1 Introduction

Carleson measures are important research objects and play powerful role in function spaces and the theory of operators. The concept of it was first introduced by Carleson in [5, 6], where it is used to study interpolating sequences and the corona problem of all bounded analytic functions on the unit disc. After that, there are a large amount of works on characterizations of Carleson measures in or between spaces, including Hardy spaces and Bergman spaces, on various domains, such as Hardy–Carleson measures on the unit disc [9, 22, 31] and on the unit ball [11, 24, 27], Bergman–Carleson measures on the unit ball [19,20,21, 23] and on the polydisc [10] and so on. Then it has been further investigated with the development of the theory of Toeplitz operators, such as harmonic Bergman–Carleson measures on the upper half space [7], holomorphic Bergman-Carleson measures on the strongly pseudoconvex domain [1,2,3,4, 15] and on the Siegel upper half space [17, 30], Besov–Carleson measures on the unit ball [16, 26, 29], and Fock–Carleson measures in \(\mathbb {C}^n\) [12,13,14, 33].

In 2010, Zhao [34] gave a characterization of Carleson measures using products of functions in Hardy spaces on the unit disc. In 2015, Pau and Zhao [25] overcame the lack of Riesz factorization theorem on weighted Bergman spaces and gave a corresponding result on the unit ball. Recently, Abate, Mongodi, and Raissy [1, 4] extended Pau and Zhao’s results to strongly pseudoconvex domains and gave a characterization of skew Carleson measures through products of functions in weighted Bergman spaces. They also obtained the boundedness and compactness of a larger class of Toeplitz operators from one weighted Bergman space to another. Wang and Zhou [32] investigated tent Carleson measures in terms of products of functions in Hardy-type tent spaces and also obtained the boundedness and compactness of Toeplitz operators between distinct Hardy-type tent spaces. Motivated by these results, we aim to give some characterizations of Fock–Carleson measures involving products of functions in Fock spaces.

Let \(\mathbb {C}^n\) be the n-dimensional complex Euclidean space. For \(0<p<\infty \) and \(0<\alpha <\infty \), the function space \(L_{\alpha }^{p}\) consists of all measurable functions f on \(\mathbb {C}^n\) for which

$$\begin{aligned} \Vert f\Vert _{p,\alpha }=\left( \int _{\mathbb {C}^n}\left| f(z) e^{-\frac{\alpha }{2}|z|^{2}}\right| ^{p} \textrm{d}v(z)\right) ^{\frac{1}{p}}<\infty , \end{aligned}$$

where \(\textrm{d}v\) denotes the Lebesgue volume measure. When \(\alpha =0\), we write \(L_{0}^p=L^p\). Let \(H\left( \mathbb {C}^n\right) \) be the family of all holomorphic functions on \(\mathbb {C}^n\). Fock space \(F_\alpha ^p\) is defined by

$$\begin{aligned} F_{\alpha }^{p}:=L_{\alpha }^{p} \cap H\left( \mathbb {C}^n\right) . \end{aligned}$$

It is clear that \(F_{\alpha }^{p}\) is a Banach space under the norm \(\Vert \cdot \Vert _{p,\alpha }\) for \(1\le p<\infty \) and is an Fréchet space under \(d(f,g)=\Vert f-g\Vert _{p,\alpha }^p\) for \(0<p < 1\).

For \(0< p, q<\infty \), a positive Borel measure \(\mu \) on \(\mathbb {C}^n\) is called a (pq)-Fock–Carleson measure if there is a constant \(C>0\) such that

$$\begin{aligned} \int _{\mathbb {C}^n}\left| f(z) e^{-\frac{\alpha }{2}|z|^2}\right| ^q {\text {d}}\mu (z) \le C \Vert f\Vert _{p,\alpha }^q \end{aligned}$$

for any \(f \in F_{\alpha }^{p}\). We say \(\mu \) is a vanishing (pq)-Fock–Carleson measure if

$$\begin{aligned} \lim _{k \rightarrow \infty } \int _{\mathbb {C}^n}\left| f_k(z) e^{-\frac{\alpha }{2}|z|^2}\right| ^q {\text {d}} \mu (z)=0 \end{aligned}$$

whenever \(\left\{ f_k\right\} \) is a bounded sequence in \(F_{\alpha }^p\) that converges to 0 uniformly on any compact subset of \(\mathbb {C}^n\) as \(k \rightarrow \infty \). Since (pq)-Fock–Carleson measures only depend on the ratio \(\lambda :=q/p\), we simply say (vanishing) \((\lambda ,\alpha )\)-Fock–Carleson measures for (vanishing) (pq)-Fock–Carleson measures. We refer the reader to [12] for details. Our main results are the following three theorems.

Theorem 1.1

Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^n\), \(0<p_i,q_i<\infty \) and \(0<\alpha _i<\infty \), where \(i=1, 2, \ldots , k\) and \(k\ge 1\). Set

$$\begin{aligned} \lambda = \sum \limits _{i=1}^{k} \frac{q_i}{p_i}, \quad \gamma = \sum \limits _{i=1}^{k} \alpha _i. \end{aligned}$$
(1.1)

Then \(\mu \) is a (\(\lambda ,\gamma \))-Fock–Carleson measure if and only if there is a constant \(C>0\) such that for any \(f_i \in F_{\alpha _i}^{p_i}\),

$$\begin{aligned} \int _{\mathbb {C}^n} \prod _{i=1}^{k}\left| f_{i}(z)\right| ^{q_i} e^{- \frac{\alpha _i}{2} |z|^2 q_i} {\text {d}} \mu (z) \le C \prod _{i=1}^{k}\left\| f_{i}\right\| _{p_i,\alpha _i}^{q_i}. \end{aligned}$$
(1.2)

Theorem 1.2

Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^n\), \(0<p_i,q_i<\infty \) and \(0<\alpha _i<\infty \), where \(i=1, 2, \ldots , k\) and \(k\ge 1\). Let

$$\begin{aligned} \lambda = \sum \limits _{i=1}^{k} \frac{q_i}{p_i}, \quad \gamma = \sum \limits _{i=1}^{k} \alpha _i. \end{aligned}$$

Then the following statements are equivalent:

  1. (i)

    \(\mu \) is a vanishing \((\lambda , \gamma )\)-Fock–Carleson measure;

  2. (ii)

    For any sequence \(\left\{ f_{1, l}\right\} \) in \(F_{\alpha _1}^{p_1}\) that is convergent to 0 uniformly on any compact subset of \(\mathbb {C}^n\),

    $$\begin{aligned} \lim _{l \rightarrow \infty } F(l)=0, \end{aligned}$$

    where

    $$\begin{aligned} \begin{aligned} F(l)= \sup _{\begin{array}{c} \left\| f_i\right\| _{p_i, \alpha _i} \le 1\\ i=2, \ldots , k \end{array}} \left\{ \int _{\mathbb {C}^n}\left| f_{1, l}(z)e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1} \prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2}\right| ^{q_i} \text {d} \mu (z)\right\} ; \end{aligned} \end{aligned}$$
  3. (iii)

    For any sequences \(\left\{ f_{1, l}\right\} ,\left\{ f_{2, l}\right\} , \ldots ,\left\{ f_{k, l}\right\} \) in \(F_{\alpha _1}^{p_1}, F_{\alpha _2}^{p_2}\), \(\ldots , F_{\alpha _k}^{p_k}\), respectively, that are all convergent to 0 uniformly on any compact subset of \(\mathbb {C}^n\),

    $$\begin{aligned} \lim _{l \rightarrow \infty } \int _{\mathbb {C}^n}\prod _{i=1}^k\left| f_{i, l}(z)e^{-\frac{\alpha _i}{2}|z|^2}\right| ^{q_i} {\text {d}} \mu (z)=0. \end{aligned}$$

The proof of Theorem 1.1, especially the necessity for the case of \(0<\lambda <1\), is related to the boundedness of a class of integral operators defined by

$$\begin{aligned} S_{\mu }^{r, t} f(z) = \int _{\mathbb {C}^n} e^{-\frac{\alpha _2 t}{2} |z-w|^2 } |f(w)|^r e^{- \frac{\alpha _1}{2} |w|^2 r}{\text {d}}\mu (w) \end{aligned}$$

for \(0<r, t<\infty \). When \(r=0\), it is that

$$\begin{aligned} S_{\mu }^{0, t}(z):= \widetilde{\mu }_{t}(z)=\int _{\mathbb {C}^{n}} e^{-\frac{\alpha t}{2}|z-w|^{2}} {\text {d}} \mu (w). \end{aligned}$$
(1.3)

It is just the t-Berezin transform of \(\mu \) defined in [12]. And we see (2.1) in detail. Therefore, we call \(S_{\mu }^{r, t}\) a Berezin-type operator of \(\mu \) on Fock spaces.

Here and follows, we say that the Berezin-type operator \(S_\mu ^{r, t}\) is bounded from a weighted Fock space \(F_{\alpha _1}^{p_1}\) to a Lebesgue space \(L^{p_2}\) if there is a constant \(C>0\) such that \(\Vert S_{\mu }^{r, t} f\Vert _{{p_2}} \le C\Vert f\Vert _{p_1,\alpha _1}^r\) for any \(f \in F_{\alpha _1}^{p_1}\).

Theorem 1.3

Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^{n}\), \(0< p_1, p_2<\infty \) and \(0<\alpha _1, \alpha _2<\infty \). Let

$$\begin{aligned} \lambda =1+\frac{r}{p_1}-\frac{1}{p_2}, \quad \gamma =\alpha _1 + \alpha _2. \end{aligned}$$

Suppose \(\lambda >0\). If \(S_\mu ^{r, t}\) is bounded from \(F_{\alpha _1}^{p_1}\) to \(L^{p_2}\), then \(\mu \) is a \((\lambda , \gamma )\)-Fock–Carleson measure.

A similar class of integral operators on the unit ball of \(\mathbb {C}^n\) was studied in [25, Lemma 3.3], and then its generalizations were studied in [18, 28]. Since the characterization of the Fock–Carleson measure is different from that of the Bergman–Carleson measure on the unit ball, we only give the necessity of the boundedness of \(S_\mu ^{r, t}\) from \(F_{\alpha _1}^{p_1}\) to \(L^{p_2}\). This is enough for proving Theorem 1.1, but we do not know whether the sufficiency of it holds or not. We list it as an open problem.

OpenProblem

Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^{n}\), \(0< p_1, p_2<\infty \) and \(0<\lambda , \gamma <\infty \). If \(\mu \) is a \((\lambda , \gamma )\)-Fock–Carleson measure, then how is the boundedness of \(S_\mu ^{r, t}\) from \(F_{\alpha _1}^{p_1}\) to \(L^{p_2}\)?

The paper is organized as follows. We collect some notations and preliminary results in Sect. 2. We are devoted to proving Theorem 1.3 in Sect. 3 and proving Theorems 1.1 and 1.2 in Sect. 4.

In what follows, the positive constant C may change from line to line but does not depend on the functions. The notation \(A \lesssim B\) means that there is a constant C such that \(A \le C B\), and \(A \simeq B\) means that \( A \lesssim B\) and \(B \lesssim A\).

2 Preliminaries

We list some lemmas in this section. Given \(r>0\) and \(z \in \mathbb {C}^{n}\), the Euclidean ball centered at z with radius r is denoted by

$$\begin{aligned} B(z, r)=\left\{ w \in \mathbb {C}^{n}:|w-z|<r\right\} . \end{aligned}$$

Lemma 2.1

There exists a positive integer N such that for any \(r>0\), we can find a sequence \(\left\{ a_{k}\right\} \) in \(\mathbb {C}^{n}\) with the following properties:

  1. (i)

    \(\bigcup _{k=1}^{\infty } B\left( a_{k}, r\right) =\mathbb {C}^{n}\);

  2. (ii)

    \(\left\{ B\left( a_{k}, \frac{r}{2}\right) \right\} _{k=1}^{\infty }\) are pairwise disjoint;

  3. (iii)

    Each point \(z\in \mathbb {C}^{n}\) belongs to at most N of the sets \(B\left( a_{k}, 2r\right) \).

The sequence \(\left\{ a_{k}\right\} \) satisfying the conditions of Lemma 2.1 is called an r-lattice. We write \(B_k = B(a_{k}, r)\), \({\widetilde{B}}_k = B(a_{k}, 2r)\) for convenience throughout the paper.

Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^{n}\). Notice that v(B(zr)) is a constant independent of z, the average function of \(\mu \) is defined by

$$\begin{aligned} \widehat{\mu }_{r}(z):=\mu (B(z, r)) \end{aligned}$$

for \(z\in \mathbb {C}^n\). Let \(K_{\alpha }(z, w)=e^{\alpha \langle z, w\rangle }\) denote the reproducing kernel of the Fock space \(F_{\alpha }^{2}\). For \(t>0\), the t-Berezin transform of \(\mu \) is defined by

$$\begin{aligned} \widetilde{\mu }_{t}(z)=~&\int _{\mathbb {C}^{n}}\left| \frac{K_{\alpha }(z, w)}{\sqrt{K_{\alpha }(z, z) K_{\alpha }(w, w)}}\right| ^{t} \textrm{d} \mu (w)\nonumber \\ =~&\int _{\mathbb {C}^{n}} e^{-\frac{\alpha t}{2}|z-w|^{2}} {\text {d}} \mu (w). \end{aligned}$$
(2.1)

Lemma 2.2

[12, Theorem 3.1] Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^n\). Set \(\lambda =q / p\) and \(1 \le \lambda <\infty \). Then the following statements are equivalent:

  1. (i)

    \(\mu \) is a \((\lambda , \alpha )\)-Fock–Carleson measure;

  2. (ii)

    \(\widetilde{\mu }_{t}\) is bounded on \(\mathbb {C}^{n}\) for some (or any) \(t>0\);

  3. (iii)

    \(\mu (B(\cdot , \delta ))\) is bounded on \(\mathbb {C}^{n}\) for some (or any) \(\delta >0\);

  4. (iv)

    For some (or any) \(r>0\), the sequence \(\left\{ \mu \left( B\left( a_{k}, r\right) \right) \right\} _{k=1}^{\infty }\) is bounded.

Furthermore,

$$\begin{aligned} \Vert \mu \Vert \simeq \left\| \widetilde{\mu }_{t}\right\| _{\infty } \simeq \left\| \mu (B(\cdot , \delta ))\right\| _{\infty } \simeq \left\| \left\{ \mu \left( B\left( a_{k}, r\right) \right) \right\} \right\| _{\ell ^{\infty }}, \end{aligned}$$

where

$$\begin{aligned} \Vert \mu \Vert = \sup _{f \in F_{\alpha }^p,\Vert f\Vert _{p, \alpha } \le 1}\int _{\mathbb {C}^n}\left| f(z)e^{-\frac{\alpha }{2}|z|^2}\right| ^q {\text {d}}\mu (z). \end{aligned}$$

Lemma 2.3

[12, Theorem 3.2] Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^n\). Set \(\lambda =q / p\) and \(1 \le \lambda <\infty \). Then the following statements are equivalent:

  1. (i)

    \(\mu \) is a vanishing \((\lambda , \alpha )\)-Fock–Carleson measure;

  2. (ii)

    \(\widetilde{\mu }_t(z) \rightarrow 0\) as \(z \rightarrow \infty \) for some (or any) \(t>0\);

  3. (iii)

    \(\mu (B(z, \delta )) \rightarrow 0\) as \(z \rightarrow \infty \) for some (or any) \(\delta >0\);

  4. (iv)

    \(\mu \left( B\left( a_k, r\right) \right) \rightarrow 0\) as \(k \rightarrow \infty \) for some (or any) \(r>0\).

Lemma 2.4

[12, Theorem 3.3] Let \(\mu \) be a positive Borel measure on \(\mathbb {C}^n\). Set \(\lambda =q / p\) and \(0<\lambda <1\). Then the following statements are equivalent:

  1. (i)

    \(\mu \) is a \((\lambda , \alpha )\)-Fock–Carleson measure;

  2. (ii)

    \(\mu \) is a vanishing \((\lambda , \alpha )\)-Fock–Carleson measure;

  3. (iii)

    \(\widetilde{\mu }_{t} \in L^{1/(1-\lambda )}\) for some (or any) \(t>0\);

  4. (iv)

    \(\mu (B(\cdot , \delta )) \in L^{1/(1-\lambda )}\) for some (or any) \(\delta >0\);

  5. (v)

    \(\sum _{k=1}^{\infty } \mu \left( B\left( a_{k}, r\right) \right) ^{1/(1-\lambda )}<\infty \) for some (or any) \(r>0\).

Furthermore,

$$\begin{aligned} \Vert \mu \Vert \simeq \left\| \widetilde{\mu }_{t}\right\| _{1/(1-\lambda )} \simeq \Vert \mu (B(\cdot , \delta ))\Vert _{1/(1-\lambda )} \simeq \left\| \left\{ \mu \left( B\left( a_{k}, r\right) \right) \right\} \right\| _{\ell ^{1/(1-\lambda )}}. \end{aligned}$$

Lemma 2.5

[8, Lemma 3] Suppose \(0<p<\infty \). Then

$$\begin{aligned} \Vert K_\alpha (\cdot , z)\Vert _{p, \alpha }\simeq e^{\frac{\alpha }{2} |z|^2}. \end{aligned}$$
(2.2)

Lemma 2.6

Let \(\nu \) be a positive Borel measure on \(\mathbb {C}^{n}\) and \(0<p, t<\infty \). If \(\{f_k\}\) is a sequence of Lebesgue measurable functions such that

$$\begin{aligned} \begin{aligned} \int _{\mathbb {C}^n}\bigg (\sum _{k=1}^\infty |f_k(z)|^t\bigg )^{p/t}{\text{ d }}\nu (z)<\infty , \end{aligned} \end{aligned}$$

then

$$\begin{aligned} \begin{aligned} \sum _{k=1}^\infty \int _{\widetilde{B}_k} |f_k(z)|^{p} {\text{ d }}\nu (z)\le \max \{1, N^{(t-p)/t}\} \int _{\mathbb {C}^n}\bigg (\sum _{k=1}^\infty |f_k(z)|^t\bigg )^{p/t}{\text{ d }}\nu (z). \end{aligned} \end{aligned}$$

Proof

The proof is divided into two cases. If \(p/t\ge 1\), then \(\ell ^t\) injects continuously into \(\ell ^p\). Thus, we obtain

$$\begin{aligned} \begin{aligned} \int _{\mathbb {C}^n}\sum _{k=1}^\infty |f_k(z)|^p \chi _{\widetilde{B}_k}(z) {\text {d}}\nu (z) \le ~&\int _{\mathbb {C}^n}\left( \sum _{k=1}^\infty |f_k(z)|^t\chi _{\widetilde{B}_k}(z)\right) ^{p/t} {\text {d}}\nu (z)\\ \le ~&\int _{\mathbb {C}^n}\left( \sum _{k=1}^\infty |f_k(z)|^t\right) ^{p/t} {\text {d}}\nu (z). \end{aligned} \end{aligned}$$

If \(0<p/t<1\), then \(t/p> 1\). Using Hölder’s inequality, we have

$$\begin{aligned} \begin{aligned} \int _{\mathbb {C}^n}\sum _{k=1}^\infty |f_k(z)|^p \chi _{\widetilde{B}_k}(z) {\text {d}}\nu (z) \le ~&\int _{\mathbb {C}^n}\left( \sum _{k=1}^\infty |f_k(z)|^t\right) ^{p/t} \bigg (\sum _{k=1}^\infty \chi _{\widetilde{B}_k}(z)\bigg )^{(t-p)/t} {\text {d}}\nu (z)\\ \le ~&N^{(t-p)/t}\int _{\mathbb {C}^n}\left( \sum _{k=1}^\infty |f_k(z)|^t\right) ^{p/t}{\text {d}}\nu (z). \end{aligned} \end{aligned}$$

The proof is complete. \(\square \)

Lemma 2.7

Let \(\left\{ a_k\right\} \) be an r-lattice, \(0 < p \le \infty \) and \(\left\{ \lambda _k\right\} \in \ell ^p\). If

$$\begin{aligned} f(z)=\sum _{k=1}^{\infty }\lambda _k e^{\alpha \langle z,a_k \rangle -\frac{\alpha }{2}|a_k|^2}, \end{aligned}$$

then \(f \in F_{\alpha }^{p}\) and \(\Vert f\Vert _{p,\alpha } \lesssim \Vert \left\{ \lambda _k\right\} \Vert _{\ell ^p}\).

Proof

Since the result has been proven in [12, Lemma 2.4] for \(1\le p\le \infty \), it suffices to prove the case \(0<p<1\). If \(0<p<1\), then we get

$$\begin{aligned} \Vert f\Vert _{p,\alpha }^p&\le \sum _{k=1}^{\infty }|\lambda _k|^p \int _{\mathbb {C}^n}\left| e^{\alpha \langle z,a_k \rangle -\frac{\alpha }{2}|a_k|^2} e^{-\frac{\alpha }{2}|z|^2} \right| ^p \textrm{d}v(z) \\ \le&C\sum _{k=1}^{\infty }|\lambda _k|^p\int _{\mathbb {C}^n} e^{-\frac{\alpha p}{2}|z-a_k|^2}\textrm{d}v(z)\\ \lesssim&\sum _{k=1}^{\infty }|\lambda _k|^p. \end{aligned}$$

The proof is complete. \(\square \)

3 Proof of Theorem 1.3

We are devoted to proving Theorem 1.3 in this section. Two inequalities related to Rademacher functions will be used. We use the notation \(r_k\) to denote Rademacher functions as follows

$$\begin{aligned} r_0(s)&~=~{\left\{ \begin{array}{ll} 1, &{} 0\le s-[s]<1/2, \\ -1, &{} 1/2\le s-[s]<1, \end{array}\right. }\\ r_k(s)&~=~ r_0(2^ks) \ \textrm{for}\ k=1, 2, \ldots . \end{aligned}$$

Here [s] denotes the largest integer not greater than s. One is Khinchine’s inequality. For \(0<p<\infty \), there exist constants \(0<A_p \le B_p<\infty \) such that

$$\begin{aligned} \begin{aligned} A_p\left( \sum _{k=1}^m\left| c_k\right| ^2\right) ^{p / 2} \le \int _0^1\left| \sum _{k=1}^m c_k r_k(s)\right| ^p {\text{ d }}s \le B_p\left( \sum _{k=1}^m\left| c_k\right| ^2\right) ^{p / 2} \end{aligned} \end{aligned}$$

for all nonnegative integers m and all complex numbers \(c_1, c_2, \ldots , c_m\). The other one is Khinchine-Kahane-Kalton inequality. If \(0<p, q<\infty \), then

$$\begin{aligned} \begin{aligned} \left( \int _0^1\left\| \sum _{k=1}^\infty x_k r_k(s)\right\| _X^q {\text{ d }}s\right) ^{\frac{1}{q}} \simeq \left( \int _0^1\left\| \sum _{k=1}^\infty x_k r_k(s)\right\| _X^p {\text{ d }} s\right) ^{\frac{1}{p}} \end{aligned} \end{aligned}$$

for any sequence \(\left\{ x_k\right\} \subset X\), where X is a quasi-Banach space with quasi-norm \(\Vert \cdot \Vert _X\). See [23] in detail.

Proof of Theorem 1.3

We divide the proof into two cases: \(\lambda \ge 1\) and \(0<\lambda <1\).

Case I: \(\lambda \ge 1\). For fixed \(a \in \mathbb {C}^n\), set

$$\begin{aligned} f_a(z)=\frac{e^{\alpha _1 \langle z,a \rangle }}{e^{\frac{\alpha _1}{2}|a|^2}}, \quad z\in \mathbb {C}^n. \end{aligned}$$

It follows from Lemma 2.5 that \(f_a\in F_{\alpha _1}^{p_1}\) and \(\Vert f_a\Vert _{p_1, \alpha _1}\lesssim 1\). Since for any \(z, w\in B(a, \delta )\) with some given \(\delta >0\), we have

$$\begin{aligned} |z-w|\le |z-a|+|w-a|<2\delta . \end{aligned}$$

Therefore, for any \(z \in B(a,\delta )\), we get

$$\begin{aligned} \mu (B(a,\delta ))&= \int _{B(a, \delta )}{\text {d}}\mu (w) \nonumber \\ {}&\le e^{\frac{\alpha _1 r}{2} \delta ^2} \cdot e^{\frac{\alpha _2 t}{2}(2\delta )^2} \cdot \int _{B(a,\delta )}e^{-\frac{\alpha _2 t}{2}|z-w|^2}\cdot e^{-\frac{\alpha _1 r}{2}|w-a|^2}{\text {d}}\mu (w)\nonumber \\&= e^{\frac{\alpha _1 r}{2} \delta ^2+\frac{\alpha _2 t}{2}(2\delta )^2 }\int _{B(a, \delta )}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|f_a(w)|^r e^{-\frac{\alpha _1}{2}|w|^2 r}{\text {d}}\mu (w) \nonumber \\ {}&\le e^{\frac{\alpha _1 r}{2} \delta ^2+\frac{\alpha _2 t}{2}(2\delta )^2 }S_{\mu }^{r, t} f_a(z). \end{aligned}$$
(3.1)

Thus,

$$\begin{aligned} \mu (B(a,\delta ))^{p_2}&\lesssim \int _{B(a,\delta )} \mu (B(a,\delta ))^{p_2}\textrm{d}v(z) \lesssim \int _{B(a,\delta )}S_{\mu }^{r, t} f_a(z) ^{p_2}\textrm{d}v(z) \\&\le \int _{\mathbb {C}^n}\left| S_{\mu }^{r, t} f_a(z) \right| ^{p_2}\textrm{d}v(z) \le C \Vert f_a\Vert _{p_1,\alpha _1}^{rp_2} \lesssim C. \end{aligned}$$

This shows that \(\mu \) is a \((\lambda , \gamma )\)-Fock–Carleson measure by Lemma 2.2.

Case II: \(0<\lambda <1\). Let \(\left\{ a_k\right\} \) be an r-lattice on \(\mathbb {C}^n\). For any sequence of real numbers \(\left\{ \lambda _k\right\} \in \ell ^{p_1}\), set

$$\begin{aligned} f_s(z)=\sum _{k=1}^{\infty } \lambda _k r_k(s)g_k(z), \end{aligned}$$

where

$$\begin{aligned} g_k(z)=e^{\alpha _1 \langle z, a_k \rangle - \frac{\alpha _1}{2}|a_k|^2}. \end{aligned}$$

Then Lemma 2.7 implies \(f_s(z)\in F_{\alpha _1}^{p_1} \) and \(\left\| f_s\right\| _{{p_1},\alpha _1} \lesssim \left\| \left\{ \lambda _k\right\} \right\| _{\ell ^{p_1}}\) for almost every \(s\in (0,1)\). Hence, the condition shows that

$$\begin{aligned} \left\| S_{\mu }^{r, t} f_s\right\| _{{p_2}}^{p_2} = \int _{\mathbb {C}^n}\left| S_{\mu }^{r, t} f_s(z) \right| ^{p_2}\textrm{d}v(z) \le C^{p_2}\Vert f_s\Vert _{{p_1},\alpha _1}^{rp_2} \lesssim C^{p_2} \left\| \left\{ \lambda _k\right\} \right\| _{\ell ^{p_1}}^{rp_2} \end{aligned}$$

for almost every \(s \in (0,1)\). Integrating both sides with respect to s from 0 to 1, we have

$$\begin{aligned} \begin{aligned} \int _{0}^1 \left\| S_{\mu }^{r,t} f_s\right\| _{{p_2}}^{p_2} {\text {d}}s \lesssim C^{p_2}\left\| \left\{ \lambda _k\right\} \right\| _{\ell ^{p_1}}^{rp_2}. \end{aligned} \end{aligned}$$
(3.2)

Applying Fubini’s theorem and Khinchine-Kahane-Kalton inequality, we obtain

$$\begin{aligned} \int _{0}^1 \left\| S_{\mu }^{r,t} f_s\right\| _{{p_2}}^{p_2} \textrm{d}s&=\int _{\mathbb {C}^n}\int _{0}^1 \left| S_{\mu }^{r,t} f_s(z) \right| ^{p_2}\textrm{d}s\textrm{d}v(z)\\&=\int _{\mathbb {C}^n}\int _{0}^1\left( \int _{\mathbb {C}^n} e^{-\frac{\alpha _2 t}{2}|z-w|^2}\big |\sum _{k=1}^{\infty } \lambda _k r_k(s)g_k(w)\big |^r e^{-\frac{\alpha _1}{2}|w|^2 r} {\text {d}}\mu (w)\right) ^{p_2}\textrm{d}s \textrm{d}v(z)\\& > rsim \int _{\mathbb {C}^n}\left( \int _{0}^1\int _{\mathbb {C}^n} e^{-\frac{\alpha _2 t}{2}|z-w|^2}\big |\sum _{k=1}^{\infty } \lambda _k r_k(s)g_k(w)\big |^r e^{-\frac{\alpha _1}{2}|w|^2 r} {\text {d}}\mu (w) \textrm{d}s\right) ^{p_2} \textrm{d}v(z). \end{aligned}$$

Therefore, using Fubini’s theorem and Khinchine’s inequality, we have

$$\begin{aligned} \int _{0}^1 \left\| S_{\mu }^{r,t} f_s\right\| _{{p_2}}^{p_2} \textrm{d}s& > rsim \int _{\mathbb {C}^n}\left( \int _{\mathbb {C}^n}\left( \sum \limits _{k=1}^{\infty }|\lambda _k|^2 |g_k(w)|^2\right) ^{r/2} e^{-\frac{\alpha _2 t}{2}|z-w|^2} e^{-\frac{\alpha _1}{2}|w|^2 r} {\text {d}}\mu (w)\right) ^{p_2} \textrm{d}v(z). \end{aligned}$$
(3.3)

Remember that \(B_k:=B(a_k, \delta )\) and \(\widetilde{B}_k:=B(a_k, 2\delta )\) with \(\delta >0\). A similar discussion to (3.1) implies that

$$\begin{aligned} \mu (B_k) \lesssim ~&\int _{B_k}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w) \end{aligned}$$

for \(z\in B_k\). Thus,

$$\begin{aligned} \mu (B_k)^{p_2}\lesssim ~&\bigg ( \int _{\widetilde{B}_k}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w)\bigg )^{p_2}\\ \lesssim ~&\int _{B_k}\bigg ( \int _{\widetilde{B}_k}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w)\bigg )^{p_2}\textrm{d}v(z)\\ \lesssim ~&\int _{\widetilde{B}_k}\bigg ( \int _{\widetilde{B}_k}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w)\bigg )^{p_2}\textrm{d}v(z). \end{aligned}$$

It follows that

$$\begin{aligned} \sum _{k=1}^{\infty }|\lambda _k|^{rp_2}{\mu (B_k)^{p_2}}&\lesssim \sum _{k=1}^\infty \int _{\widetilde{B}_k}|\lambda _k|^{rp_2}\bigg (\int _{{\widetilde{B}}_k}e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w)\bigg )^{p_2}\textrm{d}v(z). \end{aligned}$$

Using Lemma 2.6 twice, we obtain

$$\begin{aligned} \sum _{k=1}^{\infty }|\lambda _k|^{rp_2}{\mu (B_k)^{p_2}}&\lesssim \int _{\mathbb {C}^n}\bigg (\sum _{k=1}^\infty |\lambda _k|^{r}\int _{{\widetilde{B}}_k} e^{-\frac{\alpha _2 t}{2}|z-w|^2}|g_k(w)|^re^{-\frac{\alpha _1}{2}|w|^2r}{\text {d}}\mu (w)\bigg )^{p_2}\textrm{d}v(z)\\&\lesssim \int _{\mathbb {C}^n}\left( \int _{\mathbb {C}^n}\left( \sum \limits _{k=1}^{\infty }|\lambda _k|^2 |g_k(w)|^2\right) ^{r/2} e^{-\frac{\alpha _2 t}{2}|z-w|^2} e^{-\frac{\alpha _1}{2}|w|^2 r} {\text {d}}\mu (w)\right) ^{p_2}\textrm{d}v(z). \end{aligned}$$

This, together with (3.2) and (3.3), yields

$$\begin{aligned} \sum _{k=1}^{\infty }|\lambda _k|^{rp_2}{\mu (B_k)^{p_2}} \lesssim \left\| \left\{ \lambda _k\right\} \right\| _{\ell ^{p_1}}^{rp_2}. \end{aligned}$$

The duality of \(l^{p_1/(r p_2)}\) and \(l^{1/((1-\lambda )p_2)}\) gives

$$\begin{aligned} \left\{ \mu (B_k)\right\} \in \ell ^{1 /(1-\lambda )}. \end{aligned}$$

This shows \(\mu \) is a \((\lambda , \gamma )\)-Fock–Carleson measure in view of Lemma 2.4. The proof is complete. \(\square \)

4 Proofs of Theorems 1.1 and 1.2

Lemma 4.1

Let \(0<p_{i}, q_{i}<\infty \), \(0<\alpha _i<\infty \), \(f_{i} \in F_{\alpha _{i}}^{p_{i} / q_{i}}\), where \(i=1,2, \ldots , k\). If

$$\begin{aligned} \lambda = \sum \limits _{i=1}^{k} \frac{q_i}{p_i}, \quad \gamma = \sum \limits _{i=1}^{k} \alpha _i, \end{aligned}$$

then \(\prod \limits _{i=1}^{k} f_{i} \in F_{\gamma }^{1 / \lambda }\) and

$$\begin{aligned} \left\| \prod _{i=1}^{k} f_{i}\right\| _{{1 / \lambda },{\gamma }} \lesssim \prod _{i=1}^{k}\left\| f_{i}\right\| _{{p_{i} / q_{i}, \alpha _{i}}}. \end{aligned}$$
(4.1)

Proof

Let \(f_{i} \in F_{\alpha _{i}}^{p_{i} / q_{i}}\), where \(i=1, 2, \ldots , k\). Since \(\sum _{i=1}^k q_i/(p_i\lambda )=1\), it follows from Hölder’s inequality that

$$\begin{aligned} \begin{aligned} \Big \Vert \prod _{i=1}^{k} f_{i} \Big \Vert _{{1 / \lambda },{\gamma }}&=\left( \int _{\mathbb {C}^n} \left| \prod _{i=1}^{k} |f_{i}(z)| e^{- \frac{\gamma }{2} |z|^2}\right| ^{1 / \lambda } {\text {d}} v(z)\right) ^{\lambda }\\ {}&= \left( \int _{\mathbb {C}^n} \prod _{i=1}^{k}\left| f_{i}(z)\right| ^{1 / \lambda } e^{- \frac{\alpha _i}{2} |z|^2/\lambda } {\text {d}} v(z)\right) ^{\lambda } \\ {}&\lesssim \prod _{i=1}^{k}\left( \int _{\mathbb {C}^n}\left| f_{i}(z)\right| ^{(1 / \lambda )(p_{i} \lambda / q_{i})} e^{(- \frac{\alpha _i}{2} |z|^2/\lambda )(p_{i} \lambda / q_{i})} {\text {d}} v(z)\right) ^{{q_{i} / {p_{i}}}} \\ {}&= \prod _{i=1}^{k}\left( \int _{\mathbb {C}^n}\left| f_{i}(z)\right| ^{p_{i} / q_{i}} e^{-{\frac{\alpha _i}{2} |z|^2} ({p_i} / {q_i}) } {\text {d}} v(z)\right) ^{q_{i} / p_{i}} \\ {}&\lesssim \prod _{i=1}^{k}\left\| f_{i}\right\| _{{p_{i} / q_{i},{\alpha _{i}}}}. \end{aligned} \end{aligned}$$

The proof is complete. \(\square \)

Proof of Theorem 1.1

First, we prove the necessity. Assume that \(\mu \) is a (\(\lambda ,\gamma \))-Fock–Carleson measure. It suffices to prove \(k\ge 2\), since the result is just the definition when \(k=1\). It follows from Lemma 4.1 that if \(h_i \in F_{\alpha _{i}}^{p_{i} / q_{i}}\) for any \(i=1,2,\ldots ,k\), then \(\prod \nolimits _{i=1}^{k} h_i \in F_{\gamma }^{1 / \lambda }\). Because \(\mu \) is a (\(\lambda ,\gamma \))-Fock–Carleson measure, we have

$$\begin{aligned} \int _{\mathbb {C}^n} \left| \prod _{i=1}^{k} h_{i}(z)\right| e^{{- \frac{\gamma }{2}} |z|^2} {\text {d}} \mu (z)&\le C\Vert \prod _{i=1}^{k} h_{i} \Vert _{{1 / \lambda }, {\gamma }}. \nonumber \end{aligned}$$

This, together with (4.1), gives

$$\begin{aligned} \int _{\mathbb {C}^n} \prod _{i=1}^{k}\bigg (|h_i(z)| e^{- \frac{\alpha _i}{2} |z|^2}\bigg ){\text {d}}\mu (z) \le C\prod _{i=1}^{k}\left\| h_{i}\right\| _{{p_{i} / q_{i}}, {\alpha _i}}. \end{aligned}$$
(4.2)

Let

$$\begin{aligned} {\text {d}}\mu _1 = \left( \prod _{i=2}^{k}|h_i| e^{- \frac{\alpha _i}{2} |z|^2}{\text {d}}\mu \right) \Big / \left( \prod _{i=2}^{k} \Vert h_i\Vert _{{p_{i} / q_{i}},{\alpha _i}} \right) . \end{aligned}$$

Then (4.2) is equivalent to

$$\begin{aligned} \int _{\mathbb {C}^n} \left| h_1(z)\right| e^{- \frac{\alpha _1}{2} |z|^2}{\text {d}}\mu _1(z) \le C\Vert h_1\Vert _{{p_1/q_1}, {\alpha _1}}. \end{aligned}$$

Thus, \(\mu _1\) is a (\(q_1 / p_1,\alpha _1\))-Fock–Carleson measure. Therefore, for any \(f_1 \in F_{\alpha _1}^{p_1}\),

$$\begin{aligned} \int _{\mathbb {C}^n}\left| f_1(z)\right| ^{q_1} e^{{-\frac{\alpha _1}{2} |z|^2}q_1}{\text {d}}\mu _1(z) \le C {\Vert f_1\Vert _{{p_1},{\alpha _1}}^{q_1}}, \end{aligned}$$

which is the same as

$$\begin{aligned} \int _{\mathbb {C}^n}\left| f_1(z)\right| ^{q_1} e^{-{\frac{\alpha _1}{2}}|z|^2{q_1}} \prod _{i=2}^{k} |h_{i}(z)| e^{- \frac{\alpha _i}{2} |z|^2}{\text {d}}\mu (z) \le C \Vert f_1\Vert _{{p_1},{\alpha _1}}^{q_1} \prod _{i=2}^{k}\left\| h_{i}\right\| _{{p_{i} / q_{i}},{\alpha _i}}. \end{aligned}$$
(4.3)

Let

$$\begin{aligned} {\text {d}}\mu _2 =\left( |f_1|^{q_1} e^{{-\frac{\alpha _1}{2} |z|^2}q_1} \prod _{i=3}^{k}|h_i| e^{- \frac{\alpha _i}{2} |z|^2}{\text {d}}\mu \right) \Big / \left( \Vert f_1\Vert _{{p_1},{\alpha _1}}^{q_1} \prod _{i=3}^{k}\left\| h_{i}\right\| _{{p_{i} / q_{i}},{\alpha _i}} \right) . \end{aligned}$$

Then (4.3) is the same as

$$\begin{aligned} \int _{\mathbb {C}^n} \left| h_2(z)\right| e^{- \frac{\alpha _2}{2} |z|^2}{\text {d}}\mu _2(z) \le C\Vert h_2\Vert _{{p_2/q_2},{\alpha _2}}. \end{aligned}$$

This means that \(\mu _2\) is a (\(q_2 / p_2,\alpha _2\))-Fock–Carleson measure. Therefore, for any \(f_2 \in F_{\alpha _2}^{p_2}\),

$$\begin{aligned} \int _{\mathbb {C}^n}\left| f_2(z)\right| ^{q_2} e^{-{\frac{\alpha _2}{2}}|z|^2{q_2}}{\text {d}}\mu _2(z) \le C\Vert f_2\Vert _{{p_2},{\alpha _2}}^{q_2}, \end{aligned}$$

that is

$$\begin{aligned}&\int _{\mathbb {C}^n}\left| f_1(z)\right| ^{q_1} e^{-{\frac{\alpha _1}{2}}|z|^2{q_1}} \left| f_2(z)\right| ^{q_2} e^{-{\frac{\alpha _2}{2}}|z|^2{q_2}}\prod _{i=3}^{k} |h_{i}(z)| e^{- \frac{\alpha _i}{2} |z|^2}{\text {d}}\mu (z)\\ {}&~\le C \Vert f_1\Vert _{{p_1},{\alpha _1}}^{q_1} \Vert f_2\Vert _{{p_2},{\alpha _2}}^{q_2} \prod _{i=3}^{k}\left\| h_{i}\right\| _{{p_{i} / q_{i}},{\alpha _i}}. \end{aligned}$$

Continuing this process, we eventually have

$$\begin{aligned} \int _{\mathbb {C}^n} \prod _{i=1}^{k}\left| f_{i}(z)\right| ^{q_i} e^{- \frac{\alpha _i}{2} |z|^2 q_i} {\text {d}} \mu (z) \le C \prod _{i=1}^{k}\left\| f_{i}\right\| _{{p_{i}},{\alpha _i}}^{q_i}. \end{aligned}$$

Hence, we obtain (1.2). The proof of the necessity for Theorem 1.1 is complete.

Next, we prove the sufficiency. Assume that (1.2) holds for any \(f_i \in F_{\alpha _{i}}^{p_{i} / q_{i}}, i=1,2,\ldots ,k\). We aim to prove that \(\mu \) is a (\(\lambda ,\gamma \))-Fock–Carleson measure. The proof is divided into two cases: \(\lambda \ge 1\) and \(0<\lambda <1\).

Case I: \(\lambda \ge 1\). For fixed \(z\in \mathbb {C}^n\), set

$$\begin{aligned} f_{i,z}(w)= \frac{e^{{\alpha _i}\langle w, z\rangle }}{e^{\frac{\alpha _i}{2}{|z|^2}}},\; w \in \mathbb {C}^n, \end{aligned}$$

where \(i=1,2,\ldots ,k\). By (2.2), we have \(f_{i, z} \in F_{\alpha _i}^{p_i}\) with \(\Vert f_{i,z}\Vert _{{p_i},{\alpha _i}}\simeq 1\). Thus, (1.2) implies

$$\begin{aligned} \int _{\mathbb {C}^n} \prod _{i=1}^{k}\left| f_{i,z}(w)\right| ^{q_i} e^{- \frac{\alpha _i}{2} |w|^2 q_i} {\text {d}} \mu (w) \le C \prod _{i=1}^{k}\left\| f_{i,z}\right\| _{{p_i},{\alpha _i}}^{q_i}. \end{aligned}$$
(4.4)

Let \(t = \max \left\{ q_1,q_2,\ldots ,q_k\right\} \). Then

$$\begin{aligned} \widetilde{\mu _t}(z)&\simeq \int _{\mathbb {C}^n} \left| {\frac{e^{\gamma \langle w, z\rangle }}{e^{{\frac{\gamma }{2}}|z|^2}}} e^{- {\frac{\gamma }{2}}|w|^2}\right| ^t {\text {d}}\mu (w)\\&\le \int _{\mathbb {C}^n} \prod _{i=1}^{k} \left| \frac{e^{{\alpha _i}\langle w, z\rangle }}{e^{\frac{\alpha _i}{2} |z|^2}} e^{- \frac{\alpha _i}{2} |w|^2}\right| ^{q_i} {\text {d}}\mu (w)\\ =&\int _{\mathbb {C}^n} \prod _{i=1}^{k}\left| f_{i,z}(w)\right| ^{q_i} e^{- \frac{\alpha _i}{2} |w|^2 q_i} {\text {d}} \mu (w). \end{aligned}$$

This, together with (4.4), shows

$$\begin{aligned} \widetilde{\mu _t}(z)&\le C\prod _{i=1}^{k} \Vert f_{i,z}\Vert _{{p_i},{\alpha _i}}^{q_i}\lesssim C. \end{aligned}$$

Thus, \(\widetilde{\mu _t}(z)\) is bounded. It follows from Lemma 2.2 that \(\mu \) is a (\(\lambda ,\gamma \))-Fock–Carleson measure.

Case II: \(0<\lambda <1\). The proof is by induction on k. If \(k = 1\), then (1.2) is just the definition of \((\lambda , \gamma )\)-Fock–Carleson measure. Assume that the result holds for \(k-1\) functions for \(k \ge 2\). Set \(\lambda _k = \lambda \), \(\gamma _k = \gamma \) and

$$\begin{aligned} \lambda _{k-1} = \sum \limits _{i=1}^{k-1} \frac{q_i}{p_i}, \quad \gamma _{k-1}=\sum \limits _{i=1}^{k-1}{\alpha _i }. \end{aligned}$$

Denote

$$\begin{aligned} {\text {d}}\mu _k(z)=|f_k(z)|^{q_k} e^{- \frac{\alpha _k}{2} |z|^2 {q_k}}{\text {d}}\mu (z). \end{aligned}$$

Then we rewrite the condition (1.2) as

$$\begin{aligned} \int _{\mathbb {C}^n} \prod _{i=1}^{k-1}\left| f_{i}(z)\right| ^{q_i} e^{- \frac{\alpha _i}{2} |z|^2 q_i} {\text {d}} \mu _k(z) \le C (f_k) \prod _{i=1}^{k-1}\left\| f_{i}\right\| _{p_{i},{\alpha _i}}^{q_i} \end{aligned}$$

with \(C(f_k) = C\Vert f_k\Vert _{{p_k},{\alpha _k}}^{q_k}\). It follows from the induction assumption that \(\mu _k\) is a (\(\lambda _{k-1},\gamma _{k-1}\))-Fock–Carleson measure with \(\Vert \mu _k\Vert \lesssim C(f_k)\). Since \(0<\lambda _{k-1}<\lambda <1\), it follows from Lemma 2.4 that \(\widetilde{\mu }_{k,t} \in L^{1 / (1-\lambda _{k-1})}\) for any \(t>0\) with

$$\begin{aligned} \Vert \widetilde{\mu }_{k,t}\Vert _{{1 / (1-\lambda _{k-1})}} \lesssim C\Vert f_k\Vert _{{p_k},{\alpha _k}}^{q_k}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \widetilde{\mu }_{k, t}=\int _{\mathbb {C}^n}e^{-\frac{t\gamma _{k-1}}{2}|z-w|^2}{\text{ d }}\mu _k(w). \end{aligned} \end{aligned}$$

That is,

$$\begin{aligned}&\bigg ( \int _{\mathbb {C}^n} \left| \int _{\mathbb {C}^n} e^{-\frac{\gamma _{k-1}t}{2}|z-w|^2} |f_k(w)|^{q_k} e^{- \frac{\alpha _k}{2} |w|^2 {q_k}} {\text {d}}\mu (w)\right| ^{1 / (1-\lambda _{k-1})} \textrm{d}v(z) \bigg )^{1-\lambda _{k-1}}\\ {}&\quad \lesssim C\Vert f_k\Vert _{{p_k},{\alpha _k}}^{q_k}. \end{aligned}$$

This, together with the definition of \( S_{\mu }^{q_k,t}\) in Theorem 1.3, implies

$$\begin{aligned} \left\| S_{\mu }^{q_k, t} f_k \right\| _{{1/(1-\lambda _{k-1})}} \le C\Vert f_k\Vert _{{p_k},{\alpha _k}}^{q_k}, \end{aligned}$$

where \(f_k \in F_{\alpha _k}^{p_k}\). Thus, by Theorem 1.3, \(\mu \) is a \((\lambda ^{*},\gamma ^{*})\)-Fock–Carleson measure, where

$$\begin{aligned} \lambda ^{*}=1+\frac{q_k}{p_k}-(1-\lambda _{k-1}),\quad \gamma ^{*}=\gamma _{k-1}+\alpha _k. \end{aligned}$$

It follows from the definitions of \(\lambda _{k-1}, \gamma _{k-1}\) and (1.1) that \(\lambda ^{*}=\lambda \) and \(\gamma ^*=\gamma \). The proof is complete. \(\square \)

Proof of Theorem 1.2

If \(0<\lambda <1\), then by Lemma 2.4 we know that \(\mu \) is a \((\lambda , \alpha )\)-Fock–Carleson measure if and only if \(\mu \) is a vanishing \((\lambda , \alpha )\)-Fock–Carleson measure. It is just a consequence of Theorem 1.1. And so it suffices to prove the theorem in the case of \(\lambda >1\). Since (ii)\(\Longrightarrow \)(iii) is obvious, the theorem will be proved by showing (i) \(\Longrightarrow \)(ii) and (iii)\(\Longrightarrow \)(i).

(i) \(\Longrightarrow \)(ii). Assume that \(\mu \) is a vanishing \((\lambda , \gamma )\)-Fock–Carleson measure. Let \(\left\{ f_{1, l}\right\} \) be any bounded sequence in \(F_{\alpha _1}^{p_1}\) and \(f_{1, l} \rightarrow 0\) uniformly on each compact subset of \(\mathbb {C}^n\) as \(l \rightarrow \infty \). Suppose that \(\left\{ f_i\right\} \) is an arbitrary sequence in \(F_{\alpha _i}^{p_i}\) with \(\Vert f_i\Vert _{p_i, \alpha _i}\le 1\) for \(i=2,3, \ldots , k\). For \(r>0\), denote \(B_r:=B(0, r)\), and \(\mu _r\) the restriction of \(\mu \) to \(\mathbb {C}^n \backslash B_r\). Then \(\mu _r\) is also a \((\lambda , \gamma )\)-Fock–Carleson measure, and

$$\begin{aligned} \lim _{r \rightarrow \infty }\Vert \mu _r\Vert =0. \end{aligned}$$

On one hand, by Theorem 1.1, we obtain that for any \(\varepsilon >0\) small enough, there exists an r large enough such that

$$\begin{aligned}&\int _{\mathbb {C}^n\backslash B_r}\left| f_{1, l}(z) e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1}\prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z) \\&\quad = \int _{\mathbb {C}^n}\left| f_{1, l}(z) e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1}\prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu _r(z) \\ {}&\quad \le \Vert \mu _r\Vert \cdot \Vert f_{1, l}\Vert _{p_1, \alpha _1}^{q_1} \cdot \prod _{i=2}^k \left\| f_i\right\| _{p_i,\alpha _i}^{q_i} \lesssim \varepsilon . \end{aligned}$$

Fix this r. Since \(\left\{ f_{1, l}\right\} \) converges to 0 uniformly on each compact subset of \(\mathbb {C}^n\), there is a constant \(K>0\) such that for any \(l>K\), \(\left| f_{1, l}(z)\right| <\varepsilon \) for any \(z \in B_r\). Therefore, using Theorem 1.1 again, we have

$$\begin{aligned}&\int _{B_r}\left| f_{1, l}(z) e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1} \prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z) \\&\quad \le \varepsilon \int _{\mathbb {C}^n} 1 \cdot e^{-\frac{\alpha _1}{2}|z|^2q_1} \cdot \prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z) \\&\quad \lesssim \varepsilon \left\| 1\right\| _{p_1, \alpha _1}^{q_1}\prod _{i=2}^k \left\| f_i\right\| _{p_i,\alpha _i}^{q_i} \lesssim \varepsilon \end{aligned}$$

for \(l>K\). Thus, we get

$$\begin{aligned}&\limsup _{l \rightarrow \infty }\int _{\mathbb {C}^n}\left| f_{1, l}(z) e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1} \prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z)\\&\quad = \limsup _{l \rightarrow \infty }\left( \int _{B_r}+\int _{\mathbb {C}^n \backslash B_r}\right) \left| f_{1, l}(z) e^{-\frac{\alpha _1}{2}|z|^2}\right| ^{q_1} \prod _{i=2}^k\left| f_i(z)e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z) \lesssim \varepsilon . \end{aligned}$$

It follows from the arbitrariness of \(\varepsilon \) that \(\lim \limits _{l\rightarrow \infty } F(l)=0\).

(iii) \(\Longrightarrow \) (i). For fixed \(a\in \mathbb {C}^n\), take

$$\begin{aligned} f_{i, a}(z)=\frac{e^{{\alpha _i}\langle z, a\rangle }}{e^{\frac{\alpha _i}{2}{|a|^2}}},\quad z\in \mathbb {C}^n, \end{aligned}$$

where \(i=1,2,\ldots ,k\). By (2.2), we know that \(f_{i,a} \in F_{\alpha _i}^{p_i}\) with \(\Vert f_{i,a}\Vert _{{p_i},{\alpha _i}}\simeq 1\). Furthermore, it is easy to check that \(f_{i,a}\rightarrow 0\) uniformly on any compact subset of \(\mathbb {C}^n\) as \(|a|\rightarrow \infty \). Thus, (iii) implies

$$\begin{aligned} \begin{aligned} \lim _{|a| \rightarrow \infty } \int _{\mathbb {C}^n} \prod _{i=1}^k \left| \frac{e^{{\alpha _i}\langle z, a\rangle }}{e^{\frac{\alpha _i}{2}{|a|^2}}} e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z)=0. \end{aligned} \end{aligned}$$

Let \(t = \max \left\{ q_1,q_2,\ldots ,q_k\right\} \). Then

$$\begin{aligned} \begin{aligned} \lim _{|a| \rightarrow \infty }\int _{\mathbb {C}^n}e^{-\frac{\gamma t}{2}|z-a|^2}{\text{ d }} \mu (z) \le \lim _{|a| \rightarrow \infty } \int _{\mathbb {C}^n} \prod _{i=1}^k \left| \frac{e^{{\alpha _i}\langle z, a\rangle }}{e^{\frac{\alpha _i}{2}{|a|^2}}} e^{-\frac{\alpha _i}{2}|z|^2} \right| ^{q_i} {\text {d}} \mu (z)=0. \end{aligned} \end{aligned}$$

This shows \(\mu \) is a vanishing (\(\lambda ,\gamma \))-Fock–Carleson measure by Lemma 2.3. The proof is complete. \(\square \)