1 Introduction and main results

In a well-known paper Ball [2] proved that the hyperplane section of the n-cube \(B_\infty ^n:= [-1,1]^n\) perpendicular to \(a^{(2)} = \frac{1}{\sqrt{2}} (1,1,0 ,\ldots ,0) \in S^{n-1} \subset {\mathbb {R}}^n\) has maximal volume among all hyperplane sections. Earlier Hadwiger [6] and Hensley [7] had shown independently of one another that coordinate hyperplanes, e.g. orthogonal to \(a^{(1)} = (1,0 ,\ldots ,0) \in S^{n-1}\), yield the minimal \((n-1)\)-dimensional cubic sections.

For \(0< p < \infty \), let \(B_p^n:= \{ x = (x_j)_{j=1}^n \in {\mathbb {R}}^n \ | \ \Vert x \Vert _p:= (\sum _{j=1}^n |x_j|^p )^{\frac{1}{p}} \le 1 \ \}\) be the unit ball of \(l_p^n = ({\mathbb {R}}^n, \Vert \cdot \Vert _p)\). Meyer and Pajor [13] found extremal sections of the \(l_p^n\) balls \(B_p^n\): They proved that the normalized volume of sections of \(B_p^n\) by a fixed hyperplane is monotone increasing in p. This implies that coordinate planes provide the minimal sections for \(2 \le p < \infty \), as for \(p=\infty \), and the maximal sections for \(1 \le p \le 2\). The minimal hyperplane sections of \(B_1^n\) are those orthogonal to a main diagonal, e.g. \(a^{(n)} = \frac{1}{\sqrt{n}}(1 ,\ldots ,1) \in S^{n-1}\), see also [13]. Koldobsky [10] extended this to the full range \(1\le p \le 2\).

This left open the case of the maximal hyperplane section of \(B_p^n\) for \(2< p < \infty \). The situation there is more complicated, since the maximal hyperplane may depend as well on p as on the dimension n: Oleszkiewicz [14] proved that Ball’s result does not transfer to the balls \(B_p^n\) if \(2< p < p_0 \simeq 26.265\): then the intersection of the hyperplane perpendicular to \(a^{(n)}\) has larger volume than the one orthogonal to \(a^{(2)}\), for sufficiently large dimensions n. The value \(p_0\) is the unique value in \((2,\infty )\) such that \(\lim _{n \rightarrow \infty } \frac{\textrm{vol}_{n-1}(B_p^n \cap (a^{(n)})^\perp )}{\textrm{vol}_{n-1}(B_p^n \cap (a^{(2)})^\perp )} > 1\) for all \(2< p < p_0\). Oleszkiewicz’s result is an asymptotic one, not determining dimensions n for which this happens. We derive a quantitative estimate for dimensions n such that this holds, namely for \(n > c \left( \frac{1}{p_0-p} + \frac{1}{p-2} \right) \). On the other hand, recently Eskenazis, Nayar and Tkocz [5] proved that Ball’s result is stable for \(l_p^n\) and very large p: \((a^{(2)})^\perp \cap B_p^n\) is the maximal hyperplane section of \(B_p^n\) for all dimensions, provided that \(p_1:= 10^{15} \le p < \infty \). They call it “resilience of cubic sections".

Dual to hyperplane sections of convex bodies are projections of convex bodies onto hyperplanes. The known results for \(l_p^n\)-balls show a duality between sections and projections, when maximal and minimal directions a and p and the conjugate index \(q = \frac{p}{p-1}\) are interchanged. Nevertheless the proofs in both situations are different, since volume does not behave well under duality. Barthe and Naor [3] determined the extremal hyperplane projections of \(l_q^n\)-balls except for the minimal hyperplane projections when \(1< q < 2\), corresponding to the dual maximal section case mentioned above when \(2< p < \infty \). For \(q=1\), the projection of \(B_1^n\) onto the hyperplane perpendicular to \(a^{(1)} = (1,0 ,\ldots ,0)\) is maximal, the projection onto the hyperplane orthogonal to \(a^{(2)}\) is minimal, which essentially is a consequence of Szarek’s result [16] on the best constants in the Khintchine inequality for \(q=1\). Barthe and Naor [3] proved that this does no transfer to \(\frac{4}{3}< q < 2\), namely that the projection onto \(a^{(n) \perp }\) has smaller volume than the one onto \(a^{(2) \perp }\) for large dimensions n. Here \(q_0:= \frac{4}{3}\) is the unique value in (1, 2) such that \(\lim _{n \rightarrow \infty } \frac{\textrm{vol}_{n-1}(P_{(a^{(n)})^\perp } (B_q^n))}{\textrm{vol}_{n-1}(P_{(a^{(2)})^\perp } (B_q^n))} < 1\) for all \(q_0< q < 2\), where \(P_{a^\perp }\) denotes the orthogonal projection onto the hyperplane \(a^\perp \). In this case, we also give a quantitative estimate for dimensions n when this happens, namely when \(n > 5 \left( \frac{1}{p-\frac{4}{3}} + \frac{1}{2-p} \right) \). Note that there is no complete duality here, since \(\frac{4}{3}\) is not the dual index of \(p_0 \simeq 26.265\).

Let \(a \in S^{n-1}:= \{ \ x \in {\mathbb {R}}^n \ | \ \Vert x \Vert _2 =1 \ \}\) be a direction vector. We introduce the normalized section function

$$\begin{aligned} A_{n,p}(a):= \frac{\textrm{vol}_{n-1}(a^\perp \cap B_p^n)}{\textrm{vol}_{n-1}(B_p^{n-1})} \, \end{aligned}$$

and the normalized projection function

$$\begin{aligned} P_{n,p}(a):= \frac{\textrm{vol}_{n-1}(P_{a^\perp } (B_p^n))}{\textrm{vol}_{n-1}(B_p^{n-1})} . \end{aligned}$$

In terms of this notation, Ball’s result states \(A_{n,\infty }(a) \le A_{n,\infty }(a^{(2)}) = \sqrt{2}\) for all \(a \in S^{n-1}\) and Eskenazis, Nayar and Tkocz’s result reads \(A_{n,p}(a) \le A_{n,p}(a^{(2)}) = 2^{\frac{1}{2} - \frac{1}{p}}\) for all \(a \in S^{n-1}\) and \(10^{15} \le p < \infty \). We note that \(A_{n,p}(a^{(2)}) = 2^{\frac{1}{2} - \frac{1}{p}}\) is independent of \(n \ge 2\). But as shown by Oleszkiewicz, \(\lim _{n \rightarrow \infty } A_{n,p}(a^{(n)}) > A_{n,p}(a^{(2)}) = 2^{\frac{1}{2} - \frac{1}{p}}\) for \(2< p < p_0\). In the projection case, \(P_{n,1}(a^{(2)}) \le P_{n,1}(a)\) for all \(a \in S^{n-1}\), which Eskenazis, Nayar and Tkocz [5] extended to \(P_{n,q}(a^{(2)}) \le P_{n,q}(a)\) for all \(a \in S^{n-1}\) and \(1 < q \le 1 + 10^{-12}\). Again \(P_{n,q}(a^{(2)}) = 2^{\frac{1}{2} - \frac{1}{q}}\) is independent of \(n \ge 2\). However, by Barthe and Naor [3], \(P_{n,q}(a^{(2)}) > \lim _{n \rightarrow \infty } P_{n,q}(a^{(n)})\) for \(\frac{4}{3}< q < 2\).

Our two main results study these limits in more detail.

Theorem 1.1

Let \(2< p < \infty \) and \(n \in {\mathbb {N}}\). Then for all \(2< p < p_0 \simeq 26.265\)

$$\begin{aligned} \lim _{n \rightarrow \infty } \frac{A_{n,p}(a^{(n)})}{A_{n,p}(a^{(2)})} = \sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }} > 1 . \end{aligned}$$

We have the following quantitative estimate: \(A_{n,p}(a^{(n)}) > A_{n,p}(a^{(2)})\) holds if

  1. (a)

    either \(5 \le p < p_0\) and \(n \ge \frac{650}{p_0-p}\)   or  

  2. (b)

    \(2< p < 5\) and \(n > \frac{65}{p-2}\) is satisfied.

Remarks. (a) The constant 650 in the statement for \(5 \le p < p_0\) is not optimal, but by necessity fairly large since the p-derivative of \(f(p):=\sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }}\) at \(p_0\) with \(f(p_0)=1\) is small, \(f'(p_0) \simeq - \frac{1}{1316}\). The derivative at 2 is positive and larger in modulus, namely \(f'(2) = \frac{1}{4} (1 - \ln 2) \simeq \frac{1}{13}\).

(b) The case of complex hyperplane sections of \(l_p^n({\mathbb {C}})\) is considered in [8].

Theorem 1.2

Let \(1< q < 2\) and \(n \in {\mathbb {N}}\). Then for all \(\frac{4}{3}< q < 2\)

$$\begin{aligned} \lim _{n \rightarrow \infty } \frac{P_{n,q}(a^{(n)})}{P_{n,q}(a^{(2)})} = \sqrt{\frac{1}{\pi }} \sqrt{2^{\frac{2}{q}} \Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } < 1 . \end{aligned}$$

We have the following quantitative estimate: \(P_{n,q}(a^{(n)}) < P_{n,q}(a^{(2)})\) holds if

$$\begin{aligned} n > \frac{\frac{32}{15}}{q-\frac{4}{3}} + \frac{\frac{24}{5}}{2-q} . \end{aligned}$$

Remark. For the derivative of \(g(q):= \sqrt{\frac{1}{\pi }} \sqrt{2^{\frac{2}{q}} \Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) }\) we have \(g'(\frac{4}{3}) = \frac{9}{32} \left( 4 - \pi - 2 \ln 2 \right) \simeq - \frac{1}{6.73}\) and \(g'(2) = \frac{1}{4} \left( 1 - \ln 2 \right) \simeq \frac{1}{13}\).

The limits in Theorems 1.1 and 1.2 were already determined by Oleszkiewicz [14] and Barthe, Naor [3]. Meyer and Pajor [13] showed that \(A_{n,p}(a)\) is monotone increasing in p for any fixed n and a. Barthe and Naor proved that \(P_{n,q}(a)\) is monotone increasing in q for any fixed n and a.

2 Formulas

Eskenazis, Nayar and Tkocz [5], Proposition 6, proved the following formula for the normalized volume of hyperplane sections.

Proposition 2.1

Let \(1 \le p < \infty \), \(n \in {\mathbb {N}}\) and \(a = (a_j)_{j=1}^n \in S^{n-1} \subset {\mathbb {R}}^n\). Then

$$\begin{aligned} A_{n,p}(a) = \Gamma \left( 1+\frac{1}{p} \right) \ {\mathbb {E}}_{\xi ,R} \frac{1}{ ||\sum _{j=1}^n a_j R_j \xi _j||_2 } \, \end{aligned}$$
(2.1)

where \((\xi _j)_{j=1}^n\) are i.i.d. random vectors uniformly distributed on the sphere \(S^2 \subset {\mathbb {R}}^3\) and \((R_j)_{j=1}^n\) are i.i.d. random variables with density \(c_p^{-1} t^p \exp (-t^p)\) on \([0,\infty )\), \(c_p:= \frac{1}{p} \Gamma \left( 1+\frac{1}{p} \right) \), independent of the \((\xi _j)_{j=1}^n\).

For \(p = \infty \) with \(R_j=1\) one has \(A_{n,\infty }(a) = {\mathbb {E}}_{\xi } \frac{1}{ ||\sum _{j=1}^n a_j \xi _j||_2 }\), see König, Koldobsky [11]. We will use another formula for \(A_{n,p}(a)\) derived from (2.1).

Proposition 2.2

Let \(1 \le p < \infty \), \(n \in {\mathbb {N}}\) and \(a = (a_j)_{j=1}^n \in S^{n-1} \subset {\mathbb {R}}^n\). Then

$$\begin{aligned} A_{n,p}(a)&= \Gamma \left( 1+\frac{1}{p} \right) \ \frac{2}{\pi }\int _0^\infty \prod _{j=1}^n \gamma _p(a_j s) \ ds \ , \nonumber \\ \gamma _p(s)&:= \frac{1}{\Gamma \left( 1+\frac{1}{p} \right) } \int _0^\infty \cos (sr) \exp (-r^p) \ dr \ . \end{aligned}$$
(2.2)

Proof

Define \(sinc (x):= \frac{\sin x}{x}\) for \(x \ne 0\), \(sinc (0):= 1\). Let \(t>0\), \(e \in S^2\) be fixed and m denote the normalized Haar surface measure on \(S^2\). Then

$$\begin{aligned} sinc (t) = \int _{S^2} \exp (i t \langle e, u \rangle ) \ dm(u). \end{aligned}$$
(2.3)

Here \(\langle \ \cdot , \cdot \ \rangle \) denotes the standard inner product on \({\mathbb {R}}^n\). This implies for \((b_j)_{j=1}^n \in {\mathbb {R}}^n\)

$$\begin{aligned} \prod _{j=1}^n sinc (b_j s)&= \int _{(S^2)^n} \exp \left( i s \left\langle e, \sum _{j=1}^n b_j u_j \right\rangle \right) \prod _{j=1}^n dm(u_j) \nonumber \\&= \int _{(S^2)^n} sinc \left( \left| \left| \sum _{j=1}^n b_j u_j\right| \right| _2 s \right) \prod _{j=1}^n dm(u_j) = {\mathbb {E}}_{\xi } sinc \left( \left| \left| \sum _{j=1}^n b_j \xi _j\right| \right| _2 s \right) \ , \end{aligned}$$
(2.4)

where the second equality follows from (2.3) by integration over dm(e). Note that the first equality holds for all \(e \in S^2\).

For all \(t>0\) we have \(\frac{2}{\pi }\int _0^\infty sinc (ts) ds = \frac{1}{t}\) and (2.1) may be rewritten

$$\begin{aligned} A_{n,p}(a)&= \Gamma \left( 1+\frac{1}{p} \right) \frac{2}{\pi }{\mathbb {E}}_{\xi ,R} \int _0^\infty sinc \left( \left| \left| \sum _{j=1}^n a_j R_j \xi _j\right| \right| _2 s \right) \ ds \\&= \Gamma \left( 1+\frac{1}{p} \right) \frac{2}{\pi }\int _0^\infty {\mathbb {E}}_{\xi ,R} \ sinc \left( \left| \left| \sum _{j=1}^n a_j R_j \xi _j\right| \right| _2 s \right) \ ds \ . \end{aligned}$$

The sinc-integral is only a conditionally convergent Riemann integral. The verification that \({\mathbb {E}}_{\xi ,R}\) and \(\int _0^\infty \) may be interchanged is the same as in the proof of Proposition 3.2 (a) of König, Rudelson [12]. Using (2.4) and the independence of the \((R_j)_{j=1}^n\), we get

$$\begin{aligned} A_{n,p}(a)&= \Gamma \left( 1 + \frac{1}{p} \right) \frac{2}{\pi }\int _0^\infty {\mathbb {E}}_R \left( \prod _{j=1}^n sinc (a_j R_j s) \right) \ ds \\&= \Gamma \left( 1 + \frac{1}{p} \right) \frac{2}{\pi }\int _0^\infty \prod _{j=1}^n {\mathbb {E}}_{R_j} sinc (a_j R_j s) \ ds \ . \end{aligned}$$

Denoting \(\gamma _p(s):= {\mathbb {E}}_{R_1} sinc (R_1 s)\), integration by parts gives

$$\begin{aligned} \gamma _p(s)&= c_p^{-1} \int _0^\infty sinc (sr) r^p \exp (-r^p) dr \\&= c_p^{-1} \frac{1}{p} \int _0^\infty \cos (sr) \exp (-r^p) dr = \frac{1}{\Gamma \left( 1+\frac{1}{p} \right) } \int _0^\infty \cos (sr) \exp (-r^p) dr \ . \end{aligned}$$

\(\square \)

Equation (2.1) yields \(A_{n,p}(a^{(2)}) = 2^{\frac{1}{2}-\frac{1}{p}}\), see [5, Section 3.2].

Remarks. (a) Proposition 2.2 is also found in Koldobsky [9, Theorem 3.2], with a different proof.

(b) For \(1 \le p \le 2\) the \(\gamma _p\) are just the densities of the (positive) p-stable random variables. In the case interesting for us, namely \(2< p < \infty \), the functions \(\gamma _p\) take positive and negative values. For \(p \notin 2 {\mathbb {N}}\), \(\gamma _p\) has only finitely many real zeros, see Pólya [15], whereas for \(p \in 2 {\mathbb {N}}\), \(\gamma _p\) has infinitely many real zeros, see Boyd [4].

Barthe and Naor [3] proved the following formula for the volume of the orthogonal projection of \(B_q^n\) onto hyperplanes.

Proposition 2.3

Let \(1 \le q < \infty \), \(p:= \frac{q}{q-1}\) be the conjugate index, \(n \in {\mathbb {N}}\) and \(a = (a_j)_{j=1}^n \in S^{n-1} \subset {\mathbb {R}}^n\). Then

$$\begin{aligned} P_{n,q}(a) = \Gamma \left( \frac{1}{q} \right) \ {\mathbb {E}}\left| \sum _{j=1}^n a_j X_j \right| \, \end{aligned}$$
(2.5)

where the \(X_j\) are i.i.d. symmetric random variables with density function \(d_q^{-1} |t|^{p-2} \exp (-|t|^p)\), \(t \in {\mathbb {R}}\), \(d_q = \frac{2}{p} \Gamma \left( \frac{1}{q} \right) \). A second formula for \(P_{n,q}(a)\) is

$$\begin{aligned} P_{n,q}(a)&= \Gamma \left( \frac{1}{q} \right) \frac{2}{\pi }\int _0^\infty \frac{1 - \prod _{j=1}^n \delta _q(a_j s)}{s^2} ds \ , \nonumber \\ \delta _q(s)&:= \frac{p}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty \cos (s r) \ r^{p-2} \exp (-r^p) dr \ . \end{aligned}$$
(2.6)

Note that \({\mathbb {E}}|X_1| = \frac{1}{\Gamma \left( \frac{1}{q} \right) }\). To deduce (2.6) from (2.5), apply the usual formula \(|x|= \frac{1}{\pi }\int _{\mathbb {R}}\frac{1 - Re(\exp (ixs))}{s^2} ds\) to find

$$\begin{aligned} {\mathbb {E}}\left| \sum _{j=1}^n a_j X_j \right|&= \frac{1}{\pi }\int _{\mathbb {R}}\frac{1 - {\mathbb {E}}\exp (i (\sum _{j=1}^n a_j X_j) s)}{s^2} ds = \frac{1}{\pi }\int _{\mathbb {R}}\frac{1 - \prod _{j=1}^n {\mathbb {E}}\exp (i a_j X_j s))}{s^2} ds \\&= \frac{2}{\pi }\int _0^\infty \frac{1 - \prod _{j=1}^n {\mathbb {E}}\cos (a_j X_j s))}{s^2} ds = \frac{2}{\pi }\int _0^\infty \frac{1 - \prod _{j=1}^n \delta _q(a_j s)}{s^2} ds \ , \\ \delta _q(s)&= \frac{p}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty \cos (sr) \ r^{p-2} \exp (-r^p) dr \ . \end{aligned}$$

Differentiation and integration by parts yields a relation between the functions \(\delta _q\) and \(\gamma _p\) in (2.6) and (2.2):

$$\begin{aligned} \delta _q'(s)&= - \frac{p}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty \sin (sr) \ r^{p-1} \exp (-r^p) dr \nonumber \\&= - \frac{s}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty \cos (sr) \exp (-r^p) dr = - \frac{\Gamma \left( 1+ \frac{1}{p} \right) }{\Gamma \left( 1-\frac{1}{p} \right) } \ s \ \gamma _p(s) \ . \end{aligned}$$
(2.7)

Since \(\gamma _4''(s) = - \frac{\Gamma (\frac{3}{4})}{4 \Gamma (\frac{5}{4})} \ \delta _{\frac{4}{3}}(s)\), we have \(\gamma _4'''(s) = \frac{1}{4}\,s \gamma _4(s)\). Similarly, for all \(k \in {\mathbb {N}}\), \(\gamma _{2k}^{(2k-1)}(s)= (-1)^k \frac{1}{2 k} s \gamma _{2 k}(s)\). Therefore the functions \(\gamma _{2k}\) studied by Boyd [4] satisfy a linear differential equation.

For \(q \searrow 1\), the variables \(X_j\) tend to the Rademacher variables with \(\delta _q(s) \rightarrow \delta _1(s) = \cos (s)\), and the best constants in the Khintchine inequality, which were determined by Szarek [16], yield the extrema of \(P_{n,1}\): \(a^{(2)}\) for the minimum and \(a^{(1)}\) for the maximum.

3 Prerequisites for the proof of Theorem 1.1

For the proof of Theorem 1.1 we need two lemmas on \(\Gamma \)-functions.

Lemma 3.1

  1. (a)

    Let \(f(p):= \frac{\Gamma \left( 1+\frac{3}{p} \right) }{\Gamma \left( 1+\frac{1}{p} \right) }\). Then \(f(p) \ge 0.9429\) for all \(3 \le p < \infty \).

  2. (b)

    Let \(g(p):= \Big ( \frac{3}{\pi }\frac{ 2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3 }{ \Gamma \left( 1+\frac{3}{p} \right) } \Big )^{\frac{1}{2}}\). Then there is exactly one solution \(p_0 \in (2,\infty )\) of \(g(p) = 1\), \(p_0 \simeq 26.265\). For all \(2< p < p_0\) we have \(g(p) > 1\). The function \(g'\) has exactly one zero \(p_1 \in [2,\infty )\), \(p_1 \simeq 4.192\). For \(2 \le p < p_1\), g is strictly increasing, for \(p_1< p < \infty \), g is strictly decreasing. The following lower estimates hold:

    $$\begin{aligned}{} & {} g(p) \ge 1 + \frac{p_0-p}{1317} \, \ p \in [5,p_0] \;, \; g(p) \\{} & {} \quad > \frac{25}{24} \, \ p \in [4,5] \;, \; g(p) \ge 1 + \frac{p-2}{44} \, \ p \in [2,4] . \end{aligned}$$

Proof

(a) In terms of the Digamma function \(\Psi := (\ln \Gamma )'\) we have

$$\begin{aligned} f'(p) = \frac{f(p)}{p^2} \left( \Psi \left( 1+\frac{1}{p} \right) - 3 \Psi \left( 1+\frac{3}{p} \right) \right) . \end{aligned}$$

For \(F(p):= \Psi \left( 1+\frac{1}{p} \right) - 3 \Psi \left( 1+\frac{3}{p} \right) \) one has \(F'(p) = \frac{1}{p^2} \left( 9 \Psi ' \left( 1+\frac{3}{p} \right) - \Psi ' \left( 1+\frac{1}{p} \right) \right) \). By Abramowitz, Stegun [1, 6.3.16 and 6.4.10] for all \(x >0\)

$$\begin{aligned} \Psi (1+x) = -\gamma + \sum _{n=1}^\infty \frac{x}{n(n+x)} \;, \; \Psi '(1+x) = \sum _{n=1}^\infty \frac{1}{(n+x)^2} \, \end{aligned}$$
(3.1)

where \(\gamma \simeq 0.5772\) denotes the Euler–Mascheroni constant. Therefore \(\Psi '\) is decreasing, and we conclude for all \(0 \le x \le 1\) that \(\frac{\pi ^2}{6} -1 = \Psi '(2) \le \Psi '(1+x) \le \Psi '(1) = \frac{\pi ^2}{6}\). Hence \(F'(p) \ge \frac{1}{p^2} \left( \frac{4 \pi ^2}{3} -9 \right) > 0\) for all \(p \ge 3\). Thus F is increasing. Since \(F(9) \simeq -0.012\), \(F(10) \simeq 0.084\), F has exactly one zero \(p_1 \in (3,\infty )\), \(p_1 \simeq 9.115\). Hence f is decreasing in \((3,p_1)\) and increasing in \((p_1,\infty )\). For all \(p \ge 3\), \(f(p) \ge f(p_1) > 0.9429\).

(b) Let \(h(p):= \frac{ 2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3 }{ \Gamma \left( 1+\frac{3}{p} \right) }\). Then

$$\begin{aligned} h'(p) = \frac{h(p)}{p^2} \left( 3 \Psi \left( 1+\frac{3}{p} \right) - 3 \Psi \left( 1+\frac{1}{p} \right) - 2 \ln 2 \right) . \end{aligned}$$

By (3.1) and the geometric series we find for \(p > 3\)

$$\begin{aligned} (\ln h)'(p)&= \frac{h'(p)}{h(p)} = \frac{1}{p^2} \left( 3 \sum _{n=1}^\infty \left( \frac{\frac{3}{p}}{n(n+\frac{3}{p})} - \frac{\frac{1}{p}}{n(n+\frac{1}{p})} \right) - 2 \ln 2 \right) \\&= \frac{1}{p^2} \left( 3 \sum _{n=1}^\infty \sum _{k=0}^\infty \frac{(-1)^k}{n^{k+2}} \frac{3^{k+1}-1}{p^{k+1}} - 2 \ln 2 \right) \\&= \frac{1}{p^2} \left( 3 \sum _{k=0}^\infty (-1)^k \zeta (k+2) \frac{3^{k+1}-1}{p^{k+1}} - 2 \ln 2 \right) \ . \end{aligned}$$

The sum is an alternating series with decreasing coefficients. We find that

$$\begin{aligned} (\ln h)'(p) \le -\frac{2 \ln 2}{p^2} + \frac{\pi ^2}{p^3} - \frac{24 \zeta (3)}{p^4} + \frac{13}{15} \frac{\pi ^4}{p^5} - \frac{240 \zeta (5)}{p^6} + \frac{242}{315} \frac{\pi ^6}{p^7} < 0\nonumber \\ \end{aligned}$$
(3.2)

holds for all \(5 \le p < \infty \). Therefore \(\ln h\), h and \(g(p) = \sqrt{\frac{3}{\pi }h(p)}\) are strictly decreasing in \([5,\infty )\). We have \(\lim _{p \rightarrow \infty } g(p) = \sqrt{\frac{3}{\pi }} < 1\), \(g(26) \simeq 1.00020\), \(g(27) \simeq 0.99945\): There is exactly one \(p_0 \in [5,\infty )\) with \(g(p_0)=1\), \(p_0 \simeq 26.265\), and for \(5 \le p < p_0\) we have \(g(p) > 1\). Inequality (3.2) yields for \(5 \le p \le p_0\) that \((\ln h)'(p) \le - \frac{1.04768}{p^2}\). Hence for these p

$$\begin{aligned} g'(p) = g(p) (\ln g)'(p) = \frac{1}{2} g(p) (\ln h)'(p) \le - \frac{1}{2} \frac{1.04768}{p^2} \le - \frac{1}{2} \frac{1.04768}{p_0^2} < - \frac{1}{1317} . \end{aligned}$$

This implies \(g(p) \ge 1 + \frac{1}{1317} (p_0-p)\) for all \(5 \le p \le p_0\).

To show \(g(p) > 1\) also for \(2< p < 5\), note that \(g(2)=1\) and

$$\begin{aligned} g'(p) = \frac{1}{2} g(p) (\ln h)'(p) = \frac{3}{2} \frac{g(p)}{p^2} \left( \Psi \left( 1+\frac{3}{p} \right) - \Psi \left( 1+\frac{1}{p} \right) - \frac{2}{3} \ln 2 \right) . \end{aligned}$$

Again by (3.1)

$$\begin{aligned} \Psi \left( 1+\frac{3}{p} \right) - \Psi \left( 1+\frac{1}{p} \right) = \sum _{n=1}^\infty \left( \frac{\frac{3}{p}}{n (n + \frac{3}{p})} - \frac{\frac{1}{p}}{n (n + \frac{1}{p})} \right) = \sum _{n=1}^\infty \frac{2 p}{(np+1)(np+3)} . \end{aligned}$$

All summands are decreasing in p. Thus \(k(p):= \Psi (1+\frac{3}{p}) - \Psi (1+\frac{1}{p}) - \frac{2}{3} \ln 2\) is strictly decreasing in p, with \(k(4) = \pi - \frac{8}{3} - \frac{2}{3} \ln 2 \simeq 0.0128 >0\) and \(k(5) \simeq -0.0470 <0\). Thus \(g'\) has exactly one zero \(p_1 \in (2,\infty )\), \(p_1 \simeq 4.193\), and g is strictly increasing in \((2,p_1)\) and strictly decreasing in \((p_1,\infty )\). We know already that \(g(5) > 1\) and hence \(g(p)>1\) for all \(2 < p \le 5\). For \(p \in [4,5]\), \(g(p) \ge \min (g(4),g(5)) = g(5) > \frac{25}{24}\). Further

$$\begin{aligned} \left( \frac{g(p)}{p^2} \right) ' = \frac{3}{2} \frac{g(p)}{p^4} \left( k(p) - \frac{4}{3} p \right) < 0 \, \end{aligned}$$

since \(k(p)- \frac{4}{3} p \le k(2)-\frac{8}{3} = - \left( 2+ \frac{2}{3} \ln (2) \right) < 0\). Therefore \(\frac{g(p)}{p^2}\) and k(p) are both strictly decreasing and positive for \(p \in [2,p_1)\), and with \(g'(p) = \frac{g(p)}{p^2} k(p)\), \(g'\) is decreasing and hence g is concave in \([2,p_1]\). Therefore for \(2 \le p \le 4\)

$$\begin{aligned} g(p) \ge 1 + \frac{g(4)-1}{2} (p-2) > 1 + \frac{p-2}{44} \, \end{aligned}$$

which proves all lower estimates stated in Lemma 3.1. \(\square \)

For \(p \rightarrow \infty \), the functions \(\gamma _p\) in (2.2) tend to \(\gamma _\infty \), \(\gamma _\infty (s) = sinc (s)\). We estimate their difference for \(p \ge 2\).

Lemma 3.2

Let \(2 \le p < \infty \). Then for all \(s > 0\)

$$\begin{aligned} \left| sinc (s) - \int _0^\infty \cos (s r) \exp (-r^p) dr \right| \le 0.3926 . \end{aligned}$$

This implies \(\gamma _p(s) > 0\) for all \(0 \le s \le \frac{2}{3} \pi \).

Proof

We have \(\int _0^\infty \exp (-s^p) ds = \Gamma \left( 1 + \frac{1}{p} \right) < 1\). Since \(sinc (s) = \int _0^1 \cos (sr) dr\), we find

$$\begin{aligned}&\left| sinc (s) - \int _0^\infty \cos (s r) \exp (-r^p) dr \right| \\&\quad = \left| \int _0^1 \cos (s r) (1-\exp (-r^p)) dr - \int _1^\infty \cos (s r) \exp (-r^p) dr \right| \\&\quad \le \left( 1 - \Gamma \left( 1 + \frac{1}{p} \right) \right) + 2 \int _1^\infty \exp (-r^p) dr \\&\quad = \left( 1 - \Gamma \left( 1 + \frac{1}{p} \right) \right) + \frac{2}{p} \int _1^\infty u^{\frac{1}{p} -1} \exp (-u) du =: \phi (p) \ . \end{aligned}$$

Then \(\phi ' < 0\), since for \(p \ge 2\)

$$\begin{aligned} \phi '(p) = - \frac{1}{p^2} \left( 2 \int _1^\infty u^{\frac{1}{p} -1} \left( 1+\frac{\ln (u)}{p} \right) \exp (-u) du - \Gamma ' \left( 1 + \frac{1}{p} \right) \right) . \end{aligned}$$

Since \(\Gamma (x)\) has a (positive) minimum at \({\tilde{x}} \simeq 1.4616\), \(\Gamma '(1+ \frac{1}{{\tilde{p}}}) = 0\) for \({\tilde{p}} \simeq 2.1662\). For \(p > {\tilde{p}}\), \(\Gamma '(1 + \frac{1}{p}) < 0\) and for \(2 \le p < {\tilde{p}}\), \(0 \le \Gamma '(1+ \frac{1}{p}) < \frac{3}{100}\). The last inequality holds since \(\Gamma \) is log-convex and positive in (1, 2), thus convex, and for \(2 \le p < {\tilde{p}}\), \(\Gamma '(1 + \frac{1}{p})\) is decreasing, with \(\Gamma ' \left( \frac{3}{2}\right) = \Gamma \left( \frac{3}{2} \right) \Psi \left( \frac{3}{2} \right) = \sqrt{\pi }(1 - \ln 2 - \frac{\gamma }{2}) < \frac{3}{100}\), see Abramowitz, Stegun [1, 6.3.4]. Therefore for all \(p \ge 2\)

$$\begin{aligned} \phi '(p) \le - \frac{1}{p^2} \left( 2 \int _1^\infty u^{-1} \exp (-u) du - \frac{3}{100} \right)< - \frac{2}{5} \frac{1}{p^2} < 0 \, \end{aligned}$$

using that \(\int _1^\infty u^{-1} \exp (-u) du \simeq 0.219\). We conclude \(\phi (p) \le \phi (2) < 0.3926\).

This yields for all \(0 \le s \le \frac{2}{3} \pi \) and \(p \ge 2\)

$$\begin{aligned} \Gamma \left( 1+\frac{1}{p} \right) \gamma _p(s)= & {} \int _0^\infty \cos (sr) \exp (-r^p) dr \ge sinc (s) \\ {}{} & {} - 0.3926 \ge \frac{3 \sqrt{3}}{4 \pi } -0.3926> \frac{1}{50} > 0 . \end{aligned}$$

\(\square \)

Remark. The derivative of \(p \phi (p)\) is increasing with

$$\begin{aligned} \lim _{p \rightarrow \infty } \left( p \phi (p) \right) ' = \gamma + 2 \int _1^\infty \frac{1}{u} \exp (-u) du \le 1.016 . \end{aligned}$$

Thus for all \(p \ge 1\), \(\left| sinc (s) - \int _0^\infty \cos (s r) \exp (-r^p) dr \right| \le \frac{1.016}{p}\). Actually, \(\gamma _p(s) > 0\) for all \(p \ge 1\) and \(s \in [0, \pi ]\). However, we do not need this.

4 Proof of Theorem 1.1

Proof of Theorem 1.1.

(i) To estimate \(A_{n,p}(a^{(n)})\) from below, we first find a lower bound for \(\gamma _p \left( \frac{s}{\sqrt{n}} \right) \) for all \(s \le \frac{3}{2} \sqrt{n}\). By the series representation for \(\cos x\) we have for \(0 \le x \le \frac{3}{2}\), by pairing up terms in the alternating series,

$$\begin{aligned} \cos x - \left( 1 - \frac{x^2}{2} + \frac{x^4}{26} \right) = \frac{x^4}{312} - \frac{x^6}{720} + \sum _{k=4}^\infty (-1)^m \frac{x^{2m}}{(2m)!} > 0 \, \end{aligned}$$

\(1 - \frac{x^2}{2} + \frac{x^4}{26} > 0\). Therefore for \(s \le \frac{3}{2} \sqrt{n}\)

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right)&\ge \frac{1}{\Gamma \left( 1+\frac{1}{p} \right) } \Big [ \int _0^{\frac{3}{2} \frac{\sqrt{n}}{s}} \left( 1 - \frac{s^2 r^2}{2n} + \frac{s^4 r^4}{26 n^2} \right) \exp (-r^p) dr \\&\quad + \int _{\frac{3}{2} \frac{\sqrt{n}}{s}}^\infty \cos \left( \frac{sr}{\sqrt{n}} \right) \exp (-r^p) dr \Big ] \ . \end{aligned}$$

To estimate this from below, write \(\int _0^{\frac{3}{2} \frac{\sqrt{n}}{s}} = \int _0^\infty - \int _{\frac{3}{2} \frac{\sqrt{n}}{s}}^\infty \) and use that \(|\cos (x)| \le 1\),

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right)&\ge \frac{1}{\Gamma \left( 1+\frac{1}{p} \right) } \left[ \int _0^\infty \left( 1 - \frac{s^2 r^2}{2n} + \frac{s^4 r^4}{26 n^2} \right) \exp (-r^p) dr - R \right] \nonumber \\&= \frac{1}{\Gamma \left( 1+\frac{1}{p} \right) } \left[ \Gamma \left( 1+\frac{1}{p} \right) - \frac{\Gamma \left( 1+\frac{3}{p} \right) s^2}{6 n} + \frac{\Gamma \left( 1+\frac{5}{p} \right) s^4}{130 n^2} - R \right] \ , \end{aligned}$$
(4.1)

where

$$\begin{aligned} R&:= \int _{\frac{3}{2} \frac{\sqrt{n}}{s}}^\infty \left( 2 - \frac{s^2 r^2}{2n} + \frac{s^4 r^4}{26 n^2} \right) \exp (-r^p) dr \nonumber \\&= \frac{1}{p} \int _{\left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p}^\infty \left( 2 u^{\frac{1}{p} - 1} - \frac{s^2}{2n} u^{\frac{3}{p} - 1} + \frac{s^4}{26 n^2} u^{\frac{5}{p} - 1} \right) \exp (-u) du \; ; \; u \ge 1 \ . \end{aligned}$$
(4.2)

(ii) We first consider the case \(p \ge 5\). Since \(u \ge 1\) in the above integral, \(u^{\frac{5}{p} -1} \le 1\), \(2 u^{\frac{1}{p} -1} \le 2 \left( \frac{2}{3} \frac{s}{\sqrt{n}} \right) ^{p-1}\) and \(\int _{\left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p} \exp (-u) du = \exp \left( -\left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p \right) \). The remainder term R will be smaller than the fourth order term \(\frac{\Gamma \left( 1+\frac{5}{p} \right) s^4}{130 n^2}\) provided that

$$\begin{aligned} \frac{1}{p \Gamma \left( 1+\frac{5}{p} \right) } \left( 2 \left( \frac{2}{3} \frac{s}{\sqrt{n}} \right) ^{p-1} + \frac{s^4}{26 n^2} \right) \exp \left( - \left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p \right) < \frac{s^4}{130 n^2} . \end{aligned}$$

For \(s \le \frac{3}{2} \sqrt{n}\) the left side is decreasing in p, and therefore this condition is the strongest for \(p=5\). Writing \(y:=\frac{s}{\sqrt{n}}\), it means

$$\begin{aligned} \frac{1}{5} \left( \frac{32}{81} y^4 + \frac{1}{26} y^4 \right) \exp \left( -\left( \frac{3}{2} \frac{1}{y} \right) ^5 \right) < \frac{1}{130} y^4 \end{aligned}$$

or \(\frac{913}{81} < \exp \left( \left( \frac{3}{2} \frac{1}{y} \right) ^5 \right) \), \(y < \frac{3}{2} \frac{1}{\ln \left( \frac{913}{81} \right) ^{\frac{1}{5}}} \simeq 1.2567\). Choosing \(s \le \frac{7}{6} \sqrt{n}\), \(R \le \frac{\Gamma \left( 1+\frac{5}{p} \right) s^4}{130 n^2}\) is satisfied and therefore

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right) \ge 1 - c \frac{s^2}{n}, \quad c:= \frac{1}{6} \frac{\Gamma \left( 1+\frac{3}{p} \right) }{\Gamma \left( 1+\frac{1}{p} \right) } . \end{aligned}$$

By the proof of Lemma 3.1 (a), \(\frac{\Gamma \left( 1+\frac{3}{p} \right) }{\Gamma \left( 1+\frac{1}{p} \right) }\) is decreasing for \(5 \le p \le p_1 \simeq 9.115\) and increasing for \(p > p_1\). Its value at \(p_0\) is less than the one at 5, so that \(c \le 0.1622 < \frac{8}{49}\), for its value at \(p=5\). Then for \(s \le \frac{7}{6} \sqrt{n}\), \(x:= c \frac{s^2}{n} \le \frac{8}{49} \frac{49}{36} = \frac{2}{9}\). We have

$$\begin{aligned} \ln (1-x) = - \sum _{j=1}^\infty \frac{x^j}{j} \ge -x - \frac{1}{2} x^2 \sum _{k=0}^\infty x^k = -x - \frac{1}{2} \frac{x^2}{1-x} \ge -x-\frac{9}{14} x^2 \, \end{aligned}$$

and hence

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ge \left( 1 - c \frac{s^2}{n} \right) ^n \ge \exp \left( -c s^2 - \frac{9}{14} c^2 \frac{s^4}{n} \right) \ge \exp (-c s^2) \left( 1 - \frac{9}{14} c^2 \frac{s^4}{n} \right) . \end{aligned}$$

By Lemma 3.1 (a), \(\frac{\Gamma \left( 1+\frac{3}{p} \right) }{\Gamma \left( 1+\frac{1}{p} \right) } \ge 0.9429\) and hence \(c \ge 0.1571\) and for \(s \le \frac{7}{6} \sqrt{n}\)

$$\begin{aligned} \int _0^{\frac{7}{6} \sqrt{n}}&\gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds \ge \int _0^{\frac{7}{6} \sqrt{n}} \exp (-c s^2) \left( 1 - \frac{9}{14} c^2 \frac{s^4}{n} \right) \ ds \\&= \int _0^\infty \exp (-c s^2) \left( 1 - \frac{9}{14} c^2 \frac{s^4}{n} \right) \ ds - \int _{\frac{7}{6} \sqrt{n}}^\infty \exp (-c s^2) \left( 1 - \frac{9}{14} c^2 \frac{s^4}{n} \right) \ ds \end{aligned}$$

For \(s \ge \frac{7}{6} \sqrt{n}\) and \(c \ge 0.1571\) we have \(1 - \frac{9}{14} c^2 \frac{s^4}{n} <0\) for all \(n \ge 35\). Actually, evaluating the last integral in terms of the error function shows that the integral is already negative for \(n \ge 24\). Thus for \(n \ge 24\)

$$\begin{aligned} \int _0^{\frac{7}{6} \sqrt{n}} \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds&\ge \int _0^\infty \exp (-c s^2) \left( 1 - \frac{9}{14} c^2 \frac{s^4}{n} \right) \ ds \\&= \frac{1}{2} \sqrt{\frac{\pi }{c}} \left( 1 - \frac{27}{56} \frac{1}{n} \right) = \sqrt{\frac{3 \pi }{2}} \sqrt{\frac{\Gamma \left( 1+\frac{1}{p} \right) }{\Gamma \left( 1+\frac{3}{p} \right) }} \left( 1 - \frac{27}{56} \frac{1}{n} \right) \ , \end{aligned}$$

where we used that \(\int _0^\infty \exp (-c s^2) ds = \frac{1}{2} \sqrt{\frac{\pi }{c}}\) and \(\int _0^\infty \exp (-c s^2) c^2\,s^4 ds = \frac{3}{8} \sqrt{\frac{\pi }{c}}\). By Lemma 3.2 we have \(\gamma _p(s) > 0\) for all \(0 \le s \le 2\). Hence

$$\begin{aligned} 0 < \sqrt{n} \int _{\frac{7}{6}}^2 \gamma _p(s)^n du = \int _{\frac{7}{6} \sqrt{n}}^{2 \sqrt{n}} \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n ds . \end{aligned}$$

By the proof of Proposition 2.2

$$\begin{aligned} |\gamma _p(s)|&= \left| \frac{p}{\Gamma \left( 1+\frac{1}{p} \right) } \int _0^\infty sinc (sr) r^p \exp (-r^p) dr \right| \\&= \left| \frac{1}{s \Gamma \left( 1+\frac{1}{p} \right) } \int _0^\infty \sin (sr) \ p r^{p-1} \exp (-r^p) dr \right| \ , \ |\sin (sr)| \le 1 \\&\le \frac{1}{s \Gamma \left( 1+\frac{1}{p} \right) } \int _0^\infty \exp (-u) du = \frac{1}{s \Gamma (1+\frac{1}{p})} \ . \end{aligned}$$

This yields the tail estimate for \(p \ge 5\)

$$\begin{aligned} \int _{2 \sqrt{n}}^\infty \Big |\gamma _p \left( \frac{s}{\sqrt{n}} \right) \Big |^n ds&= \sqrt{n} \int _2^\infty |\gamma _p(s)|^n ds \le \frac{\sqrt{n}}{\Gamma \left( 1+\frac{1}{p} \right) ^n} \int _2^\infty s^{-n} ds \\&= \frac{2 \sqrt{n}}{n-1} \left( \frac{1}{2 \Gamma \left( 1+\frac{1}{p} \right) } \right) ^n < \frac{2 \sqrt{n}}{n-1} 0.5446^n \ . \end{aligned}$$

We conclude for \(p \ge 5\) and \(n \ge 24\) that

$$\begin{aligned} \int _0^\infty \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds&\ge \int _0^{\frac{7}{6} \sqrt{n}} \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n ds - \int _{2 \sqrt{n}}^\infty \left| \gamma _p \left( \frac{s}{\sqrt{n}} \right) \right| ^n \ ds \\&\ge \sqrt{\frac{3 \pi }{2}} \sqrt{\frac{\Gamma \left( 1+\frac{1}{p} \right) }{\Gamma \left( 1+\frac{3}{p} \right) }} \left( 1 - \frac{27}{56} \frac{1}{n} \right) - \frac{2 \sqrt{n}}{n-1} 0.5446^n \\&\ge \sqrt{\frac{3 \pi }{2}} \sqrt{\frac{\Gamma \left( 1+\frac{1}{p} \right) }{\Gamma \left( 1+\frac{3}{p} \right) }} \left( 1 - \frac{27}{56} \frac{1}{n} - \frac{\sqrt{n}}{n-1} 0.5446^n \right) \ , \end{aligned}$$

using \(\sqrt{\frac{3 \pi }{2}} \sqrt{\frac{\Gamma \left( 1+\frac{1}{p} \right) }{\Gamma \left( 1+\frac{3}{p} \right) }} > 2\). For \(n \ge 24\), \(\frac{\sqrt{n}}{n-1} 0.5446^n < \frac{10^{-5}}{n}\) and \(\frac{27}{56} + 10^{-5} < \frac{193}{400}\), so that

$$\begin{aligned} A_{n,p}(a^{(n)})&= \Gamma \left( 1+\frac{1}{p} \right) \frac{2}{\pi }\int _0^\infty \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds \\&\ge \sqrt{\frac{6}{\pi }} \sqrt{\frac{\Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{1}{p} \right) }} \left( 1 - \frac{193}{400} \frac{1}{n} \right) \ . \end{aligned}$$

This is \(> A_{n,p}(a^{(2)}) = 2^{\frac{1}{2} - \frac{1}{p}}\), provided that

$$\begin{aligned} \frac{A_{n,p}(a^{(n)})}{A_{n,p}(a^{(2)})} \ge \sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }} \left( 1 - \frac{193}{400} \frac{1}{n} \right) > 1 . \end{aligned}$$

By Lemma 3.1 (b), the quotient \(g(p):= \sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }}\) is \(> 1\) for all \(2< p < p_0 \simeq 26.265\), with \(g(p) \ge 1 + \frac{1}{1317} (p_0-p)\) for all \(5 \le p \le p_0\). We find for \(p \ge 5\) and \(n \ge 24\),

$$\begin{aligned} \frac{A_{n,p}(a^{(n)})}{A_{n,p}(a^{(2)})} \ge \left( 1 + \frac{1}{1317} (p_0-p) \right) \left( 1-\frac{193}{400} \frac{1}{n} \right) . \end{aligned}$$

This is \(>1\) provided that \(5 \le p \le p_0\) and \(n \ge \frac{650}{p_0-p}\); \(n \ge 24\) being automatically satisfied.

(iii) Secondly we consider the case \(2 < p \le 5\). To estimate the remainder R in (4.2), we use that in this case \(u^{\frac{5}{p} -1} \le u^{\frac{3}{2}}\). For \(x > 0\)

$$\begin{aligned} \int _x^\infty u^{\frac{3}{2}} \exp (-u) \ du&\le \left( \left( \int _x^\infty u \exp (-u) \ du \right) \left( \int _x^\infty u^2 \exp (-u) \ du \right) \right) ^{\frac{1}{2}} \\&= \Big ( (1+x) (2+2 x +x^2) \Big )^{\frac{1}{2}} \exp (-x) \ , \end{aligned}$$

Since the function \(\phi (x):= \frac{(1+x)(2+2x+x^2)}{x^4} = \left( \frac{1}{x} + \frac{1}{x^2} \right) \left( 2 + \frac{2}{x} + \frac{1}{x^2} \right) \) is decreasing in x with \(\phi \left( \frac{9}{2} \right) = \left( \frac{5 \sqrt{110}}{81} \right) ^2 < \left( \frac{13}{20} \right) ^2\), we conclude that \(\int _x^\infty u^{\frac{3}{2}} \exp (-u) \ du \le \frac{13}{20} x^2 \exp (-x)\) for all \(x \ge \frac{9}{2} \). Now choose \(s \le \sqrt{\frac{n}{2}}\) for \(2 \le p \le 5\). Then \(x:= \left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p \ge \left( \frac{3}{\sqrt{2}} \right) ^p \ge \frac{9}{2}\) and

$$\begin{aligned} R \le \frac{1}{p} \left( 2 \left( \frac{2}{3} \frac{s}{\sqrt{n}} \right) ^{p-1} + \frac{s^4}{26 n^2} \frac{13}{20} \left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^{2p} \right) \exp \left( - \left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p \right) . \end{aligned}$$

Again we want this to be smaller than the fourth order term \(\Gamma (1+\frac{5}{p}) \frac{s^4}{130 n^2}\), a condition which is strongest for \(p=2\). We then require for \(y:= \frac{s}{\sqrt{n}}\)

$$\begin{aligned} \frac{1}{2} \left( \frac{4}{3} y + \frac{81}{640} \right) \exp \left( -\left( \frac{3}{2} \frac{1}{y} \right) ^2 \right) < \Gamma \left( \frac{7}{2} \right) \frac{y^4}{130} . \end{aligned}$$

This is equivalent to \(g(y):= \frac{1}{\sqrt{\pi }} \left( 26 \frac{16}{9} \frac{1}{y^3} + 13 \frac{27}{80} \frac{1}{y^4} \right) \exp \left( -\left( \frac{3}{2} \frac{1}{y} \right) ^2 \right) < 1\). The function g is increasing and positive in \(y>0\), with \(g(0.7161) < 1\). Hence the condition is satisfied for all \(0 < y \le 0.7161\), and in particular for our choice \(y = \frac{s}{\sqrt{n}} \le \frac{1}{\sqrt{2}}\). Therefore for \(s \le \sqrt{\frac{n}{2}}\), as in part (ii),

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right) \ge 1 - c \frac{s^2}{n}, \quad c:= \frac{1}{6} \frac{\Gamma \left( 1+\frac{3}{p} \right) }{\Gamma \left( 1+\frac{1}{p} \right) } . \end{aligned}$$

We have \(c \le \frac{1}{4}\) for \(2 \le p \le 5\) and \(x:= c \frac{s^2}{n} \le \frac{1}{8}\). Similarly as in (ii),

\(\ln (1-x) \ge -x-\frac{x^2}{1-x} \ge -x-\frac{4}{7} x^2\) and

$$\begin{aligned} \gamma _p \left( \frac{s}{\sqrt{n}} \right)&\ge \left( 1-c \frac{s^2}{n} \right) ^n =\exp \left( n \ln \left( 1-c \frac{s^2}{n} \right) \right) \\&\ge \exp \left( -c s^2 - \frac{4}{7} c^2 \frac{s^4}{n} \right) \ge \exp (-c s^2) \left( 1- \frac{4}{7} c^2 \frac{s^4}{n} \right) \end{aligned}$$

and

$$\begin{aligned} \int _0^{\sqrt{\frac{n}{2}}}&\gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds \ge \int _0^{\sqrt{\frac{n}{2}}} \exp (-c s^2) \left( 1 - \frac{4}{7} c^2 \frac{s^4}{n} \right) \ ds \\&\ge \int _0^\infty \exp (-c s^2) \left( 1 - \frac{4}{7} c^2 \frac{s^4}{n} \right) ds - \int _{\sqrt{\frac{n}{2}}}^\infty \exp (-c s^2) \ ds \\&= \frac{1}{2} \sqrt{\frac{\pi }{c}} \left( 1 - \frac{3}{7} \frac{1}{n} \right) - \int _{\sqrt{\frac{n}{2}}}^\infty \exp (-c s^2) \ ds \ . \end{aligned}$$

To estimate the error term, note that \(c \ge .16219\), its approximate value for \(p=5\), and

$$\begin{aligned} \int _{\sqrt{\frac{n}{2}}}^\infty \exp (-c s^2) ds&= \frac{1}{2 \sqrt{c}} \int _{\frac{c}{2} n}^\infty \frac{1}{\sqrt{u}} \exp (-u) du \\&\le \frac{1}{c \sqrt{2 n}} \int _{\frac{c}{2} n}^\infty \exp (-u) du = \frac{1}{c \sqrt{2 n}} \exp (-\frac{c}{2} n) \le \frac{4.36}{\sqrt{n}} \ 0.9222^n \ . \end{aligned}$$

Again \(\int _{\sqrt{\frac{n}{2}}}^{2 \sqrt{n}} \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds \ge 0\), since by Lemma 3.2\(\gamma _p(x) >0\) for all \(0 \le x \le 2\) and, as in (ii), \(\int _{2 \sqrt{n}}^\infty \left| \gamma _p \left( \frac{s}{\sqrt{n}} \right) \right| ^n ds \le \frac{2 \sqrt{n}}{n-1} \ 0.5446^n\), so that for \(2 \le p \le 5\)

$$\begin{aligned} \int _0^\infty \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n ds \ge \frac{1}{2} \sqrt{\frac{\pi }{c}} \left( 1 - \frac{3}{7} \frac{1}{n} \right) - \left( \frac{4.36}{\sqrt{n}} \ 0.9222^n + \frac{2 \sqrt{n}}{n-1} \ 0.5446^n \right) . \end{aligned}$$

Since \(c \le \frac{1}{4}\), \(\frac{1}{2} \sqrt{\frac{\pi }{c}} \ge \sqrt{\pi }\). Further for \(n \ge 33\)

$$\begin{aligned} \frac{3}{7} + \frac{1}{\sqrt{\pi }} \left( 4.36 \sqrt{n} \ 0.9222^n + \frac{2 n \sqrt{n}}{n-1} \ 0.5446^n \right) \le 1.405 \, \end{aligned}$$

so that \(\int _0^\infty \gamma _p \left( \frac{s}{\sqrt{n}} \right) ^n \ ds \ge \frac{1}{2} \sqrt{\frac{\pi }{c}} \left( 1- \frac{1.405}{n} \right) \). For \(p \in [2,4]\), using Lemma 3.1 (b),

$$\begin{aligned} \frac{A_{n,p}(a^{(n)})}{A_{n,p}(a^{(2)})}&\ge \sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }} \left( 1 - \frac{1.405}{n} \right) \\&\ge \left( 1 + \frac{p-2}{44} \right) \left( 1 - \frac{1.405}{n} \right) \ . \end{aligned}$$

For \(n \ge \frac{65}{p-2}\) this is \(>1\), with \(n \ge 33\) being automatically satisfied. For \(p \in [4,5]\), again by Lemma 3.1 (b), \(\sqrt{\frac{3}{\pi }} \sqrt{\frac{2^{\frac{2}{p}} \Gamma \left( 1+\frac{1}{p} \right) ^3}{\Gamma \left( 1+\frac{3}{p} \right) }} > \frac{25}{24}\) and \(\frac{A_{n,p}(a^{(n)})}{A_{n,p}(a^{(2)})} > 1\) is satisfied for \(n \ge \frac{65}{p-2}\), too. \(\square \)

5 Prerequisites for the proof of Theorem 1.2

We need two lemmas for the proof of Theorem 1.2.

Lemma 5.1

  1. (a)

    For \(q \in [1,2]\), let \(f(q):= \frac{\Gamma \left( 2-\frac{1}{q} \right) }{\Gamma \left( \frac{1}{q} \right) }\). Then f is decreasing, with \(f(1)=1\), \(f(2)=\frac{1}{2}\) and \(f \left( \frac{4}{3} \right) \le 0.7397\).

  2. (b)

    For \(q \in [1,2]\), let \(g(q):= \sqrt{\frac{2^{\frac{2}{q}}}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) }\). Then \(g'\) has exactly one zero in \(q_1 \in (1,2)\), \(q_1 \simeq 1.612\), and g is strictly decreasing in \([1,q_1)\) and strictly increasing in \((q_1,2]\), with \(g \left( \frac{4}{3} \right) = g(2) =1\). For \(q \in (\frac{4}{3},2)\), we have

    $$\begin{aligned} g(q) \le 1 - M \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) , \quad M= 0.86326 . \end{aligned}$$

Proof

(a) Differentiation gives \(f'(q) = \frac{f(q)}{q^2} \left( \Psi \left( \frac{1}{q} \right) + \Psi \left( 2-\frac{1}{q} \right) \right) \). Since \(\Gamma \) is logarithmic convex,\(\Psi \) is increasing. Hence \(\Psi \left( \frac{1}{q} \right) \le \Psi (1) = - \gamma \) and \(\Psi \left( 2-\frac{1}{q} \right) \le \Psi \left( \frac{3}{2} \right) = 2 \left( 1- \ln (2) \right) - \gamma \), \(\Psi \left( \frac{1}{q} \right) +\Psi \left( 2-\frac{1}{q} \right) \le -2 \left( \gamma + \ln (2) -1 \right) < 0\). Therefore f is decreasing in [1, 2]. Moreover, \(f \left( \frac{4}{3} \right) \le 0.7397\).

(b) For g we find \((\ln (g))'(q) = \frac{1}{2 q^2} \left( \Psi \left( 2-\frac{1}{q} \right) - \Psi \left( \frac{1}{q} \right) - 2 \ln (2) \right) \). The function \(h(q):=\Psi \left( 2-\frac{1}{q} \right) - \Psi \left( \frac{1}{q} \right) - 2 \ln (2)\) is strictly increasing, since with \(\frac{1}{q} + \frac{1}{p} =1\) we have, using (3.1),

$$\begin{aligned} h'(q) = \frac{1}{q^2} \left( \Psi ' \left( 2-\frac{1}{q} \right) + \Psi ' \left( \frac{1}{q} \right) \right) = \frac{1}{q^2} \sum _{n=1}^\infty \left( \frac{1}{(n+\frac{1}{p})^2} + \frac{1}{(n-\frac{1}{p})^2} \right) > 0 . \end{aligned}$$

Moreover \(h(1) = - 2 \ \ln (2) < 0\), \(h(2) = 2 \left( 1 - \ln (2) \right) > 0\). Thus h has exactly one zero \(q_1 \in (1,2)\), \(q_1 \simeq 1.612\). We get that g is decreasing in \([1,q_1)\) and increasing in \((q_1,2]\). We have \(g(1) = \frac{2}{\sqrt{\pi }} > 1\), \(g \left( \frac{4}{3} \right) = g(2) = 1\) and \(g(q) < 1\) for \(q \in (\frac{4}{3}, 2)\).

For \(\frac{4}{3}< q < 2\), choose \(\theta \in (0,1)\) with \(\frac{1}{q} = (1-\theta ) \frac{1}{2} + \theta \frac{3}{4}\), \(\theta = \frac{4}{q} -2\), \(1-\theta = 3 - \frac{4}{q}\). Since \(\Gamma \) is logarithmic convex, \(F:= \ln \Gamma \) satisfies \(F'' = \Psi ' > 0\) and by Taylor’s formula with second degree remainder we have for some \(\eta \in (\frac{1}{2}, \frac{3}{4})\)

$$\begin{aligned} F \left( \frac{1}{q} \right) \le (1-\theta ) F \left( \frac{1}{2} \right) + \theta F \left( \frac{3}{4} \right) - \frac{\Psi '(\eta )}{2} \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) . \end{aligned}$$

Since by (3.1) \(\Psi '\) is decreasing, \(\min _{\eta \in [\frac{1}{2}, \frac{3}{4}]} \Psi '(\eta ) = \Psi ' \left( \frac{3}{4} \right) \) and

$$\begin{aligned} F \left( \frac{1}{q} \right) \le \left( 3 - \frac{4}{q} \right) F \left( \frac{1}{2} \right) + \left( \frac{4}{q} -2 \right) F \left( \frac{3}{4} \right) - \frac{\Psi ' \left( \frac{3}{4} \right) }{2} \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) . \end{aligned}$$

Similarly, for \(\frac{5}{4}< 2 - \frac{1}{q} < \frac{3}{2}\), choose \(\theta \in (0,1)\) with \(2 - \frac{1}{q} = (1-\theta ) {\frac{5}{4}} + \theta {\frac{3}{2}}\), \(\theta = 3 - \frac{4}{q}\), \(1 - \theta = \frac{4}{q} -2\), such that with \(\min _{\eta \in [\frac{5}{4}, \frac{3}{2}]} \Psi '(\eta ) = \Psi ' \left( \frac{3}{2} \right) \)

$$\begin{aligned} F \left( 2 - \frac{1}{q} \right) \le \left( \frac{4}{q}-2 \right) F \left( \frac{5}{4} \right) + \left( 3 - \frac{4}{q} \right) F \left( \frac{3}{2} \right) - \frac{\Psi ' \left( \frac{3}{2} \right) }{2} \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) . \end{aligned}$$

This yields after exponentiation with \(c:=\frac{\Psi ' \left( \frac{3}{4} \right) +\Psi ' \left( \frac{3}{2} \right) }{4}\)

$$\begin{aligned} \Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right)&\le \left( \Gamma \left( \frac{1}{2} \right) \Gamma \left( \frac{3}{2} \right) \right) ^{3-\frac{4}{q}} \\&\quad \times \left( \Gamma \left( \frac{3}{4} \right) \Gamma \left( \frac{5}{4} \right) \right) ^{\frac{4}{q} -2} \exp \left( - 2 c \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) \right) \ . \end{aligned}$$

Clearly \(\Gamma \left( \frac{1}{2} \right) \Gamma \left( \frac{3}{2} \right) = \frac{\pi }{2}\), and by the complement formula for the \(\Gamma \)-function, see Abramowitz, Stegun [1], \(\Gamma \left( \frac{3}{4} \right) \Gamma \left( \frac{5}{4} \right) = \frac{\pi }{4 \sin \left( \frac{\pi }{4} \right) } = \frac{\pi }{2 \sqrt{2}}\), so that

$$\begin{aligned} g(q) = \sqrt{\frac{2^{\frac{2}{q}}}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } \le \exp \left( - c \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q}\right) \right) =: k(q) . \end{aligned}$$

Let \(\varepsilon := \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) \). Then \(\varepsilon \le \frac{1}{64}\). Numerical evaluation yields \(c \ge 0.86917\). By Taylor expansion \(k(q) \le 1 - c \varepsilon + \frac{c^2 \varepsilon ^2}{2} = 1 - c \left( 1-\frac{c \varepsilon }{2} \right) \varepsilon \le 1 - d \varepsilon \), \(d:= c - \frac{c^2}{128} \ge 0.86326\) =: M. Therefore \(g(q) \le 1 - M \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) \). \(\square \)

Lemma 5.2

For all \(\frac{4}{3} \le q \le 2\) and \(0 \le s \le \frac{16}{5}\), the functions \(\delta _q\) of (2.6) satisfy \(\delta _{\frac{4}{3}}(s) \le \delta _q(s) \le \delta _2(s) = \exp \left( -\frac{s^2}{4} \right) \). Further \(\delta _{\frac{4}{3}} \left( \frac{48}{25} \right) > 0\) and \(\delta _{\frac{4}{3}} \left( \frac{16}{5} \right) > - 0.588\).

Proof

Let \(2 \le p = \frac{q}{q-1} \le 4\) be the conjugate index of q and \(s \in [\frac{48}{25},\frac{16}{5}]\). We will show that \(\frac{d}{dq} \delta _q(s) > 0\), or equivalently \(\frac{d}{dp} \delta _q(s) < 0\). For \(m > -1\) we have

$$\begin{aligned} \int _0^\infty r^m \exp (-r^p) dr = \frac{1}{p} \int _0^\infty u^{\frac{m+1}{p} -1} \exp (-u) du = \frac{1}{p} \Gamma \left( \frac{m+1}{p} \right) . \end{aligned}$$
(5.1)

Expanding \(\cos (s r)\) into its Taylor series at zero, we find using (5.1)

$$\begin{aligned} \delta _q(s) = \sum _{n=0}^\infty \left( f_{2n}(p) \frac{s^{4n}}{(4n)!} - f_{2n+1}(p) \frac{s^{4n+2}}{(4n+2)!} \right) =: \sum _{n=0}^\infty F_n(p,s) \, \end{aligned}$$
(5.2)

where \(f_{2n}(p):= \frac{\Gamma \left( 1+\frac{4 n -1}{p} \right) }{\Gamma \left( 1-\frac{1}{p} \right) }\), \(f_{2n+1}(p):= \frac{\Gamma \left( 1+\frac{4 n + 1}{p} \right) }{\Gamma \left( 1-\frac{1}{p} \right) }\). Since \(\Gamma \) is logarithmic convex, we have for \(x>0\) and \(0 \le \theta \le 1\) that \(\Gamma (x+\theta ) \le \Gamma (x)^{1-\theta } \Gamma (x+1)^\theta = x^\theta \Gamma (x)\). Let \(n \ge 2\), \(x:= 1 + \frac{4n-1}{p} \ge 1\) and \(\theta := \frac{2}{p}\). We claim that \(x^\theta = \left( 1+ \frac{4n-1}{p} \right) ^\theta \le \frac{4n+1}{p}\). This is equivalent to \((4n+p-1)^{\frac{2}{p}} p^{1-\frac{2}{p}} \le 4n+1\). Applying the inequality \(a b \le \frac{a^r}{r} + \frac{b^{r'}}{r'}\) with \(r:= \frac{p}{2}\) and \(r' = \frac{p}{p-2}\), we get \((4n+p-1)^{\frac{2}{p}} p^{1-\frac{2}{p}} \le \frac{2}{p} (4n+p-1) + p - 2 = \frac{2}{p} (4n-1) + p\) which is \(\le 4n+1\) if and only if \(n \ge \frac{p+1}{4}\), which is satisfied, since \(p \le 4\) and \(n \ge 2\). Therefore

$$\begin{aligned} \frac{f_{2n+1}(p)}{f_{2n}(p)} = \frac{\Gamma \left( 1+\frac{4 n + 1}{p} \right) }{\Gamma \left( 1+\frac{4 n -1}{p} \right) } \le \frac{4n+1}{p} \end{aligned}$$
(5.3)

and

$$\begin{aligned} F_n(p,s)&= f_{2n}(p) \frac{s^{4n}}{(4n)!} \left( 1 - \frac{f_{2n+1}(p)}{f_{2n}(p)} \frac{s^2}{(4n+1)(4n+2)} \right) \\&\ge f_{2n}(p) \frac{s^{4n}}{(4n)!} \left( 1 - \frac{s^2}{2 p (2n+1)} \right) > 0 \end{aligned}$$

for \(n \ge 2\) and \(s \le \frac{16}{5} < \sqrt{20}\). Hence for all \(m \ge 1\), \(\delta _q(s) \ge \sum _{n=0}^m F_n(p,s)\). In particular, for \(q=\frac{4}{3}\), we find by numerical evaluation \(\delta _{\frac{4}{3}} \left( \frac{48}{25} \right)> 0.0026 > 0\), choosing \(m=2\), and \(\delta _{\frac{4}{3}} \left( \frac{16}{5} \right) > - 0.588\), choosing \(m=4\). Formula (5.2) implies

$$\begin{aligned} \frac{d}{dp} \delta _q(s)&= \sum _{n=0}^\infty \frac{d}{dp} F_n(p,s) =: - \frac{1}{p^2} \sum _{n=0}^\infty G_n(p,s) \nonumber \\&=: - \frac{1}{p^2} \sum _{n=0}^\infty \left( f_{2n}(p)g_{2n}(p) \frac{s^{4n}}{(4n)!} - f_{2n+1}(p)g_{2n+1}(p) \frac{s^{4n+2}}{(4n+2)!} \right) \ , \end{aligned}$$
(5.4)

where in terms of the Digamma function \(\Psi \), \(g_{2n}(p)= (4 n -1) \Psi \left( 1+\frac{4n-1}{p} \right) + \Psi \left( 1-\frac{1}{p} \right) \), \(g_{2n+1}(p)= (4 n + 1) \Psi \left( 1+\frac{4n+1}{p} \right) + \Psi \left( 1-\frac{1}{p} \right) \). By Abramowitz, Stegun [1], 6.3, \(\Psi '\) is positive, decreasing and \(\Psi '(1+x) \le \frac{1}{x+\frac{1}{2}}\). Therefore

$$\begin{aligned} \Psi \left( 1+\frac{4n+1}{p} \right)\le & {} \Psi \left( 1+\frac{4n-1}{p} \right) + \frac{2}{p} \Psi ' \left( 1+\frac{4n-1}{p} \right) \\ {}\le & {} \Psi \left( 1+\frac{4n-1}{p} \right) + \frac{1}{2n} (4n+1) \Psi \left( 1+\frac{4n+1}{p} \right) \\ {}\le & {} (4n-1) \Psi \left( 1+\frac{4n-1}{p} \right) + 2 \Psi \left( 1+\frac{4n-1}{p} \right) + \frac{4n+1}{2n} \, \end{aligned}$$

so that

$$\begin{aligned} \frac{g_{2n+1}(p)}{g_{2n}(p)} \le 1 + \frac{2 \Psi \left( 1+\frac{4n-1}{p} \right) + 2 + \frac{1}{2n}}{g_{2n}(p)} = 1 + \frac{2}{4n-1} + C_n(p) \, \end{aligned}$$
(5.5)

where \(C_n(p):= \frac{2 - \frac{2 \Psi \left( 1-\frac{1}{p} \right) }{4n-1} + \frac{1}{2n}}{g_{2n}(p)}\). The function \(k(x):= \Psi (1+x)- \ln (1+x)\) is increasing, since using (3.1) we find

$$\begin{aligned} k'(x) = \sum _{n=1}^\infty \frac{1}{(n+x)^2} - \frac{1}{1+x} > \int _1^\infty \frac{dy}{(y+x)^2} - \frac{1}{1+x} = 0 . \end{aligned}$$

Further, by Abramowitz, Stegun [1, 6.3.18], \(\lim _{x \rightarrow \infty } \Psi (1+x) - \ln (1+x) = 0\). Therefore for any \(x>0\), \(k(x) < 0\). For \(x \ge \frac{7}{4}\), \(k(x) \ge k \left( \frac{7}{4} \right) \simeq - 0.193 > - \frac{1}{5}\). Hence for \(n \ge 2\), \(\Psi \left( 1 + \frac{4 n -1}{p} \right) \ge \ln \left( 1 + \frac{4 n -1}{p} \right) - \frac{1}{5}\) and

$$\begin{aligned} C_n(p) \le \frac{2 - \frac{2 \Psi \left( 1-\frac{1}{p} \right) }{4n-1} + \frac{1}{2n}}{(4n-1) \ln \left( 1 + \frac{4 n -1}{p} \right) - \frac{4n-1}{5} + \Psi \left( 1 - \frac{1}{p} \right) } =: R . \end{aligned}$$

We have that \(\Psi \left( 1- \frac{1}{p} \right) \in [-1.964,-1.085]\). The right side is maximal for \(p=4\), with \(\Psi \left( \frac{3}{4} \right) \simeq -1.086\), the logarithmic term in the denominator being minimal then,

$$\begin{aligned} C_n(p) \le \frac{2 - \frac{2 \Psi \left( \frac{3}{4} \right) }{4n-1} + \frac{1}{2n}}{(4n-1) \ln \left( n + \frac{3}{4} \right) - \frac{4n-1}{5} + \Psi \left( \frac{3}{4} \right) } . \end{aligned}$$

A tedious calculation yields that \(C_n(p) \le c_n(p):= \frac{2}{3 n \ln (n)}\) and \(\frac{2}{4n-1} + c_n(2) \le \frac{1}{n + \frac{1}{4}}\) for all \(n \ge 5\). For \(n = 2, 3, 4\), keeping a dependence on p, we may estimate \(C_n(p) \le R \le c_n(p)\), where

$$\begin{aligned} c_2(p) = \frac{1}{6} + \frac{p}{10}, c_3(p) = \frac{1}{11} + \frac{p}{36}, c_4(p) = \frac{1}{18} + \frac{p}{72} . \end{aligned}$$

Using this and Eqs. (5.5) and (5.3) we find for \(n \ge 2\)

$$\begin{aligned} \frac{f_{2n+1}(p) g_{2n+1}(p)}{f_{2n}(p) g_{2n}(p)}&\le \frac{4n+1}{p} \left( 1+\frac{2}{4n-1} + c_n(p) \right) \le \frac{4n+1}{2} \left( 1+\frac{2}{4n-1} + c_n(2) \right) \\&=: q_n \le \frac{4n+1}{2} \left( 1 + \frac{1}{n+ \frac{1}{4}} \right) = \frac{4n+5}{2} \ , \end{aligned}$$

the last estimate for \(q_n\) holding for \(n \ge 5\), whereas \(q_2 \le \frac{15}{2}\), \(q_3 \le \frac{25}{3}\) and \(q_4 \le \frac{21}{2}\). This implies

$$\begin{aligned} G_n(p,s) \ge f_{2n}(p) g_{2n}(p) \frac{s^{4n}}{(4n)!} \left( 1 - \frac{q_n s^2}{(4n+1)(4n+2)} \right) =: {\tilde{G}}_n(p,s) > 0 \end{aligned}$$

for all \(n \ge 2\) and \(s \le \frac{16}{5} < \sqrt{12}\). Hence by (5.4) for all \(m \ge 1\)

$$\begin{aligned} \frac{d}{dp} \delta _q(s) \le - \frac{1}{p^2} \sum _{n=0}^m G_n(p,s) . \end{aligned}$$

For \(m=1\), with \(g_0(s) = 0\), we have

$$\begin{aligned} \frac{d}{dp} \delta _q(s) \le + \frac{s^2}{2 p^2} \left[ a(p) - b(p) \frac{s^2}{12} + c(p) \frac{s^4}{360} \right] =: \phi (p,s) \end{aligned}$$

with \(-0.972 \le a(p):= f_1(p)g_1(p) \le -0.954\) varying very little, \(-0.255 \le b(p):= f_2(p)g_2(p) \le 0.114\), \(0 < b(p)\) for \(p \le 2.83\) and \(c(p):= f_3(p) g_3(p)\) decreasing in \(p \in [2,4]\), with value 6.66 at \(p=2\) and 1.64 at \(p=4\). Therefore \(360 |a(p)| \ge 343.5\) and \(\phi (p,s) < 0\) will be satisfied if

$$\begin{aligned} s^2 < 15 \frac{b(p)}{c(p)} + \sqrt{ \left( 15 \frac{b(p)}{c(p)} \right) ^2 + \frac{343.5}{c(p)} } . \end{aligned}$$

This holds for all \(0 \le s \le \frac{16}{5}\), if \(c(p) \le 3.275\), i.e. \(p \ge 2.81\). For \(0 \le p \le 2\), the right side is minimal for \(p=2\) and we require \(s \le 2.72\). If \(p < 2.81\) and \(s > 2.72\) one needs two more terms, \(m=3\), to show \(\frac{d}{dp} \delta _q(s) < 0\),

$$\begin{aligned} \frac{d}{dp} \delta _q(s) \le - \frac{1}{p^2} \left[ G_0(p,s) + G_1(p,s) + {\tilde{G}}_2(p,s) + {\tilde{G}}_3(p,s) \right] < 0 . \end{aligned}$$

\(\square \)

Corollary 5.3

For all \(\frac{4}{3} \le q \le 2\) and \(\frac{48}{25} \le s \le \frac{16}{5}\), \(\left| \delta _q(s) \right| \le 0.588\).

Proof

By Lemma 5.2, \(\delta _{\frac{4}{3}}(s) \le \delta _q(s) \le \delta _2(s) = \exp \left( -\frac{s^2}{4} \right) \le \exp \left( - \left( \frac{24}{25} \right) ^2 \right) < \frac{2}{5}\) for all \(s \in [\frac{48}{25},\frac{16}{5}]\). By (2.7), \(\delta '_{\frac{4}{3}}(s) = - \frac{\Gamma (\frac{5}{4})}{\Gamma (\frac{3}{4})} s \gamma _4(s)\). According to Boyd [4], page 83, \(\gamma _4(s) > 0\) for all \(0 \le s \le 3.45\), the first positive zero of \(\gamma _4\) being at \(s_1 \simeq 3.4535\). Therefore \(\delta _{\frac{4}{3}}\) is strictly decreasing in \([\frac{48}{25},\frac{16}{5}]\), with \(\frac{2}{5}> \delta _{\frac{4}{3}}(s) \ge \delta _{\frac{4}{3}}\left( \frac{16}{5} \right) > - 0.588\) by Lemma 5.2. We conclude that

$$\begin{aligned} \max \left\{ \left| \delta _q(s) \right| \ | \ q \in \left[ \frac{4}{3}, 2\right] \, \ s \in \left[ \frac{48}{25},\frac{16}{5}\right] \right\} \le 0.588 . \end{aligned}$$

\(\square \)

Remark. For \(q \searrow 1\), \(\delta _q(s) \rightarrow \cos (s)\), so that \(|\delta _q(\pi )| \rightarrow 1\). Corollary 5.3 does not extend to the range \(1 \le q < \frac{4}{3}\).

6 Proof of Theorem 1.2

Proof of Theorem 1.1.

Barthe and Naor [3] showed for \(1 \le q < \infty \) that

$$\begin{aligned} \lim _{n \rightarrow \infty } \frac{P_{n,q}(a^{(n)})}{P_{n,q}(a^{(2)})} = \sqrt{\frac{2^{\frac{2}{q}}}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } \, \end{aligned}$$

and this is \(< 1\) if and only if \(\frac{4}{3}< q < 2\), see Lemma 5.1 (b). Now consider \(\frac{4}{3}< q < 2\) and let \(p = \frac{q}{q-1}\) be the conjugate index, \(2< p < 4\). As in the proof of Theorem 1.1, we use \(\cos (x) \ge 1 - \frac{x^2}{2} + \frac{x^4}{26} >0\) for all \(0 \le x \le \frac{3}{2}\), so that by (2.6) for all \(s \le \frac{3}{2} \sqrt{n}\)

$$\begin{aligned} \delta _q \left( \frac{s}{\sqrt{n}} \right)&\ge \frac{p}{\Gamma \left( \frac{1}{q} \right) } \Big ( \int _0^{\frac{3}{2} \frac{\sqrt{n}}{s}} \left( 1 - \frac{s^2 r^2}{2n} + \frac{s^4 r^4}{26 n^2} \right) \ r^{p-2} \exp (-r^p) \ dr \\&\quad + \int _{\frac{3}{2} \frac{\sqrt{n}}{s}}^\infty \cos \left( \frac{sr}{\sqrt{n}} \right) \ r^{p-2} \exp (-r^p) \ dr \Big ) \\&\ge \frac{p}{\Gamma \left( \frac{1}{q} \right) } \left( \int _0^\infty \left( 1 - \frac{s^2 r^2}{2n} + \frac{s^4 r^4}{26 n^2} \right) \ r^{p-2} \exp (-r^p) \ dr - R \right) \\&= \frac{1}{\Gamma \left( 1 - \frac{1}{p} \right) } \left( \Gamma \left( 1 - \frac{1}{p} \right) - \Gamma \left( 1 + \frac{1}{p} \right) \frac{s^2}{2 n} + \Gamma \left( 1 + \frac{3}{p} \right) \frac{s^4}{26 n^2} - R \right) \ , \\ R&:= \int _{\frac{3}{2} \frac{\sqrt{n}}{s}}^\infty \left( 2-\frac{s^2}{2 n} r^2 + \frac{s^4}{26 n^2} r^4 \right) \ r^{p-2} \exp (-r^p) \ dr \\&= \frac{1}{p} \int _{\left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p}^\infty \left( 2 u^{-\frac{1}{p}} - \frac{s^2}{2 n} u^{\frac{1}{p}} + \frac{s^4}{26 n^2} u^{\frac{3}{p}} \right) \exp (-u) \ du \ . \end{aligned}$$

Then \(u^{-\frac{1}{p}} \le \frac{2}{3} \frac{s}{\sqrt{n}}\) and \(u^{\frac{3}{p}} \le u^{\frac{3}{2}}\). As in the proof of Theorem 1 (iii), for \(x \ge \frac{9}{2}\)

$$\begin{aligned} \int _x^\infty u^{\frac{3}{2}} \exp (-u) du \le \Big ( (1+x) (2+2 x +x^2) \Big )^{\frac{1}{2}} \exp (-x) \le \frac{13}{20} x^2 \exp (-x) . \end{aligned}$$

Choose again \(s \le \sqrt{\frac{n}{2}}\). Then with \(x:= \left( \frac{3}{2} \frac{\sqrt{n}}{s} \right) ^p \ge \left( \frac{3}{\sqrt{2}} \right) ^2 = \frac{9}{2}\) and \(y:= \frac{s}{\sqrt{n}}\)

$$\begin{aligned} R \le \frac{1}{p} \left( 2 \frac{2}{3} y + \frac{y^4}{26} \frac{13}{20} \left( \frac{3}{2} \frac{1}{y} \right) ^{2p} \right) \ \exp \left( - \left( \frac{3}{2} \frac{1}{y} \right) ^p \right) . \end{aligned}$$

We want \(R \le \Gamma \left( 1+\frac{3}{p} \right) \frac{y^4}{26}\), a condition which is strongest for \(p=2\) when it means

$$\begin{aligned} \frac{1}{2} \left( \frac{4}{3} y + \frac{81}{640} \right) < \frac{\Gamma \left( \frac{5}{2} \right) }{26} y^4 \ \exp \left( \frac{9}{4} \frac{1}{y^2} \right) \, \end{aligned}$$

which is the same requirement as in (iii) of the proof of Theorem 1.1, being valid for \(0 \le y \le 0.7161\). Thus the choice of \(s \le \sqrt{\frac{n}{2}}\) is allowed and then

$$\begin{aligned} \delta _q \left( \frac{s}{\sqrt{n}} \right) \ge 1 - c \frac{s^2}{n}, \quad c:= \frac{1}{2} \frac{\Gamma \left( 1+\frac{1}{p} \right) }{\Gamma \left( 1-\frac{1}{p} \right) } = \frac{1}{2} \frac{\Gamma \left( 2-\frac{1}{q} \right) }{\Gamma \left( \frac{1}{q} \right) } . \end{aligned}$$

We have by Lemma 5.1 (a) \(\frac{1}{4} \le c \le 0.3699 < \frac{37}{100}\), the lower estimate attained for \(p=q=2\), the maximum for c attained for \(p=4\), \(q= \frac{4}{3}\). Therefore for \(x:= c \frac{s^2}{n} \le \frac{37}{200}\), \(\ln (1-x) \ge -x - \frac{1}{2} \frac{x^2}{1-x} \ge -x - \frac{100}{163} x^2\) and \(\left( 1-c \frac{s^2}{n} \right) ^n \ge \exp (-c s^2) \left( 1 - \frac{100}{163} c^2 \frac{s^4}{n} \right) \). This yields the estimate

$$\begin{aligned}&\int _0^{\sqrt{\frac{n}{2}}} \frac{1-\delta _q \left( \frac{s}{\sqrt{n}} \right) ^n}{s^2} \ ds \le \int _0^{\sqrt{\frac{n}{2}}} \frac{1-\exp (-c s^2) \left( 1-\frac{100}{163} c^2 \frac{s^4}{n} \right) }{s^2} \ ds \\&\quad \le \int _0^\infty \frac{1-\exp (-c s^2)}{s^2} ds - \int _{\sqrt{\frac{n}{2}}}^\infty \frac{1-\exp (-c s^2)}{s^2} ds + \frac{100}{163} \frac{c^2}{n} \int _0^\infty s^2 \exp (-c s^2) \ ds \\&\quad = \sqrt{\pi c} \left( 1+ \frac{25}{163} \frac{1}{n} \right) - \int _{\sqrt{\frac{n}{2}}}^\infty \frac{1-\exp (-c s^2)}{s^2} \ ds \ . \end{aligned}$$

Therefore, using (2.6),

$$\begin{aligned} P_{n,q}(a^{(n)})&= \Gamma \left( \frac{1}{q} \right) \frac{2}{\pi }\int _0^\infty \frac{1-\delta _q \left( \frac{s}{\sqrt{n}} \right) ^n}{s^2} \ ds \\&= \Gamma \left( \frac{1}{q} \right) \frac{2}{\pi }\left( \int _0^{\sqrt{\frac{n}{2}}} \frac{1-\delta _q \left( \frac{s}{\sqrt{n}} \right) ^n}{s^2} \ ds + \int _{\sqrt{\frac{n}{2}}}^\infty \frac{1-\delta _q \left( \frac{s}{\sqrt{n}} \right) ^n}{s^2} \ ds \right) \\&\le \Gamma \left( \frac{1}{q} \right) \frac{2}{\pi }\left( \sqrt{\pi c} \left( 1+ \frac{25}{163} \frac{1}{n} \right) + \int _{\sqrt{\frac{n}{2}}}^\infty \frac{\exp (-c s^2) - \delta _q \left( \frac{s}{\sqrt{n}} \right) ^n}{s^2} \ ds \right) \\&= \sqrt{\frac{2}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } \left( 1+\frac{25}{163} \frac{1}{n} \right) + \Gamma \left( \frac{1}{q} \right) \frac{2}{\pi }S \ , \end{aligned}$$

\(S:= \frac{1}{\sqrt{n}} \int _{\frac{1}{\sqrt{2}}}^\infty \frac{\exp (-c u^2)^n - \delta _q(u)^n}{u^2} du\). Since \(c \ge \frac{1}{4}\) and \(\delta _q(s) >0\) for all \(0 \le u \le \frac{48}{25}\) by Lemma 5.2, we find

$$\begin{aligned} S \le \frac{1}{\sqrt{n}} \int _{\frac{1}{\sqrt{2}}}^\infty \frac{\exp \left( - \frac{u^2}{4} n \right) }{u^2} \ du + \frac{1}{\sqrt{n}} \int _{\frac{48}{25}}^\infty \frac{|\delta _q(u)|^n}{u^2} \ du . \end{aligned}$$

For \(n \ge 8\), \(v = \frac{u^2}{4} n \ge 1\) and

$$\begin{aligned} \frac{1}{\sqrt{n}} \int _{\frac{1}{\sqrt{2}}}^\infty&\frac{\exp \left( - \frac{u^2}{4} n \right) }{u^2} \ du = \frac{1}{4} \int _{\frac{n}{8}}^\infty \frac{\exp (-v)}{v^{\frac{3}{2}}} \ dv \\&\le \frac{1}{4} \left( \frac{8}{n} \right) ^{\frac{3}{2}} \int _{\frac{n}{8}}^\infty \exp (-v) \ dv = \frac{4 \sqrt{2}}{n^{\frac{3}{2}}} \exp \left( -\frac{n}{8} \right) \le \frac{4 \sqrt{2}}{n^{\frac{3}{2}}} \ 0.8825^n \ . \end{aligned}$$

By Corollary 5.3 we have \(|\delta _q(s)| \le 0.588\) for all \(\frac{48}{25} \le u \le \frac{16}{5}\). Therefore

$$\begin{aligned} \frac{1}{\sqrt{n}} \int _{\frac{48}{25}}^{\frac{16}{5}} \frac{|\delta _q(u)|^n}{u^2} \ du \le \frac{1}{\sqrt{n}} \ 0.588^n \int _{\frac{48}{25}}^{\frac{16}{5}} \frac{du}{u^2} = \frac{5}{24} \frac{1}{\sqrt{n}} \ 0.588^n . \end{aligned}$$

Integration by parts shows for \(\frac{4}{3} \le q < 2\), \(2 < p \le 4\) that

$$\begin{aligned} \left| \delta _q(u) \right|&= \left| \frac{p}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty \frac{\sin (ur)}{u} (p-2-p r^p) \ r^{p-3} \exp (-r^p) \ dr \right| \\&\le \frac{1}{u} \frac{p}{\Gamma \left( \frac{1}{q} \right) } \int _0^\infty |p-2-p r^p| \ r^{p-3} \ \exp (-r^p) \ dr \\&= \frac{1}{u} \frac{2 p}{\Gamma \left( 1 - \frac{1}{p} \right) } \left( \frac{1-\frac{2}{p}}{e} \right) ^{1-\frac{2}{p}} =: \phi (p) \frac{1}{u} , \end{aligned}$$

using that \(\int (p-2-p r^p) \ r^{p-3} \ \exp (-r^p) \ dr = r^{p-2} \exp (-r^p)\). For \(\phi \), we have that \((\ln \phi )'(p) = \frac{1}{p^2} \left( 2 \ln \left( 1 - \frac{2}{p} \right) + p - \Psi \left( 1- \frac{1}{p} \right) \right) \) and \(\lambda (p):= 2 \ln \left( 1 - \frac{2}{p} \right) + p - \Psi \left( 1- \frac{1}{p} \right) \) is increasing, since \(\lambda '(p) = \frac{p(3+(p-1)^2) - (p-2) \Psi ' \left( 1- \frac{1}{p} \right) }{p^2(p-2)}\) and \(\Psi ' \left( 1- \frac{1}{p} \right) \le \Psi ' \left( \frac{1}{2} \right) = \frac{\pi ^2}{2}\), so that \(\lambda '(p) \ge \frac{p(3+(p-1)^2) - (p-2) \frac{\pi ^2}{2}}{p^2(p-2)} > 0\). We have \(\lambda (2) < 0\), \(\lambda (4) > 0\), so that \(\phi \) is first decreasing and then increasing in [2, 4]. Since \(\phi (2)< \phi (4) < \frac{14}{5}\), we conclude that \(\left| \delta _q(u) \right| < \frac{14}{5} \frac{1}{u}\). Then

$$\begin{aligned} \frac{1}{\sqrt{n}} \int _{\frac{16}{5}}^\infty \frac{|\delta _q(u)|^n}{u^2} \ du&\le \frac{1}{\sqrt{n}} \left( \frac{14}{5} \right) ^n \int _{\frac{16}{5}}^\infty \frac{du}{u^{n+2}} \\&= \frac{5}{16} \frac{1}{\sqrt{n} (n+1)} \left( \frac{7}{8} \right) ^n \le \frac{5}{16} \frac{1}{n^{\frac{3}{2}}} \ 0.875^n \ . \end{aligned}$$

We finally get that

$$\begin{aligned} S \le \frac{4 \sqrt{2}}{n^{\frac{3}{2}}} \ 0.8825^n + \frac{5}{24} \frac{1}{\sqrt{n}} \ 0.588^n + \frac{5}{16} \frac{1}{n^{\frac{3}{2}}} \ 0.875^n . \end{aligned}$$

By Lemma 5.1 (a), \(\sqrt{\frac{2}{\pi }\frac{\Gamma \left( \frac{1}{q} \right) }{\Gamma \left( 2 - \frac{1}{q} \right) }} \le \frac{2}{\sqrt{\pi }}\), with equality for \(p=q=2\), and \(\frac{2}{\sqrt{\pi }} S \le \frac{0.10559}{n}\) for all \(n > 20\). We conclude with \(\frac{25}{163} + 0.10559 < 0.25896\) that

$$\begin{aligned} P_{n,q}(a^{(n)}) \le \sqrt{\frac{2}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } \left( 1+ \frac{0.25896}{n} \right) . \end{aligned}$$

By Barthe, Naor [3] \(P_{n,q}(a^{(2)}) = 2^{\frac{1}{2} -\frac{1}{q}}\), so that together with Lemma 5.2 (b)

$$\begin{aligned} \frac{P_{n,q}(a^{(n)})}{P_{n,q}(a^{(2)})}&\le \sqrt{\frac{2^{\frac{2}{q}}}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) } \left( 1+ \frac{0.25896}{n} \right) \\&\le \left( 1- M \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) \right) \left( 1+ \frac{0.25896}{n} \right) , \; M= 0.86326. \end{aligned}$$

Suppose that n satisfies \(n \ge \frac{4}{5} \frac{q^2}{(q-\frac{4}{3})(2-q)}\). Then the last product is \(< 1\), since \(\frac{0.25896}{n} \le M \left( \frac{1}{q} - \frac{1}{2} \right) \left( \frac{3}{4} - \frac{1}{q} \right) \) suffices and this requires \(n > \frac{\frac{8}{3} \frac{0.25896}{M} q^2}{(q-\frac{4}{3})(2-q)}\), with \(\frac{8}{3} \frac{0.25896}{M} < \frac{4}{5}\). The condition \(n \ge \frac{4}{5} \frac{q^2}{(q-\frac{4}{3})(2-q)}\) will be satisfied if \(n > \frac{\frac{32}{15}}{q- \frac{4}{3}} + \frac{\frac{24}{5}}{2-q} = \frac{\frac{8}{3} q - \frac{32}{15}}{(q-\frac{4}{3})(2-q)} \ge \frac{\frac{4}{5} q^2}{(q-\frac{4}{3})(2-q)}\), where the last inequality is an equality for \(q=\frac{4}{3}\) and \(q=2\). Hence for \(n > \frac{\frac{32}{15}}{q- \frac{4}{3}} + \frac{\frac{24}{5}}{2-q} =: \phi (q)\) we have \(P_{n,q}(a^{(n)}) < P_{n,q}(a^{(2)})\). The restriction \(n>20\) is automatically satisfied since the minimum of \(\phi \) is \(\phi \left( \frac{8}{5} \right) = 20\). We have the equality \(\lim _{n \rightarrow \infty } \frac{P_{n,q}(a^{(n)})}{P_{n,q}(a^{(2)})} = \sqrt{\frac{2^{\frac{2}{q}}}{\pi }\Gamma \left( \frac{1}{q} \right) \Gamma \left( 2-\frac{1}{q} \right) }\). \(\square \)

Remark. Barthe and Naor [3] show that \( P_{n,q}(a) \le P_{n,q}(a^{(n)})\) for all \(a \in S^{n-1}\) and \(q \ge 2\). Since the quantities are differentiable and coincide for \(q=2\), they conclude that \(\frac{d}{dq} P_{n,q}(a)|_{q=2} \le \frac{d}{dq} P_{n,q}(a^{(n)})|_{q=2}\) holds. If this inequality were strict, \(P_{n,q}(a) \ge P_{n,q}(a^{(n)})\) might hold for some \(2- \varepsilon _n< q < 2\). In this case, for q close to 2, \(a^{(n)}\) might always yield the minimum, and no singularity \(O(\frac{1}{2-q})\) would occur in Theorem 1.2.

Similarly, in the case of sections, Koldobsky [10] showed that \(A_{n,p}(a^{(n)}) \le A_{n,p}(a)\) holds for all \(1< p < 2\) and \(a \in S^{n-1}\), which together with \(A_{n,2}(a^{(n)})=A_{n,2}(a)\) implies \(\frac{d}{dp} A_{n,p}(a)|_{p=2} \le \frac{d}{dp} A_{n,p}(a^{(n)})|_{p=2}\). If this inequality were strict, it might be that \(A_{n,p}(a) \le A_{n,p}(a^{(n)})\) for p close to 2, \(2< p < 2 + \varepsilon _n\).

However, numerical evaluation of (2.3) yields for \(p = 6, p = 8\) and \(n=3, 4\) that \(a^{(n)}\) is not maximal, since

$$\begin{aligned} A_{3,6}(a^{(2)})= & {} 2^{\frac{1}{3}} \simeq 1.260> A_{3,6}(a^{(3)}) \simeq 1.250 \, \\ A_{4,8}(a^{(2)})= & {} 2^{\frac{3}{8}} \simeq 1.297> A_{4,8}(a^{(4)}) \simeq 1.295 > A_{4,8}(a^{(3)}) \simeq 1.270 . \end{aligned}$$