Skip to main content
Log in

Lattice engineering through nanoparticle–DNA frameworks

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Lattice assembly through NP–DNA frameworks.
Figure 2: The formation of a NP–DNA 3D lattice with octahedral frames and the effect of NP–vertex linker length.
Figure 3: Diversity of NP superlattices assembled through DNA frames.
Figure 4: Cryo-STEM images for simple cubic (SC) (a1, a2) and body-centred-tetragonal (BCT) (b1, b2) lattices of NPs assembled with cubic and ESB frames, respectively.
Figure 5: Frame shapes (left) and the corresponding unit cells (right) of the experimentally observed lattices.

Similar content being viewed by others

References

  1. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  2. Hu, T. et al. Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies. Nano Lett. 14, 6799–6810 (2014).

    Article  CAS  Google Scholar 

  3. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    Article  CAS  Google Scholar 

  4. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  5. Xiong, H., Sfeir, M. Y. & Gang, O. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 10, 4456–4462 (2010).

    Article  CAS  Google Scholar 

  6. Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).

    Article  CAS  Google Scholar 

  7. Zhu, J. X. et al. Crystallization of hard-sphere colloids in microgravity. Nature 387, 883–885 (1997).

    Article  CAS  Google Scholar 

  8. Casey, M. T. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nature Commun. 3, 1209 (2012).

    Article  Google Scholar 

  9. Travesset, A. Binary nanoparticle superlattices of soft-particle systems. Proc. Natl Acad. Sci. USA 112, 9563–9567 (2015).

    Article  CAS  Google Scholar 

  10. Kranendonk, W. G. T. & Frenkel, D. Simulation of the adhesive-hard-sphere model. Mol. Phys. 64, 403–424 (1988).

    Article  CAS  Google Scholar 

  11. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  12. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  13. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  14. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  15. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  16. Auyeung, E. et al. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nature Nanotech. 7, 24–28 (2012).

    Article  CAS  Google Scholar 

  17. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  Google Scholar 

  18. Rechtsman, M. C., Stillinger, F. H. & Torquato, S. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions. Phys. Rev. E 75, 031403 (2007).

    Article  Google Scholar 

  19. Jain, A., Errington, J. R. & Truskett, T. M. Dimensionality and design of isotropic interactions that stabilize honeycomb, square, simple cubic, and diamond lattices. Phys. Rev. X 4, 031049 (2014).

    Google Scholar 

  20. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  21. Angioletti-Uberti, S., Varilly, P., Mognetti, B. M. & Frenkel, D. Mobile linkers on DNA-coated colloids: valency without patches. Phys. Rev. Lett. 113, 128308 (2014).

    Article  Google Scholar 

  22. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  23. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, Y., Lu, F., Lelie, D. v. d. & Gang, O. Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 107, 135701 (2011).

    Article  Google Scholar 

  25. Xiong, H. M., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  26. van Anders, G. et al. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931–940 (2014).

    Article  CAS  Google Scholar 

  27. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  28. Paik, T. & Murray, C. B. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks. Nano Lett. 13, 2952–2956 (2013).

    Article  CAS  Google Scholar 

  29. Romano, F., Sanz, E. & Sciortino, F. Phase diagram of a tetrahedral patchy particle model for different interaction ranges. J. Chem. Phys. 132, 184501 (2010).

    Article  Google Scholar 

  30. Russo, J., Tartaglia, P. & Sciortino, F. Association of limited valence patchy particles in two dimensions. Soft Matter 6, 4229–4236 (2010).

    Article  CAS  Google Scholar 

  31. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2012).

    Article  Google Scholar 

  32. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–56 (2012).

    Article  CAS  Google Scholar 

  33. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nature Commun. 6, 6912 (2015).

    Article  CAS  Google Scholar 

  34. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nature Mater. 14, 833–839 (2015).

    Article  Google Scholar 

  35. Edwardson, T. G. W., Carneiro, K. M. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nature Chem. 5, 868–875 (2013).

    Article  CAS  Google Scholar 

  36. Suzuki, K., Hosokawa, K. & Maeda, M. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. J. Am. Chem. Soc. 131, 7518–7519 (2009).

    Article  CAS  Google Scholar 

  37. Ye, X. et al. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 13, 4980–4988 (2013).

    Article  CAS  Google Scholar 

  38. Zheng, J. P. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  39. Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    Article  CAS  Google Scholar 

  40. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  41. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  42. Zhao, Z., Jacovetty, E. L., Liu, Y. & Yan, H. Encapsulation of gold nanoparticles in a DNA origami cage. Angew. Chem. Int. Ed. 50, 2041–2044 (2011).

    Article  CAS  Google Scholar 

  43. Schreiber, R. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nature Nanotech. 9, 74–78 (2014).

    Article  CAS  Google Scholar 

  44. Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  45. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  46. Tian, Y. et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nature Nanotech. 10, 637–644 (2015).

    Article  CAS  Google Scholar 

  47. Yager, K. G., Zhang, Y. G., Lu, F. & Gang, O. Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems. J. Appl. Crystallogr. 47, 118–129 (2014).

    Article  CAS  Google Scholar 

  48. Zhang, Y. G. et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nature Mater. 14, 840–847 (2015).

    Article  CAS  Google Scholar 

  49. Mao, X., Souslov, A., Mendoza, C. I. & Lubensky, T. C. Mechanical instability at finite temperature. Nature Commun. 6, 5968 (2015).

    Article  CAS  Google Scholar 

  50. Haji-Akbari, A., Chen, E. R., Engel, M. & Glotzer, S. C. Packing and self-assembly of truncated triangular bipyramids. Phys. Rev. B 88, 012127 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Shih and Y. Ke for help with DNA octahedra design and useful discussions. We thank L. Bai for help with the cryo-STEM sample preparations. We thank D. Chen for assistance with schematic drawing. Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. H.L. and T.W. were supported by a National Institute of Health R01 grant (AG029979).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and O.G. conceived and designed the experiments. Y.T. performed the experiments. Y.Z. contributed to the model fitting of the SAXS data. Y.T., T.W. and H.L. contributed to the cryo-EM imaging and reconstruction. Y.T. and H.L.X. contributed to the STEM imaging of the superlattice. Y.T., Y.Z. and O.G. analysed the data. Y.T. and O.G. wrote the paper. O.G. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Oleg Gang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhang, Y., Wang, T. et al. Lattice engineering through nanoparticle–DNA frameworks. Nature Mater 15, 654–661 (2016). https://doi.org/10.1038/nmat4571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4571

  • Springer Nature Limited

This article is cited by

Navigation