Skip to main content

Advertisement

Log in

Gaucher disease provides a unique window into Parkinson disease pathogenesis

  • Review Article
  • Published:

From Nature Reviews Neurology

View current issue Sign up to alerts

Abstract

An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3–25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.

Key points

  • The rare, autosomal recessively inherited disorder Gaucher disease is providing new insights into the pathogenesis of Parkinson disease.

  • Variants in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, are the most common known genetic risk factor for Parkinson disease and dementia with Lewy bodies.

  • Most individuals with homozygous or heterozygous GBA1 variants do not develop parkinsonism. Identifying the factors that impact penetrance will be crucial to our understanding of disease mechanisms.

  • Therapeutic strategies under development for Gaucher disease, such as brain-penetrant enzyme replacement strategies, gene therapy approaches, and small molecule chaperones and activators, might inform new treatment approaches for Parkinson disease.

  • Improved clinical biomarkers are needed to identify GBA1 variant carriers early in their disease course to enable preventative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The spectrum of manifestations encountered in Parkinson disease and in Gaucher disease.
Fig. 2: Pathogenicity of Gaucher disease and Parkinson disease.
Fig. 3: Therapeutic strategies for Gaucher disease and Parkinson disease.

Similar content being viewed by others

References

  1. Nalls, M. A. et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 70, 727–735 (2013).

    Article  PubMed  Google Scholar 

  2. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    Article  PubMed  Google Scholar 

  4. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tayebi, N. et al. Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 79, 104–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Neudorfer, O. et al. Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 89, 691–694 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Goker-Alpan, O. et al. Parkinsonism among Gaucher disease carriers. J. Med. Genet. 41, 937–940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ran, C. et al. Strong association between glucocerebrosidase mutations and Parkinson’s disease in Sweden. Neurobiol. Aging 45, 212.e5–e11 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Emelyanov, A. K. et al. Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol. Aging 71, 267.e7– e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. De Marco, E. V. et al. Glucocerebrosidase gene mutations are associated with Parkinson’s disease in southern Italy. Mov. Disord. 23, 460–463 (2008).

    Article  PubMed  Google Scholar 

  11. Yu, Z. et al. Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J. Hum. Genet. 60, 85–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lesage, S. et al. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum. Mol. Genet. 20, 202–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Mata, I. F. et al. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch. Neurol. 65, 379–382 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Robak, L. A. et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 140, 3191–3203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gaucher, P. C. E. De l’Epithelioma Primitif de la Rate: Hypertrophie Idiopathique de la Rate sans Leucémie [French]. Thesis, Faculté de Medécine de Paris (1882).

  16. Aghion, H. La Maladie de Gaucher dans l’Enfance (Forme Cardio-Rénale) [French]. Thesis, Faculté de Médecine de Paris (1934).

  17. Brady, R. O., Kanfer, J. N. & Shapiro, D. Metabolism of glucocerebrosides II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem. Biophys. Res. Commun. 18, 221–225 (1965).

    Article  CAS  PubMed  Google Scholar 

  18. Patrick, A. A deficiency of glucocerebrosidase in Gaucher’s disease. Biochem. J. 97, 17C–24C (1965).

    Article  CAS  Google Scholar 

  19. Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 324, 1464–1470 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Sidransky, E. Gaucher disease: complexity in a “simple” disorder. Mol. Genet. Metab. 83, 6–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Schiffmann, R. et al. The definition of neuronopathic Gaucher disease. J. Inherit. Metab. Dis. 43, 1056–1059 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tylki-Szymanska, A., Keddache, M. & Grabowski, G. A. Characterization of neuronopathic Gaucher disease among ethnic Poles. Genet. Med. 8, 8–15 (2006).

    Article  PubMed  Google Scholar 

  23. Davidson, B. A., Hassan, S., Garcia, E. J., Tayebi, N. & Sidransky, E. Exploring genetic modifiers of Gaucher disease: the next horizon. Hum. Mutat. 39, 1739–1751 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lachmann, R. H., Grant, I. R., Halsall, D. & Cox, T. M. Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM 97, 199–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lopez, G. et al. Clinical evaluation of sibling pairs with Gaucher disease discordant for parkinsonism. Mov. Disord. 35, 359–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Miao, S. et al. Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J. Biol. Chem. 269, 10975–10978 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Fabrega, S. et al. Human glucocerebrosidase: heterologous expression of active site mutants in murine null cells. Glycobiology 10, 1217–1224 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Dvir, H. et al. X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 4, 704–709 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takasaki, S. et al. Structure of the N-asparagine-linked oligosaccharide units of human placental β-glucocerebrosidase. J. Biol. Chem. 259, 10112–10117 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Hruska, K. S., LaMarca, M. E., Scott, C. R. & Sidransky, E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum. Mutat. 29, 567–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Grabowski, G. A., Gaft, S., Horowitz, M. & Kolodny, E. H. Acid β-glucosidase: enzymology and molecular biology of Gaucher diseas. Crit. Rev. Biochem. Mol. Biol. 25, 385–414 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Beutler, E., Beutler, L. & West, C. Mutations in the gene encoding cytosolic β-glucosidase in Gaucher disease. J. Lab. Clin. Med. 144, 65–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Matern, H., Boermans, H., Lottspeich, F. & Matern, S. Molecular cloning and expression of human bile acid β-glucosidase. J. Biol. Chem. 276, 37929–37933 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Barneveld, R. A. et al. Assignment of the gene coding for human β-glucocerebrosidase to the region q21-q31 of chromosome 1 using monoclonal antibodies. Hum. Genet. 64, 227–231 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Reiner, O., Wigderson, M. & Horowitz, M. Structural analysis of the human glucocerebrosidase genes. DNA 7, 107–116 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Horowitz, M. et al. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics 4, 87–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Tayebi, N. et al. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. Am. J. Hum. Genet. 72, 519–534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gustavsson, E. K. et al. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1. Sci. Adv. 10, eadk1296 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsuji, S. et al. A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher’s disease. N. Engl. J. Med. 316, 570–575 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Tayebi, N. et al. Genotypic heterogeneity and phenotypic variation among patients with type 2 Gaucher’s disease. Pediatr. Res. 43, 571–578 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Shemesh, E. et al. Enzyme replacement and substrate reduction therapy for Gaucher disease. Cochrane Database Syst. Rev. 2015, CD010324 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Woo, E. G., Tayebi, N. & Sidransky, E. Next-generation sequencing analysis of GBA1: the challenge of detecting complex recombinant alleles. Front. Genet. 12, 684067 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toffoli, M. et al. Comprehensive short and long read sequencing analysis for the Gaucher and Parkinson’s disease-associated GBA gene. Commun. Biol. 5, 670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zampieri, S., Cattarossi, S., Bembi, B. & Dardis, A. GBA analysis in next-generation era: pitfalls, challenges, and possible solutions. J. Mol. Diagn. 19, 733–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Biegstraaten, M. et al. A monozygotic twin pair with highly discordant Gaucher phenotypes. Blood Cell Mol. Dis. 46, 39–41 (2011).

    Article  CAS  Google Scholar 

  47. Kurolap, A. et al. Gaucher disease type 3c: new patients with unique presentations and review of the literature. Mol. Genet. Metab. 127, 138–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Mallett, V. et al. GBA p.T369M substitution in Parkinson disease: polymorphism or association? A meta-analysis. Neurol. Genet. 2, e104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park, J. K. et al. The E326K mutation and Gaucher disease: mutation or polymorphism? Clin. Genet. 61, 32–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Duran, R. et al. The glucocerobrosidase E326K variant predisposes to Parkinson’s disease, but does not cause Gaucher’s disease. Mov. Disord. 28, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Charrow, J. & Scott, C. R. Long-term treatment outcomes in Gaucher disease. Am. J. Hematol. 90, S19–S24 (2015).

    Article  PubMed  Google Scholar 

  52. El-Beshlawy, A. et al. Long-term hematological, visceral, and growth outcomes in children with Gaucher disease type 3 treated with imiglucerase in the International Collaborative Gaucher Group Gaucher Registry. Mol. Genet. Metab. 120, 47–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Cox, T. M. et al. Eliglustat compared with imiglucerase in patients with Gaucher’s disease type 1 stabilised on enzyme replacement therapy: a phase 3, randomised, open-label, non-inferiority trial. Lancet 385, 2355–2362 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Cox, T. et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Mistry, P. K. et al. Long-term effectiveness of eliglustat treatment: a real-world analysis from the International Collaborative Gaucher Group Gaucher Registry. Am. J. Hematol. 99, 1500–1510 (2024).

    Article  PubMed  Google Scholar 

  56. Schiffmann, R. et al. Venglustat combined with imiglucerase for neurological disease in adults with Gaucher disease type 3: the LEAP trial. Brain 146, 461–474 (2023).

    Article  PubMed  Google Scholar 

  57. Luan, Z. et al. Chaperone activity of bicyclic nojirimycin analogues for Gaucher mutations in comparison with N-(n-nonyl)deoxynojirimycin. Chembiochem 10, 2780–2792 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Han, T. U., Sam, R. & Sidransky, E. Small molecule chaperones for the treatment of Gaucher disease and GBA1-associated Parkinson disease. Front. Cell Dev. Biol. 8, 271 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Trapero, A., González-Bulnes, P., Butters, T. D. & Llebaria, A. Potent aminocyclitol glucocerebrosidase inhibitors are subnanomolar pharmacological chaperones for treating Gaucher disease. J. Med. Chem. 55, 4479–4488 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Maegawa, G. H. et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J. Biol. Chem. 284, 23502–23516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Narita, A. et al. Ambroxol chaperone therapy for neuronopathic Gaucher disease: a pilot study. Ann. Clin. Transl. Neurol. 3, 200–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Istaiti, M. et al. High-dose ambroxol therapy in type 1 Gaucher disease focusing on patients with poor response to enzyme replacement therapy or substrate reduction therapy. Int. J. Mol. Sci. 24, 6732 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Cilia, R. et al. Survival and dementia in GBA-associated Parkinson’s disease: The mutation matters. Ann. Neurol. 80, 662–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Gan-Or, Z. et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70, 2277–2283 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Pankratz, N. et al. Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann. Neurol. 71, 370–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rizig, M. et al. Identification of genetic risk loci and causal insights associated with Parkinson’s disease in African and African admixed populations: a genome-wide association study. Lancet Neurol. 22, 1015–1025 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Mitsui, J. et al. Variants associated with Gaucher disease in multiple system atrophy. Ann. Clin. Transl. Neurol. 2, 417–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sklerov, M. et al. Frequency of GBA variants in autopsy-proven multiple system atrophy. Mov. Disord. Clin. Pract. 4, 574–581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wernick, A. I. et al. GBA variation and susceptibility to multiple system atrophy. Parkinsonism Relat. Disord. 77, 64–69 (2020).

    Article  PubMed  Google Scholar 

  71. Alcalay, R. N. et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol. 71, 752–757 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bultron, G. et al. The risk of Parkinson’s disease in type 1 Gaucher disease. J. Inherit. Metab. Dis. 33, 167–173 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rosenbloom, B. et al. The incidence of Parkinsonism in patients with type 1 Gaucher disease: data from the ICGG Gaucher Registry. Blood Cell Mol. Dis. 46, 95–102 (2011).

    Article  Google Scholar 

  74. Ali, A., Holman, A. P., Rodriguez, A., Osborne, L. & Kurouski, D. Elucidating the mechanisms of α-synuclein-lipid interactions using site-directed mutagenesis. Neurobiol. Dis. 198, 106553 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Zunke, F. et al. Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron 97, 92–107.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Ron, I., Rapaport, D. & Horowitz, M. Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum. Mol. Genet. 19, 3771–3781 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Goker-Alpan, O. et al. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 67, 908–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Nichols, W. C. et al. Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72, 310–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ren, J. et al. Comparing the effects of GBA variants and onset age on clinical features and progression in Parkinson’s disease. CNS Neurosci. Ther. 30, e14387 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Malek, N. et al. Features of GBA-associated Parkinson’s disease at presentation in the UK Tracking Parkinson’s study. J. Neurol. Neurosurg. Psychiatry 89, 702–709 (2018).

    Article  PubMed  Google Scholar 

  81. Jesus, S. et al. GBA variants influence motor and non-motor features of Parkinson’s disease. PLoS ONE 11, e0167749 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Toffoli, M. et al. Phenotypic effect of GBA1 variants in individuals with and without Parkinson’s disease: The RAPSODI study. Neurobiol. Dis. 188, 106343 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Ren, J. et al. Association of GBA genotype with motor and cognitive decline in Chinese Parkinson’s disease patients. Front. Aging Neurosci. 15, 1091919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brockmann, K. et al. GBA-associated PD presents with nonmotor characteristics. Neurology 77, 276–280 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Straniero, L. et al. The SPID-GBA study: sex distribution, penetrance, incidence, and dementia in GBA-PD. Neurol. Genet. 6, e523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ortega, R. A. et al. Differences in sex-specific frequency of glucocerebrosidase variant carriers and familial Parkinsonism. Mov. Disord. 37, 2217–2225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thaler, A., Mirelman, A. & Alcalay, R. N. Differences in sex-specific frequency of glucocerebrosidase variant carriers and familial Parkinsonism. Mov. Disord. 38, 713–714 (2023).

    Article  PubMed  Google Scholar 

  88. Li, Q., Jing, Y., Lun, P., Liu, X. & Sun, P. Association of gender and age at onset with glucocerebrosidase associated Parkinson’s disease: a systematic review and meta-analysis. Neurol. Sci. 42, 2261–2271 (2021).

    Article  PubMed  Google Scholar 

  89. Panteghini, C. et al. Sex distribution and classification of GBA1 variants in an Italian cohort of Parkinson’s disease patients analyzed over the last seventeen years. Parkinsonism Relat. Disord. 117, 105919 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Zimmermann, M. et al. Patient’s perception: shorter and more severe prodromal phase in GBA-associated PD. Eur. J. Neurol. 26, 694–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Lopez, G. et al. Clinical course and prognosis in patients with Gaucher disease and parkinsonism. Neurol. Genet. 2, e57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Simuni, T. et al. Clinical and dopamine transporter imaging characteristics of leucine rich repeat kinase 2 (LRRK2) and glucosylceramidase beta (GBA) Parkinson’s disease participants in the Parkinson’s Progression Markers Initiative: a cross-sectional study. Mov. Disord. 35, 833–844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chia, R. et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 53, 294–303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gaubert, S. et al. Exploring the link between GBA1 mutations and Dementia with Lewy bodies, a mini-review. Neurosci. Biobehav. Rev. 141, 104856 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Wong, K. et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol. Genet. Metab. 82, 192–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Balestrino, R. et al. Penetrance of glucocerebrosidase (GBA) mutations in Parkinson’s disease: a kin cohort study. Mov. Disord. 35, 2111–2114 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Beavan, M. et al. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol. 72, 201–208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mullin, S. et al. Evolution and clustering of prodromal parkinsonian features in GBA1 carriers. Mov. Disord. 34, 1365–1373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Becker-Cohen, M. et al. A comprehensive assessment of qualitative and quantitative prodromal parkinsonian features in carriers of Gaucher disease-identifying those at the greatest risk. Int. J. Mol. Sci. 23, 12211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Avenali, M. et al. Evolution of prodromal parkinsonian features in a cohort of GBA mutation-positive individuals: a 6-year longitudinal study. J. Neurol. Neurosurg. Psychiatry 90, 1091–1097 (2019).

    Article  PubMed  Google Scholar 

  101. Lopez, G. J. et al. Longitudinal evaluation of olfactory function in individuals with Gaucher disease and GBA1 mutation carriers with and without Parkinson’s disease. Front. Neurol. 13, 1039214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Filippi, M., Balestrino, R., Basaia, S. & Agosta, F. Neuroimaging in glucocerebrosidase-associated parkinsonism: a systematic review. Mov. Disord. 37, 1375–1393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goker-Alpan, O. et al. The neurobiology of glucocerebrosidase-associated parkinsonism: a positron emission tomography study of dopamine synthesis and regional cerebral blood flow. Brain 135, 2440–2448 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Slingerland, S. et al. Cholinergic innervation topography in GBA-associated de novo Parkinson’s disease patients. Brain 147, 900–910 (2024).

    Article  PubMed  Google Scholar 

  105. Greuel, A. et al. GBA variants in Parkinson’s disease: clinical, metabolomic, and multimodal neuroimaging phenotypes. Mov. Disord. 35, 2201–2210 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Lopez, G. et al. Longitudinal positron emission tomography of dopamine synthesis in subjects with GBA1 mutations. Ann. Neurol. 87, 652–657 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Marek, K. et al. The Parkinson’s Progression Markers Initiative (PPMI) – establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5, 1460–1477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Simuni, T. et al. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurol. 19, 71–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Mullin, S. et al. Brain microglial activation increased in glucocerebrosidase (GBA) mutation carriers without Parkinson’s disease. Mov. Disord. 36, 774–779 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Berg, D., Godau, J. & Walter, U. Transcranial sonography in movement disorders. Lancet Neurol. 7, 1044–1055 (2008).

    Article  PubMed  Google Scholar 

  111. Li, D. H., He, Y. C., Liu, J. & Chen, S. D. Diagnostic accuracy of transcranial sonography of the substantia nigra in Parkinson’s disease: a systematic review and meta-analysis. Sci. Rep. 6, 20863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kresojevic, N. et al. Transcranial sonography in patients with Parkinson’s disease with glucocerebrosidase mutations. Parkinsonism Relat. Disord. 19, 431–435 (2013).

    Article  PubMed  Google Scholar 

  113. Saunders-Pullman, R. et al. Gaucher disease ascertained through a Parkinson’s center: imaging and clinical characterization. Mov. Disord. 25, 1364–1372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Eisenberg, D. P., Lopez, G., Gregory, M. D., Berman, K. F. & Sidransky, E. Comparison of transcranial sonography and [18F]-fluorodopa PET imaging in GBA1 mutation carriers. Mov. Disord. 37, 629–634 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Murugesan, V. et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am. J. Hematol. 91, 1082–1089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elstein, D. et al. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naive and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: data from phase 3 clinical trials. Mol. Genet. Metab. 122, 113–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Lerche, S. et al. The mutation matters: CSF profiles of GCase, sphingolipids, α-synuclein in PDGBA. Mov. Disord. 36, 1216–1228 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Parnetti, L. et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in Parkinson’s disease patients. Mov. Disord. 32, 1423–1431 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Surface, M. et al. Plasma glucosylsphingosine in GBA1 mutation carriers with and without Parkinson’s disease. Mov. Disord. 37, 416–421 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Omer, N. et al. Glucocerebrosidase activity is not associated with Parkinson’s disease risk or severity. Mov. Disord. 37, 651–652 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. den Heijer, J. M. et al. A biomarker study in patients with GBA1-Parkinson’s disease and healthy controls. Mov. Disord. 38, 783–795 (2023).

    Article  Google Scholar 

  122. Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132, 1783–1794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Clark, L. N. et al. Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch. Neurol. 66, 578–583 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huebecker, M. et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol. Neurodegener. 14, 40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Murphy, K. E. et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137, 834–848 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rocha, E. M. et al. Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Ann. Clin. Transl. Neurol. 2, 433–438 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Milenkovic, I., Blumenreich, S. & Futerman, A. H. GBA mutations, glucosylceramide and Parkinson’s disease. Curr. Opin. Neurobiol. 72, 148–154 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Orvisky, E. et al. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Mol. Genet. Metab. 76, 262–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Gegg, M. E. et al. No evidence for substrate accumulation in Parkinson brains with GBA mutations. Mov. Disord. 30, 1085–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leyns, C. E. G. et al. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson’s disease. NPJ Parkinsons Dis. 9, 74 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blumenreich, S. et al. Elevation of gangliosides in four brain regions from Parkinson’s disease patients with a GBA mutation. NPJ Parkinsons Dis. 8, 99 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Walton, R. L. et al. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol. 147, 54 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Velayati, A. et al. A mutation in SCARB2 is a modifier in Gaucher disease. Hum. Mutat. 32, 1232–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mistry, P. K. et al. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc. Natl Acad. Sci. USA 111, 4934–4939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yildiz, Y. et al. Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease. Orphanet J. Rare Dis. 8, 151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang, C. K. et al. Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am. J. Hematol. 87, 377–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. di Ronza, A. et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370–1377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Klein, A. D. et al. Identification model of Gaucher disease. Cell Rep. 16, 2546–2553 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Blauwendraat, C. et al. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain 143, 234–248 (2020).

    Article  PubMed  Google Scholar 

  141. Fredriksen, K. et al. Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. Proc. Natl Acad. Sci. USA 118, e2108489118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Henderson, M. X. et al. Glucocerebrosidase activity modulates neuronal susceptibility to pathological α-synuclein insult. Neuron 105, 822–836.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Jo, J. et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann. Neurol. 90, 490–505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Paul, A. et al. Glucosylceramide associated with Gaucher disease forms amyloid-like twisted ribbon fibrils that induce α-synuclein aggregation. ACS Nano 15, 11854–11868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Taguchi, Y. V. et al. Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson’s disease. J. Neurosci. 37, 9617–9631 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Galvagnion, C. et al. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 145, 1038–1051 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Schondorf, D. C. et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat. Commun. 5, 4028 (2014).

    Article  PubMed  Google Scholar 

  149. Fernandes, H. J. et al. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons. Stem Cell Rep. 6, 342–356 (2016).

    Article  CAS  Google Scholar 

  150. Zurbruegg, M., Chan, M. Y. & Svenningsson, P. GBA RNAi but not catalytic inhibition of glucocerebrosidase with conduritol-β-epoxide increases levels of total α-synuclein in SH-SY5Y cells. Neurosci. Lett. 706, 217–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Maor, G., Rapaport, D. & Horowitz, M. The effect of mutant GBA1 on accumulation and aggregation of α-synuclein. Hum. Mol. Genet. 28, 1768–1781 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Maor, G. et al. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum. Mol. Genet. 25, 2712–2727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sardi, S. P. et al. CNS expression of glucocerebrosidase corrects α-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc. Natl Acad. Sci. USA 108, 12101–12106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bogetofte, H. et al. Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s disease GBA-N370S dopamine neurons. Cell Rep. 42, 112180 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Smith, L. J., Bolsinger, M. M., Chau, K. Y., Gegg, M. E. & Schapira, A. H. V. The GBA variant E326K is associated with α-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum. Mol. Genet. 32, 773–789 (2023).

    CAS  PubMed  Google Scholar 

  156. Kuo, S. H. et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci. Adv. 8, eabm6393 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Kim, S., Wong, Y. C., Gao, F. & Krainc, D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat. Commun. 12, 1807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, S., Coukos, R., Gao, F. & Krainc, D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 110, 2386–2408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Baden, P. et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat. Commun. 14, 1930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rosety, I. et al. Impaired neuron differentiation in GBA-associated Parkinson’s disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis. 9, 166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Udayar, V., Chen, Y., Sidransky, E. & Jagasia, R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci. 45, 184–199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gehrlein, A. et al. Targeting neuronal lysosomal dysfunction caused by β-glucocerebrosidase deficiency with an enzyme-based brain shuttle construct. Nat. Commun. 14, 2057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kampmann, M. CRISPR-based functional genomics for neurological disease. Nat. Rev. Neurol. 16, 465–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Meng, Y. et al. Putaminal recombinant glucocerebrosidase delivery with magnetic resonance-guided focused ultrasound in Parkinson’s disease: a phase I study. Mov. Disord. 37, 2134–2139 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Logan, T. et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184, 4651–4668.e25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Giladi, N. et al. Safety and efficacy of venglustat in GBA1-associated Parkinson’s disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 22, 661–671 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Sidransky, E. et al. Substrate reduction therapy for GBA1-associated Parkinsonism: are we betting on the wrong mouse? Mov. Disord. 35, 228–230 (2020).

    Article  PubMed  Google Scholar 

  171. Sardi, S. P. et al. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc. Natl Acad. Sci. USA 114, 2699–2704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mullin, S. et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol. 77, 427–434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Colucci, F. et al. Ambroxol as a disease-modifying treatment to reduce the risk of cognitive impairment in GBA-associated Parkinson’s disease: a multicentre, randomised, double-blind, placebo-controlled, phase II trial. The AMBITIOUS study protocol. BMJ Neurol. Open. 5, e000535 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chwiszczuk, L. J. et al. The ANeED study – ambroxol in new and early dementia with Lewy bodies (DLB): protocol for a phase IIa multicentre, randomised, double-blinded and placebo-controlled trial. Front. Aging Neurosci. 15, 1163184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. den Heijer, J. M. et al. A phase 1B trial in GBA1-associated Parkinson’s disease of BIA-28-6156, a glucocerebrosidase activator. Mov. Disord. 38, 1197–1208 (2023).

    Article  Google Scholar 

  176. Oftedal, L. et al. Association of CSF glucocerebrosidase activity with the risk of incident dementia in patients with Parkinson disease. Neurology 100, e388–e395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chiasserini, D. et al. Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Mol. Neurodegener. 10, 15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Farfel-Becker, T., Do, J., Tayebi, N. & Sidransky, E. Can GBA1-associated Parkinson disease be modeled in the mouse? Trends Neurosci. 42, 631–643 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Cullen, V. et al. Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Ann. Neurol. 69, 940–953 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Zhao, X. et al. PGRN deficiency exacerbates, whereas a brain penetrant PGRN derivative protects, GBA1 mutation-associated pathologies and diseases. Proc. Natl Acad. Sci. USA 120, e2210442120 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Tayebi, N. et al. Glucocerebrosidase haploinsufficiency in A53T α-synuclein mice impacts disease onset and course. Mol. Genet. Metab. 122, 198–208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mahoney-Crane, C. L. et al. Neuronopathic GBA1L444P mutation accelerates glucosylsphingosine levels and formation of hippocampal α-synuclein inclusions. J. Neurosci. 43, 501–521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ramos, D. M., Skarnes, W. C., Singleton, A. B., Cookson, M. R. & Ward, M. E. Tackling neurodegenerative diseases with genomic engineering: a new stem cell initiative from the NIH. Neuron 109, 1080–1083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bressan, E. et al. The foundational data initiative for Parkinson disease: enabling efficient translation from genetic maps to mechanism. Cell Genom. 3, 100261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Deen, M. C. et al. A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells. Proc. Natl Acad. Sci. USA 119, e2200553119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhu, S. et al. A fixable fluorescence-quenched substrate for quantitation of lysosomal glucocerebrosidase activity in both live and fixed cells. Angew. Chem. Int. Ed. Engl. 62, e202309306 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Jong, T., Gehrlein, A., Sidransky, E., Jagasia, R. & Chen, Y. Characterization of novel human β-glucocerebrosidase antibodies for Parkinson’s disease research. J. Parkinsons Dis. 14, 65–78 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Scharenberg, S. G. et al. An SPNS1-dependent lysosomal lipid transport pathway that enables cell survival under choline limitation. Sci. Adv. 9, eadf8966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Medoh, U. N. et al. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate synthase. Science 381, 1182–1189 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Davis, O. B. et al. NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann–Pick type C. Dev. Cell. 56, 260–276.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron 104, 239–255.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Magalhaes, J. et al. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum. Mol. Genet. 25, 3432–3445 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim, S. et al. GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc. Natl Acad. Sci. USA 115, 798–803 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rocha, E. M. et al. Sustained systemic glucocerebrosidase inhibition induces brain α-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid. Redox Signal. 23, 550–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Osellame, L. D. et al. Mitochondria and quality control defects in a mouse model of Gaucher disease – links to Parkinson’s disease. Cell Metab. 17, 941–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Holleran, W. M. et al. Consequences of β-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J. Clin. Invest. 93, 1756–1764 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Laqtom, N. N. et al. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 609, 1005–1011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Park, H. et al. Spatial snapshots of amyloid precursor protein intramembrane processing via early endosome proteomics. Nat. Commun. 13, 6112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Institutes of Health. The authors thank J. Fekecs for her assistance with drafting the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ellen Sidransky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Hugo Fernandes, Kathrin Brockmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, E., Chen, Y. & Sidransky, E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 20, 526–540 (2024). https://doi.org/10.1038/s41582-024-00999-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-00999-z

  • Springer Nature Limited

Navigation