Skip to main content

Advertisement

Log in

Alzheimer disease blood biomarkers: considerations for population-level use

  • Review Article
  • Published:

From Nature Reviews Neurology

View current issue Sign up to alerts

Abstract

In the past 5 years, we have witnessed the first approved Alzheimer disease (AD) disease-modifying therapy and the development of blood-based biomarkers (BBMs) to aid the diagnosis of AD. For many reasons, including accessibility, invasiveness and cost, BBMs are more acceptable and feasible for patients than a lumbar puncture (for cerebrospinal fluid collection) or neuroimaging. However, many questions remain regarding how best to utilize BBMs at the population level. In this Review, we outline the factors that warrant consideration for the widespread implementation and interpretation of AD BBMs. To set the scene, we review the current use of biomarkers, including BBMs, in AD. We go on to describe the characteristics of typical patients with cognitive impairment in primary care, who often differ from the patient populations used in AD BBM research studies. We also consider factors that might affect the interpretation of BBM tests, such as comorbidities, sex and race or ethnicity. We conclude by discussing broader issues such as ethics, patient and provider preference, incidental findings and dealing with indeterminate results and imperfect accuracy in implementing BBMs at the population level.

Key points

  • Numerous studies have demonstrated the clinical utility and accuracy of plasma measures of the amyloid-β42:40 ratio and phosphorylated tau (p-tau) 181 and p-tau217 levels for the detection of Alzheimer disease (AD) pathology among clinically well-characterized patients.

  • Most AD blood-based biomarker (BBM) studies focused on specialty clinic populations are not generalizable to typical patients with dementia, and an urgent need exists to test the BBMs at the population level.

  • Chronic kidney disease, obesity and cardiovascular conditions or medication can elevate or lower AD BBM levels and need to be taken into consideration to avoid false-positive or false-negative diagnoses; understanding how to interpret AD BBM levels in the context of multiple chronic conditions is crucial for diagnosing AD among older adults in the population.

  • Other factors that might influence AD BBM levels include sex and race or ethnicity, although findings on these associations have been inconsistent to date.

  • A positive BBM test might indicate the presence of AD pathology but could be an incidental finding; the test must be considered in the context of all other symptoms and with the potential for co-pathologies.

  • Policies must be developed to protect patients who have AD BBM results added to their medical records so that they do not lose access to insurance or to disability or other rights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Chronic conditions in typical patients presenting with cognitive impairment.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Prince, M. J. et al. World Alzheimer Report 2015 — the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimers Dis. Int. https://www.alzint.org/u/WorldAlzheimerReport2015.pdf (2021).

  2. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Google Scholar 

  3. McKhann, G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944 (1984).

    CAS  PubMed  Google Scholar 

  4. Jack, C. R. Jr et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    PubMed  Google Scholar 

  5. Rabinovici, G. D. et al. Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia. JAMA 321, 1286–1294 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement. 8, e12295 (2022).

    Google Scholar 

  7. Liu, J. L., Hlavka, J. P., Hillestad, R. & Mattke, S. Assessing the Preparedness of the U.S. Health Care System Infrastructure for an Alzheimer’s Treatment (RAND Corporation, 2017).

  8. Mattke, S. & Hanson, M. Expected wait times for access to a disease-modifying Alzheimer’s treatment in the United States. Alzheimers Dement. 18, 1071–1074 (2022).

    CAS  PubMed  Google Scholar 

  9. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330, 512–527 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lam, J., Hlávka, J. & Mattke, S. The potential emergence of disease-modifying treatments for Alzheimer disease: the role of primary care in managing the patient journey. J. Am. Board Fam. Med. 32, 931–940 (2019).

    PubMed  Google Scholar 

  11. Ritchie, C. W. et al. The Edinburgh Consensus: preparing for the advent of disease-modifying therapies for Alzheimer’s disease. Alzheimers Res. Ther. 9, 85 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Paczynski, M. M. & Day, G. S. Alzheimer disease biomarkers in clinical practice: a blood-based diagnostic revolution. J. Prim. Care Community Health 13, 21501319221141178 (2022).

    PubMed  PubMed Central  Google Scholar 

  13. Sideman, A. B. et al. Primary care pracitioner perspectives on the role of primary care in dementia diagnosis and care. JAMA Netw. Open 6, e2336030 (2023).

    PubMed  PubMed Central  Google Scholar 

  14. Angioni, D. et al. Can we use blood biomarkers as entry criteria and for monitoring drug treatment effects in clinical trials? A report from the EU/US CTAD Task Force. J. Prev. Alzheimers Dis. 10, 418–425 (2023).

    CAS  PubMed  Google Scholar 

  15. Ovod, V. et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 13, 841–849 (2017).

    PubMed  Google Scholar 

  16. Schindler, S. E. et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93, e1647–e1659 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thijssen, E. H. et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 26, 387–397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    CAS  PubMed  Google Scholar 

  19. Mielke, M. M. et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 14, 989–997 (2018).

    PubMed  Google Scholar 

  20. Janelidze, S. et al. Plasma p-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020).

    CAS  PubMed  Google Scholar 

  21. Mielke, M. M. et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 28, 1398–1405 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Janelidze, S. et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146, 1592–1601 (2023).

    PubMed  Google Scholar 

  23. Barthelemy, N. R. et al. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat. Med. 30, 1085–1095 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoffman, P. N. et al. Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl Acad. Sci. USA 84, 3472–3476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashton, N. J. et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 12, 3400 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mattsson, N., Cullen, N. C., Andreasson, U., Zetterberg, H. & Blennow, K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 76, 791–799 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Lista, S. et al. A critical appraisal of blood-based biomarkers for Alzheimer’s disease. Ageing Res. Rev. 96, 102290 (2024).

    CAS  PubMed  Google Scholar 

  28. Kodosaki, E., Zetterberg, H. & Heslegrave, A. Validating blood tests as a possible routine diagnostic assay of Alzheimer’s disease. Expert Rev. Mol. Diagn. 23, 1153–1165 (2023).

    CAS  PubMed  Google Scholar 

  29. Brand, A. L. et al. The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer’s disease: a literature review. Alzheimers Res. Ther. 14, 195 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Plassman, B. L. et al. Incidence of dementia and cognitive impairment, not dementia in the United States. Ann. Neurol. 70, 418–426 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Schubert, C. C. et al. Comorbidity profile of dementia patients in primary care: are they sicker? J. Am. Geriatr. Soc. 54, 104–109 (2006).

    PubMed  Google Scholar 

  32. Sanderson, M. et al. Co-morbidity associated with dementia. Am. J. Alzheimers Dis. Other Demen. 17, 73–78 (2002).

    PubMed  PubMed Central  Google Scholar 

  33. Poblador-Plou, B. et al. Comorbidity of dementia: a cross-sectional study of primary care older patients. BMC Psychiatry 14, 84 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Polenick, C. A., Min, L. & Kales, H. C. Medical comorbidities of dementia: links to caregivers’ emotional difficulties and gains. J. Am. Geriatr. Soc. 68, 609–613 (2020).

    PubMed  Google Scholar 

  35. Bunn, F. et al. Comorbidity and dementia: a scoping review of the literature. BMC Med. 12, 192 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Xu, H. et al. Kidney function, kidney function decline, and the risk of dementia in older adults: a registry-based study. Neurology 96, e2956–e2965 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vargese, S. S. et al. Comorbidities in dementia during the last years of life: a register study of patterns and time differences in Finland. Aging Clin. Exp. Res. 33, 3285–3292 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Quiñones, A. R. et al. Racial/ethnic differences in multimorbidity development and chronic disease accumulation for middle-aged adults. PLoS ONE 14, e0218462 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Kivimäki, M. et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health 5, e140–e149 (2020).

    PubMed  Google Scholar 

  40. Wallace, L. M. K. et al. Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: a cross-sectional analysis of data from the Rush Memory and Aging Project. Lancet Neurol. 18, 177–184 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Calvin, C. M., Conroy, M. C., Moore, S. F., Kuzma, E. & Littlejohns, T. J. Association of multimorbidity, disease clusters, and modification by genetic factors with risk of dementia. JAMA Netw. Open 5, e2232124 (2022).

    PubMed  PubMed Central  Google Scholar 

  42. Ben Hassen, C. et al. Association between age at onset of multimorbidity and incidence of dementia: 30 year follow-up in Whitehall II prospective cohort study. BMJ 376, e068005 (2022).

    PubMed  PubMed Central  Google Scholar 

  43. Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).

    CAS  PubMed  Google Scholar 

  44. Syrjanen, J. A. et al. Associations of amyloid and neurodegeneration plasma biomarkers with comorbidities. Alzheimers Dement. 18, 1128–1140 (2022).

    CAS  PubMed  Google Scholar 

  45. Sylvain, L. et al. Plasma phosphorylated tau 181 predicts amyloid status and conversion to dementia stage dependent on renal function. J. Neurol. Neurosurg. Psychiatry 94, 411 (2023).

    Google Scholar 

  46. Pichet Binette, A. et al. Confounding factors of Alzheimer’s disease plasma biomarkers and their impact on clinical performance. Alzheimers Dement. 19, 1403–1414 (2023).

    PubMed  Google Scholar 

  47. O’Bryant, S. E., Petersen, M., Hall, J., Johnson, L. A. & HABS-HD Study Team. Medical comorbidities and ethnicity impact plasma Alzheimer’s disease biomarkers: important considerations for clinical trials and practice. Alzheimers Dement. 19, 36–43 (2023).

    PubMed  Google Scholar 

  48. Pan, F. et al. The potential impact of clinical factors on blood-based biomarkers for Alzheimer’s disease. Transl. Neurodegener. 12, 39 (2023).

    PubMed  PubMed Central  Google Scholar 

  49. Rebelos, E. et al. Circulating neurofilament is linked with morbid obesity, renal function, and brain density. Sci. Rep. 12, 7841 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray, M. E. et al. Global neuropathologic severity of Alzheimer’s disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol. Neurodegener. 17, 85 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Janelidze, S., Barthélemy, N. R., He, Y., Bateman, R. J. & Hansson, O. Mitigating the associations of kidney dysfunction with blood biomarkers of Alzheimer disease by using phosphorylated tau to total tau ratios. JAMA Neurol. 80, 516–522 (2023).

    PubMed  PubMed Central  Google Scholar 

  52. Zhang, B. et al. Effect of renal function on the diagnostic performance of plasma biomarkers for Alzheimer’s disease. Front. Aging Neurosci. 15, 1150510 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, X. et al. Plasma Aβ(42):Aβ(40) ratio as a biomarker for cognitive impairment in haemodialysis patients: a multicentre study. Clin. Kidney J. 16, 2129–2140 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Manouchehrinia, A. et al. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann. Clin. Transl. Neurol. 7, 139–143 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Nota, M. H. C. et al. Obesity affects brain structure and function-rescue by bariatric surgery? Neurosci. Biobehav. Rev. 108, 646–657 (2020).

    PubMed  Google Scholar 

  56. Lee, S. et al. Body mass index and two-year change of in vivo Alzheimer’s disease pathologies in cognitively normal older adults. Alzheimers Res. Ther. 15, 108 (2023).

    PubMed  PubMed Central  Google Scholar 

  57. Guo, J. et al. Body mass index trajectories preceding incident mild cognitive impairment and dementia. JAMA Psychiatry 79, 1180–1187 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Schaich, C. L., Maurer, M. S. & Nadkarni, N. K. Amyloidosis of the brain and heart: two sides of the same coin? JACC Heart Fail. 7, 129–131 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Troncone, L. et al. Aβ amyloid pathology affects the hearts of patients with Alzheimer’s disease: mind the heart. J. Am. Coll. Cardiol. 68, 2395–2407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stellos, K. et al. Association of plasma amyloid-beta (1–40) levels with incident coronary artery disease and cardiovascular mortality. Eur. Heart J. 34, P3145 (2013).

    Google Scholar 

  61. Bayes-Genis, A. et al. Bloodstream amyloid-beta (1–40) peptide, cognition, and outcomes in heart failure. Rev. Esp. Cardiol. 70, 924–932 (2017).

    PubMed  Google Scholar 

  62. Zhu, F. et al. Plasma amyloid-β in relation to cardiac function and risk of heart failure in general population. JACC Heart Fail. 11, 93–102 (2023).

    CAS  PubMed  Google Scholar 

  63. Brum, W. S. et al. Effect of neprilysin inhibition on Alzheimer disease plasma biomarkers: a secondary analysis of a randomized clinical trial. JAMA Neurol. 81, 197–200 (2024).

    PubMed  Google Scholar 

  64. Langenickel, T. H. et al. The effect of LCZ696 (sacubitril/valsartan) on amyloid-β concentrations in cerebrospinal fluid in healthy subjects. Br. J. Clin. Pharmacol. 81, 878–890 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fowler, N. R. et al. Effect of dementia on the use of drugs for secondary prevention of ischemic heart disease. J. Aging Res. 2014, 897671 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Cannon, J. A., McMurray, J. J. & Quinn, T. J. Hearts and minds’: association, causation and implication of cognitive impairment in heart failure. Alzheimers Res. Ther. 7, 22 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Keshavan, A. et al. Population-based blood screening for preclinical Alzheimer’s disease in a British birth cohort at age 70. Brain 144, 434–449 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. Brickman, A. M. et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer’s disease biomarkers in a multi-ethnic, community study. Alzheimers Dement. 17, 1353–1364 (2021).

    CAS  PubMed  Google Scholar 

  69. Tsiknia, A. A. et al. Sex differences in plasma p-tau181 associations with Alzheimer’s disease biomarkers, cognitive decline, and clinical progression. Mol. Psychiatry 27, 4314–4322 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Baldacci, F. et al. Age and sex impact plasma NFL and t-tau trajectories in individuals with subjective memory complaints: a 3-year follow-up study. Alzheimers Res. Ther. 12, 147 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramanan, V. K. et al. Association of plasma biomarkers of Alzheimer disease with cognition and medical comorbidities in a biracial cohort. Neurology 101, e1402–e1411 (2023).

    CAS  PubMed  Google Scholar 

  72. Lussier, F. Z. et al. Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals. Brain Commun. 3, fcab073 (2021).

    PubMed  PubMed Central  Google Scholar 

  73. Saloner, R. et al. Plasma phosphorylated tau-217 exhibits sex-specific prognostication of cognitive decline and brain atrophy in cognitively unimpaired adults. Alzheimers Dement. 20, 376–387 (2024).

    CAS  PubMed  Google Scholar 

  74. Vila-Castelar, C. et al. Sex differences in blood biomarkers and cognitive performance in individuals with autosomal dominant Alzheimer’s disease. Alzheimers Dement. 19, 4127–4138 (2023).

    CAS  PubMed  Google Scholar 

  75. Rajan, K. B. et al. Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020–2060). Alzheimers Dement. 17, 1966–1975 (2021).

    PubMed  Google Scholar 

  76. Matthews, K. A. et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimers Dement. 15, 17–24 (2019).

    PubMed  Google Scholar 

  77. Schindler, S. E. et al. Effect of race on prediction of brain amyloidosis by plasma Aβ42/Aβ40, phosphorylated tau, and neurofilament light. Neurology 99, e245–e257 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Morris, J. C. et al. Assessment of racial disparities in biomarkers for Alzheimer disease. JAMA Neurol. 76, 264–273 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Wilkins, C. H. et al. Racial and ethnic differences in amyloid PET positivity in individuals with mild cognitive impairment or dementia: a secondary analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) cohort study. JAMA Neurol. 79, 1139–1147 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Garrett, S. L. et al. Racial disparity in cerebrospinal fluid amyloid and tau biomarkers and associated cutoffs for mild cognitive impairment. JAMA Netw. Open 2, e1917363 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Raman, R. et al. Disparities by race and ethnicity among adults recruited for a preclinical Alzheimer disease trial. JAMA Netw. Open 4, e2114364 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Hajjar, I. et al. Association of plasma and cerebrospinal fluid Alzheimer disease biomarkers with race and the role of genetic ancestry, vascular comorbidities, and neighborhood factors. JAMA Netw. Open 5, e2235068 (2022).

    PubMed  PubMed Central  Google Scholar 

  83. Hall, J. R., Petersen, M., Johnson, L. & O’Bryant, S. E. Characterizing plasma biomarkers of Alzheimer’s in a diverse community-based cohort: a cross-sectional study of the HAB-HD cohort. Front. Neurol. 13, 871947 (2022).

    PubMed  PubMed Central  Google Scholar 

  84. Gleason, C. E. et al. Alzheimer’s disease biomarkers in Black and non-Hispanic White cohorts: a contextualized review of the evidence. Alzheimers Dement. 18, 1545–1564 (2022).

    PubMed  Google Scholar 

  85. Barnes, L. L. Alzheimer disease in African American individuals: increased incidence or not enough data? Nat. Rev. Neurol. 18, 56–62 (2022).

    PubMed  Google Scholar 

  86. Simons, R. L. et al. Racial discrimination during middle age predicts higher serum phosphorylated tau and neurofilament light chain levels a decade later: a study of aging black Americans. Alzheimers Dement. 20, 3485–3494 (2024).

    PubMed  PubMed Central  Google Scholar 

  87. Cholerton, B. et al. Total brain and hippocampal volumes and cognition in older American Indians: the Strong Heart Study. Alzheimer Dis. Assoc. Disord. 31, 94–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Granot-Hershkovitz, E. et al. APOE alleles’ association with cognitive function differs across Hispanic/Latino groups and genetic ancestry in the study of Latinos — investigation of neurocognitive aging (HCHS/SOL). Alzheimers Dement. 17, 466–474 (2021).

    CAS  PubMed  Google Scholar 

  89. Hansson, O. et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement. 18, 2669–2686 (2022).

    CAS  PubMed  Google Scholar 

  90. Drabo, E. F. et al. Longitudinal analysis of dementia diagnosis and specialty care among racially diverse Medicare beneficiaries. Alzheimers Dement. 15, 1402–1411 (2019).

    PubMed  Google Scholar 

  91. Boustani, M. et al. Who refuses the diagnostic assessment for dementia in primary care? Int. J. Geriatr. Psychiatry 21, 556–563 (2006).

    PubMed  Google Scholar 

  92. McCarten, J. R., Anderson, P., Kuskowski, M. A., McPherson, S. E. & Borson, S. Screening for cognitive impairment in an elderly veteran population: acceptability and results using different versions of the Mini-Cog. J. Am. Geriatr. Soc. 59, 309–313 (2011).

    PubMed  Google Scholar 

  93. Balogun, W. G., Zetterberg, H., Blennow, K. & Karikari, T. K. Plasma biomarkers for neurodegenerative disorders: ready for prime time? Curr. Opin. Psychiatry 36, 112–118 (2023).

    PubMed  PubMed Central  Google Scholar 

  94. Brum, W. S. et al. A two-step workflow based on plasma p-tau217 to screen for amyloid beta positivity with further confirmatory testing only in uncertain cases. Nat. Aging 3, 1079–1090 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Verberk, I. M. W. et al. Characterization of pre-analytical sample handling effects on a panel of Alzheimer’s disease-related blood-based biomarkers: results from the Standardization of Alzheimer’s Blood Biomarkers (SABB) working group. Alzheimers Dement. 18, 1484–1497 (2022).

    CAS  PubMed  Google Scholar 

  96. Hampel, H. et al. Blood-based biomarkers for Alzheimer’s disease: current state and future use in a transformed global healthcare landscape. Neuron 111, 2781–2799 (2023).

    CAS  PubMed  Google Scholar 

  97. Morgan, D. J. et al. Accuracy of practitioner estimates of probability of diagnosis before and after testing. JAMA Intern. Med. 181, 747–755 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Kapasi, A., DeCarli, C. & Schneider, J. A. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 134, 171–186 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Galasko, D. R., Grill, J. D., Lingler, J. H. & Heidebrink, J. L. A blood test for Alzheimer’s disease: it’s about time or not ready for prime time? J. Alzheimers Dis. 90, 963–966 (2022).

    PubMed  Google Scholar 

  100. Howe, E. G. Ethical issues in diagnosing and treating Alzheimer disease. Psychiatry 3, 43–53 (2006).

    PubMed  PubMed Central  Google Scholar 

  101. Frederiksen, K. S. et al. European Academy of Neurology/European Alzheimer’s Disease Consortium position statement on diagnostic disclosure, biomarker counseling, and management of patients with mild cognitive impairment. Eur. J. Neurol. 28, 2147–2155 (2021).

    PubMed  Google Scholar 

  102. Arias, J. J., Manchester, M. & Lah, J. Direct to consumer biomarker testing for Alzheimer disease — are we ready for the insurance consequences? JAMA Neurol. 81, 107–108 (2024).

    PubMed  Google Scholar 

  103. Mattsson, N., Brax, D. & Zetterberg, H. To know or not to know: ethical issues related to early diagnosis of Alzheimer’s disease. Int. J. Alzheimers Dis. 2010, 841941 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Philip, G., Savundranayagam, M. Y., Kothari, A. & Orange, J. B. Exploring stigmatizing perceptions of dementia among racialized groups living in the Anglosphere: a scoping review. Aging Health Res. 4, 100170 (2024).

    Google Scholar 

  105. Walker, J. et al. Patient and caregiver experiences of living with dementia in Tanzania. Dementia 22, 1900–1920 (2023).

    PubMed  Google Scholar 

  106. Werner, P. & Kim, S. A cross-national study of dementia stigma among the general public in Israel and Australia. J. Alzheimers Dis. 83, 103–110 (2021).

    PubMed  PubMed Central  Google Scholar 

  107. Stites, S. D. et al. How reactions to a brain scan result differ for adults based on self-identified Black and White race. Alzheimer’s Dement. 20, 1527–1537 (2024).

    Google Scholar 

  108. Stites, S. D. et al. The relative contributions of biomarkers, disease modifying treatment, and dementia severity to Alzheimer’s stigma: a vignette-based experiment. Soc. Sci. Med. 292, 114620 (2022).

    PubMed  Google Scholar 

  109. Grill, J. D. et al. Short-term psychological outcomes of disclosing amyloid imaging results to research participants who do not have cognitive impairment. JAMA Neurol. 77, 1504–1513 (2020).

    PubMed  Google Scholar 

  110. van der Schaar, J. et al. Considerations regarding a diagnosis of Alzheimer’s disease before dementia: a systematic review. Alzheimers Res. Ther. 14, 31 (2022).

    PubMed  PubMed Central  Google Scholar 

  111. Jack, C. R. Jr. et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bennett, D. A. et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844 (2006).

    CAS  PubMed  Google Scholar 

  114. Dodge, H. H. et al. Risk of incident clinical diagnosis of Alzheimer’s disease-type dementia attributable to pathology-confirmed vascular disease. Alzheimers Dement. 13, 613–623 (2017).

    PubMed  Google Scholar 

  115. Stites, S. D., Milne, R. & Karlawish, J. Advances in Alzheimer’s imaging are changing the experience of Alzheimer’s disease. Alzheimers Dement. 10, 285–300 (2018).

    Google Scholar 

  116. Xanthopoulou, P. & McCabe, R. Subjective experiences of cognitive decline and receiving a diagnosis of dementia: qualitative interviews with people recently diagnosed in memory clinics in the UK. BMJ Open 9, e026071 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Planche, V. et al. Validity and performance of blood biomarkers for Alzheimer disease to predict dementia risk in a large clinic-based cohort. Neurology 100, e473–e484 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mattsson-Carlgren, N. et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers. JAMA Neurol. 80, 360–369 (2023).

    PubMed  PubMed Central  Google Scholar 

  119. Largent, E. A., Stites, S. D., Harkins, K. & Karlawish, J. That would be dreadful: the ethical, legal, and social challenges of sharing your Alzheimer’s disease biomarker and genetic testing results with others. J. Law Biosci. 8, lsab004 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.M.M. and N.R.F. acknowledge support from the National Institute on Aging and the NIH (grants U24 AG082930, RF1 AG077386, RF1 AG079397, RF1 AG69052 and P30 AG07247).

Author information

Authors and Affiliations

Authors

Contributions

M.M.M. researched data for the article and wrote the article. Both authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michelle M. Mielke.

Ethics declarations

Competing interests

M.M.M. has served on scientific advisory boards and/or has consulted for Acadia, Biogen, Eisai, LabCorp, Lilly, Merck, PeerView Institute, Novo Nordisk, Roche, Siemens Healthineers and Sunbird Bio. N.R.F. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Schott, C. Gleason and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielke, M.M., Fowler, N.R. Alzheimer disease blood biomarkers: considerations for population-level use. Nat Rev Neurol 20, 495–504 (2024). https://doi.org/10.1038/s41582-024-00989-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-00989-1

  • Springer Nature Limited

This article is cited by

Navigation