 

  78. Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    CAS  PubMed  Google Scholar 

  79. Rangachari, M. et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat. Med. 18, 1394–1400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. ElTanbouly, M. A. et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 367, eaay0524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Macián, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    PubMed  Google Scholar 

  82. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    CAS  PubMed  Google Scholar 

  84. Lapinski, P. E. & King, P. D. Regulation of Ras signal transduction during T cell development and activation. Am. J. Clin. Exp. Immunol. 1, 147–153 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    CAS  PubMed  Google Scholar 

  86. Fields, P. E., Gajewski, T. F. & Fitch, F. W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).

    CAS  PubMed  Google Scholar 

  87. Kyogoku, C. et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 75, 504–507 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Salmond, R. J., Brownlie, R. J., Morrison, V. L. & Zamoyska, R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat. Immunol. 15, 875–883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Maine, C. J., Teijaro, J. R., Marquardt, K. & Sherman, L. A. PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc. Natl Acad. Sci. USA 113, E7231–E7239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Manjarrez-Orduño, N. et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet. 44, 1227–1230 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Marinari, B., Simeoni, L., Schraven, B., Piccolella, E. & Tuosto, L. The activation of Csk by CD4 interferes with TCR-mediated activatory signaling. Eur. J. Immunol. 33, 2609–2618 (2003).

    CAS  PubMed  Google Scholar 

  93. Hellquist, A. et al. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J. Med. Genet. 44, 314–321 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Patterson, A. R. et al. Gimap5-dependent inactivation of GSK3β is required for CD4+ T cell homeostasis and prevention of immune pathology. Nat. Commun. 9, 1–15 (2018).

    CAS  Google Scholar 

  95. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16, 586–591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McKinney, E. F., Lee, J. C., Jayne, D. R. W., Lyons, P. A. & Smith, K. G. C. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wiedeman, A. E. et al. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J. Clin. Invest. 130, 480–490 (2020).

    CAS  PubMed  Google Scholar 

  99. Fleury, M. et al. Increased expression and modulated regulatory activity of coinhibitory receptors PD-1, TIGIT, and TIM-3 in lymphocytes from patients with systemic sclerosis. Arthritis Rheumatol. 70, 566–577 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lima, G. et al. Exhausted T cells in systemic lupus erythematosus patients in long-standing remission. Clin. Exp. Immunol. 204, 285–295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Onofrio, L. I. et al. Inhibitory receptor expression on T cells as a marker of disease activity and target to regulate effector cellular responses in rheumatoid arthritis. Arthritis Rheumatol. 70, 1429–1439 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 64, 1589–1600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dolff, S. et al. Urinary T cells in active lupus nephritis show an effector memory phenotype. Ann. Rheum. Dis. 69, 2034–2041 (2010).

    PubMed  Google Scholar 

  105. Abdirama, D. et al. Nuclear antigen-reactive CD4+ T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int. 99, 238–246 (2021).

    CAS  PubMed  Google Scholar 

  106. Chen, P. M. et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl Med. 12, eaay1620 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tilstra, J. S. et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J. Clin. Invest. 128, 4884–4897 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Page, N. et al. Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nat. Commun. 12, 1009 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8+ T cells. Immunity 48, 937–950.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Maschmeyer, P. et al. Antigen-driven PD-1+TOX+BHLHE40+ and PD-1+TOX+EOMES+ T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur. J. Immunol. 51, 915–929 (2021).

    CAS  PubMed  Google Scholar 

  111. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kratchmarov, R., Magun, A. M. & Reiner, S. L. TCF1 expression marks self-renewing human CD8+ T cells. Blood Adv. 2, 1685–1690 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, B. H. et al. TCF1 and LEF1 control Treg competitive survival and Tfr development to prevent autoimmune diseases. Cell Rep. 27, 3629–3645.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, Y. J. et al. Role of stem cell-like memory T cells in systemic lupus erythematosus. Arthritis Rheumatol. 70, 1459–1469 (2018).

    CAS  PubMed  Google Scholar 

  119. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Courtney, P. A. et al. Lymphocyte apoptosis in systemic lupus erythematosus: relationships with Fas expression, serum soluble Fas and disease activity. Lupus 8, 508–513 (1999).

    CAS  PubMed  Google Scholar 

  121. Emlen, W., Niebur, J. & Kadera, R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J. Immunol. 152, 3685–3692 (1994).

    CAS  PubMed  Google Scholar 

  122. Gergely, P. et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Suárez-Fueyo, A. et al. Enhanced phosphoinositide 3-kinase δ activity is a frequent event in systemic lupus erythematosus that confers resistance to activation-induced T cell death. J. Immunol. 187, 2376–2385 (2011).

    PubMed  Google Scholar 

  124. Peroumal, D. et al. Inherent low Erk and p38 activity reduce Fas ligand expression and degranulation in T helper 17 cells leading to activation induced cell death resistance. Oncotarget 7, 54339–54359 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Kato, H. & Perl, A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4CD8 double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. 192, 4134–4144 (2014).

    CAS  PubMed  Google Scholar 

  126. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra18 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Buang, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun. 12, 1980 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang, Z., Matteson, E. L., Goronzy, J. J. & Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 17, 29–38 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. 13, 280–290 (2017).

    CAS  PubMed  Google Scholar 

  130. Chen, L. et al. Association of E26 transformation specific sequence 1 variants with rheumatoid arthritis in Chinese Han population. PLoS ONE 10, e0134875 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377, 639–642 (1995).

    CAS  PubMed  Google Scholar 

  132. Cunninghame Graham, D. S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7, e1002341 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanda, T. et al. TYK2–STAT1–BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 3, 564–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Serwas, N. K. et al. Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat. Commun. 10, 3106 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Fanzo, J. C. et al. Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity. J. Clin. Invest. 116, 703–714 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Qi, Y. Y. et al. The ZNF76 rs10947540 polymorphism associated with systemic lupus erythematosus risk in Chinese populations. Sci. Rep. 11, 5186 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Feau, S., Schoenberger, S. P., Altman, A. & Bécart, S. SLAT regulates CD8+ T cell clonal expansion in a Cdc42- and NFAT1-dependent manner. J. Immunol. 190, 174–183 (2013).

    CAS  PubMed  Google Scholar 

  138. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Leong, W. Z. et al. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev. 31, 2343–2360 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cichocki, F. et al. ARID5B regulates metabolic programming in human adaptive NK cells. J. Exp. Med. 215, 2379–2395 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Romero, F., Martínez-A, C., Camonis, J. & Rebollo, A. Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. EMBO J. 18, 3419–3430 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lessard, C. J. et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet. 90, 648–660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Whitehouse, T., Stotz, M., Taylor, V., Stidwill, R. & Singer, M. Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion. Am. J. Physiol. Renal Physiol. 291, F647–F653 (2006).

    CAS  PubMed  Google Scholar 

  144. Madera-Salcedo, I. K. et al. PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight 5, e126457 (2019).

    Google Scholar 

  145. Tan, J. et al. B55β-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 18, 459–471 (2010).

    CAS  PubMed  Google Scholar 

  146. Boggio, E. et al. IL-17 protects T cells from apoptosis and contributes to development of ALPS-like phenotypes. Blood 123, 1178–1186 (2014).

    CAS  PubMed  Google Scholar 

  147. Glesse, N. et al. Evaluation of polymorphic variants in apoptotic genes and their role in susceptibility and clinical progression to systemic lupus erythematosus. Lupus 26, 746–755 (2017).

    CAS  PubMed  Google Scholar 

  148. Pellenz, F. M. et al. Association of TYK2 polymorphisms with autoimmune diseases: a comprehensive and updated systematic review with meta-analysis. Genet. Mol. Biol. 44, e20200425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang, L. et al. Genetic association and interaction between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han Chinese population. Inflamm. Res. 64, 817–824 (2015).

    CAS  PubMed  Google Scholar 

  150. Lee, Y. H. & Bae, S. C. Association between TYK2 polymorphisms and susceptibility to autoimmune rheumatic diseases: a meta-analysis. Lupus 25, 1307–1314 (2016).

    CAS  PubMed  Google Scholar 

  151. Motegi, T. et al. Identification of rare coding variants in TYK2 protective for rheumatoid arthritis in the Japanese population and their effects on cytokine signalling. Ann. Rheum. Dis. 78, 1062–1069 (2019).

    CAS  PubMed  Google Scholar 

  152. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Song, G. G., Bae, S. C., Kim, J. H. & Lee, Y. H. The PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis. Rheumatol. Int. 33, 1991–1999 (2013).

    CAS  PubMed  Google Scholar 

  154. Reddy, M. V. P. L. et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun. 6, 658–662 (2005).

    CAS  PubMed  Google Scholar 

  155. Ostanek, L. et al. PTPN22 1858C>T gene polymorphism in patients with SLE: association with serological and clinical results. Mol. Biol. Rep. 41, 6195–6200 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Goëb, V. et al. Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis. Rheumatology 47, 1208–1212 (2008).

    PubMed  Google Scholar 

  157. Johansson, M., Ärlestig, L., Hallmans, G. & Rantapää-Dahlqvist, S. PTPN22 polymorphism and anti-cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for the disease. Arthritis Res. Ther. 8, R19 (2005).

    PubMed Central  Google Scholar 

  158. Kariuki, S. N., Crow, M. K. & Niewold, T. B. The PTPN22 C1858T polymorphism is associated with skewing of cytokine profiles toward high interferon-α activity and low tumor necrosis factor α levels in patients with lupus. Arthritis Rheum. 58, 2818–2823 (2008).

    PubMed  PubMed Central  Google Scholar 

  159. Luo, X. et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7, e1002128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Xiang, N. et al. Expression of Ets-1 and FOXP3 mRNA in CD4+CD25+ T regulatory cells from patients with systemic lupus erythematosus. Clin. Exp. Med. 14, 375–381 (2014).

    CAS  PubMed  Google Scholar 

  161. Sun, X. G. et al. Negative correlation between miR-326 and Ets-1 in regulatory T cells from new-onset SLE patients. Inflammation 39, 822–829 (2016).

    CAS  PubMed  Google Scholar 

  162. Yang, B. et al. ETS1 polymorphism rs73013527 in relation to serum RANKL levels among patients with RA. Medicine 100, e24562 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ye, L., Fu, C., Jiang, F. & Meng, W. Association between IKZF3 gene polymorphisms and systemic lupus erythematosus in Han ethnic group in southern China: a case-control study. Chin. J. Endem. 37, 996–1002 (2016).

    CAS  Google Scholar 

  164. Thalayasingam, N. et al. CD4+ and B lymphocyte expression quantitative traits at rheumatoid arthritis risk loci in patients with untreated early arthritis: implications for causal gene identification. Arthritis Rheumatol. 70, 361–370 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Laufer, V. A. et al. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum. Mol. Genet. 28, 858–874 (2019).

    CAS  PubMed  Google Scholar 

  166. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ruiz-Larrañaga, O. et al. Genetic variants associated with rheumatoid arthritis patients and serotypes in European populations. Clin. Exp. Rheumatol. 34, 236–241 (2016).

    PubMed  Google Scholar 

  168. Quintana, F. J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. van Hamburg, J. P. & Tas, S. W. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 87, 69–81 (2018).

    PubMed  Google Scholar 

  170. Wen, L. L. et al. Multiple variants in 5q31.1 are associated with systemic lupus erythematosus susceptibility and subphenotypes in the Han Chinese population. Br. J. Dermatol. 177, 801–808 (2017).

    CAS  PubMed  Google Scholar 

  171. Sun, C. et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 48, 323–330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Leng, R. X. et al. Identification of new susceptibility loci associated with rheumatoid arthritis. Ann. Rheum. Dis. 79, 1565–1571 (2020).

    CAS  PubMed  Google Scholar 

  173. Meltendorf, S. et al. Cell survival failure in effector T cells from patients with systemic lupus erythematosus following insufficient up-regulation of cold-shock Y-box binding protein 1. Arthritis Rheumatol. 72, 1721–1733 (2020).

    CAS  PubMed  Google Scholar 

  174. Lu, Z. H., Books, J. T. & Ley, T. J. YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol. Cell. Biol. 25, 4625–4637 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Katsuyama, T., Martin-Delgado, I. J., Krishfield, S. M., Kyttaris, V. C. & Moulton, V. R. Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus. Rheumatology 59, 2146–2155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Katsuyama, T., Li, H., Comte, D., Tsokos, G. C. & Moulton, V. R. Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity. J. Clin. Invest. 129, 5411–5423 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zheng, W., Wu, Y. & Huang, W. Down-regulation of nectin-4 inhibits apoptosis in systemic lupus erythematous (SLE) through targeting Bcl-2/Bax pathway. Int. J. Clin. Exp. Pathol. 8, 10915–10921 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Ji, H. et al. Inactivation of PI3Kγ and PI3Kδ distorts T-cell development and causes multiple organ inflammation. Blood 110, 2940–2947 (2007).

    CAS  PubMed  Google Scholar 

  179. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  180. Xue, C., Lan-Lan, W., Bei, C., Jie, C. & Wei-Hua, F. Abnormal Fas/FasL and caspase-3-mediated apoptotic signaling pathways of T lymphocyte subset in patients with systemic lupus erythematosus. Cell. Immunol. 239, 121–126 (2006).

    CAS  PubMed  Google Scholar 

  181. Yang, X. et al. Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling. J. Biomed. Res. 29, 232–240 (2015).

    PubMed  Google Scholar 

  182. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    CAS  PubMed  Google Scholar 

  183. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    CAS  PubMed  Google Scholar 

  184. Lynch, D. H. et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1, 131–136 (1994).

    CAS  PubMed  Google Scholar 

  185. Firestein, G. S., Yeo, M. & Zvaifler, N. J. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631–1638 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhou, H. et al. Dysregulated T cell activation and aberrant cytokine expression profile in systemic lupus erythematosus. Mediators Inflamm. 2019, 8450947 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Lin, J., Yu, Y., Ma, J., Ren, C. & Chen, W. PD-1+CXCR5CD4+ T cells are correlated with the severity of systemic lupus erythematosus. Rheumatology 58, 2188–2192 (2019).

    CAS  PubMed  Google Scholar 

  188. Raptopoulou, A. P. et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 62, 1870–1880 (2010).

    CAS  PubMed  Google Scholar 

  189. Bartosińska, J. et al. Differential expression of programmed death 1 (PD‑1) on CD4+ and CD8+ T cells in rheumatoid arthritis and psoriatic arthritis. Pol. Arch. Intern. Med. 127, 815–822 (2017).

    PubMed  Google Scholar 

  190. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  191. Koohini, Z. et al. Analysis of PD-1 and Tim-3 expression on CD4+ T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin. Rheumatol. 37, 2063–2071 (2018).

    PubMed  Google Scholar 

  192. Sabatos, C. A. et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol. 4, 1102–1110 (2003).

    CAS  PubMed  Google Scholar 

  193. Han, X. et al. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Sci. Transl Med. 11, eaax1159 (2019).

    CAS  PubMed  Google Scholar 

  194. Yoon, K. W. et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349, 1261669 (2015).

    PubMed  PubMed Central  Google Scholar 

  195. Sun, J., Matthias, G., Mihatsch, M. J., Georgopoulos, K. & Matthias, P. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J. Immunol. 170, 1699–1706 (2003).

    CAS  PubMed  Google Scholar 

  196. Cai, X. et al. Overexpression of Aiolos in peripheral blood mononuclear cell subsets from patients with systemic lupus erythematosus and rheumatoid arthritis. Biochem. Genet. 54, 73–82 (2016).

    CAS  PubMed  Google Scholar 

  197. Schafer, P. H. et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1516–1523 (2018).

    CAS  PubMed  Google Scholar 

  198. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  199. Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335, 723–727 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 6, 38 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work performed in the authors’ laboratories was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grants FORDECYT 303046 (JCC), FORDECYT 303067 (FR), and Ciencia de Frontera 2019-1564468 (IKMS).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to José C. Crispín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks Leonie Taams, Jorg Goronzy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosetti, F., Madera-Salcedo, I.K., Rodríguez-Rodríguez, N. et al. Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 18, 232–244 (2022). https://doi.org/10.1038/s41584-021-00741-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00741-9

  • Springer Nature Limited

This article is cited by

Navigation