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Abstract

We characterize (vanishing) Fock—Carleson measures by products of functions in Fock
spaces. We also study the boundedness of Berezin-type operators from a weighted
Fock space to a Lebesgue space. Due to the special properties of Fock—Carleson
measures, the boundedness of Berezin-type operators on Fock spaces is different from
the corresponding results on Bergman spaces.
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1 Introduction

Carleson measures are important research objects and play powerful role in function
spaces and the theory of operators. The concept of it was first introduced by Carleson
in [5, 6], where it is used to study interpolating sequences and the corona problem of
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all bounded analytic functions on the unit disc. After that, there are a large amount
of works on characterizations of Carleson measures in or between spaces, including
Hardy spaces and Bergman spaces, on various domains, such as Hardy—Carleson
measures on the unit disc [9, 22, 31] and on the unit ball [11, 24, 27], Bergman—
Carleson measures on the unit ball [19-21, 23] and on the polydisc [10] and so on.
Then it has been further investigated with the development of the theory of Toeplitz
operators, such as harmonic Bergman—Carleson measures on the upper half space [7],
holomorphic Bergman-Carleson measures on the strongly pseudoconvex domain [1-
4, 15] and on the Siegel upper half space [17, 30], Besov—Carleson measures on the
unit ball [16, 26, 29], and Fock—Carleson measures in C" [12-14, 33].

In 2010, Zhao [34] gave a characterization of Carleson measures using products of
functions in Hardy spaces on the unit disc. In 2015, Pau and Zhao [25] overcame the
lack of Riesz factorization theorem on weighted Bergman spaces and gave a corre-
sponding result on the unit ball. Recently, Abate, Mongodi, and Raissy [1, 4] extended
Pau and Zhao’s results to strongly pseudoconvex domains and gave a characteriza-
tion of skew Carleson measures through products of functions in weighted Bergman
spaces. They also obtained the boundedness and compactness of a larger class of
Toeplitz operators from one weighted Bergman space to another. Wang and Zhou [32]
investigated tent Carleson measures in terms of products of functions in Hardy-type
tent spaces and also obtained the boundedness and compactness of Toeplitz operators
between distinct Hardy-type tent spaces. Motivated by these results, we aim to give
some characterizations of Fock—Carleson measures involving products of functions in
Fock spaces.

Let C" be the n-dimensional complex Euclidean space. For 0 < p < oo and
0 < a < oo, the function space LY consists of all measurable functions f on C" for
which

P 7
dv(z)> < 00,

11 = ([ [r@e s
C’l

where dv denotes the Lebesgue volume measure. When o = 0, we write Lg = LP.
Let H (C") be the family of all holomorphic functions on C". Fock space F{ is defined
by

FP:=LENH(C").

It is clear that F/ is a Banach space under the norm || - lp,« forl < p < oo andisan
Fréchet space under d(f, g) = || f — g||g,a forO<p < 1.

For 0 < p,q < oo, a positive Borel measure u on C" is called a (p, ¢)-Fock—
Carleson measure if there is a constant C > 0 such that

[.

F@e 5 duie) < ClfI .
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forany f € FJ. We say p is a vanishing (p, ¢)-Fock—Carleson measure if

q

lim [ |fi@e 2 du) =0

k— 00 Cnr

whenever { f;} is a bounded sequence in F? that converges to 0 uniformly on any
compact subset of C" as k — o0. Since (p, g)-Fock—Carleson measures only depend
on the ratio A := g/ p, we simply say (vanishing) (A, «)-Fock—Carleson measures for
(vanishing) (p, q)-Fock—Carleson measures. We refer the reader to [12] for details.
Our main results are the following three theorems.

Theorem 1.1 Let p be a positive Borel measure on C", 0 < p;,qi < oo and 0 <

o; < oo, wherei =1,2,..., kandk > 1. Set
qi £
xzzp—f, y=> a. (1.1)
. 1 .

Then p is a (X, y)-Fock—Carleson measure if and only if there is a constant C > (
such that for any f; € F4,,

k k
L% ,2,. .
/Cl_[lfi(z)lq’e T du(z) < CTT IS, e - (1.2)
i=1 i=1

Theorem 1.2 Let u be a positive Borel measure on C", 0 < p;,q; < oo and 0 <
o; < oo, wherei =1,2,..., kandk > 1. Let

k k
Ny Ny

Then the following statements are equivalent:

(1) w is a vanishing (A, y)-Fock—Carleson measure;
(ii) For any sequence { fl,l} in F(fll that is convergent to 0 uniformly on any compact
subset of C",

lim F(l) =0,
[—00

where
21,2191 u %029
Fy=  sup { / fr@e™ T T | e du(z)};
1 fil e = 1 =2
i=2,...,k
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(iii) For any sequences {fl,l} , {fz,l} e, {fk,l} in FJ!, F42, ..., FL¥, respectively,
that are all convergent to 0 uniformly on any compact subset of C",

k

% qi
lim / [1}fu@e " du = o.
izt

[—o0

The proof of Theorem 1.1, especially the necessity for the case of 0 < A < 1, is
related to the boundedness of a class of integral operators defined by

S f@) = /@ e TR f e T ap )
forO < r,t < co. When r = 0, it is that
~ a2
Sﬁ’t(z) = ,U«t(Z)=/(; e~ 2wl d (w). (1.3)

It is just the 7-Berezin transform of u defined in [12]. And we see (2.1) in detail.
Therefore, we call SL” a Berezin-type operator of i on Fock spaces.

Here and follows, we say that the Berezin-type operator SL*’ is bounded from a
weighted Fock space FJ)' to a Lebesgue space L2 if there is a constant C > 0 such
that [|S}" fll p, < CIIfIl forany f € F4.

r
p1,aq

Theorem 1.3 Let 1 be a positive Borel measure on C", 0 < py, p» < o0 and 0 <
o, 0 < 00, Let
r 1
A=14+———, y=01+a.
P1 P2

Suppose A > 0. If S/i” is bounded from F} to LP2, then  is a (1, y)-Fock—Carleson
measure.

A similar class of integral operators on the unit ball of C"* was studied in [25, Lemma
3.3], and then its generalizations were studied in [18, 28]. Since the characterization of
the Fock—Carleson measure is different from that of the Bergman—Carleson measure
on the unit ball, we only give the necessity of the boundedness of SQ’ from FJ' to LP2.
This is enough for proving Theorem 1.1, but we do not know whether the sufficiency
of it holds or not. We list it as an open problem.

Open Problem Let p be a positive Borel measure on C", 0 < py, po < oo and
0 <A,y <oo.If pisa (A, y)-Fock—Carleson measure, then how is the boundedness
of 87" from Fg,' to LP2?

The paper is organized as follows. We collect some notations and preliminary results
in Sect.2. We are devoted to proving Theorem 1.3 in Sect.3 and proving Theorems
1.1 and 1.2 in Sect.4.

In what follows, the positive constant C may change from line to line but does not
depend on the functions. The notation A < B means that there is a constant C such
that A < CB, and A ~ B means that A < B and B < A.

W Birkhauser
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2 Preliminaries

We list some lemmas in this section. Given r > 0 and z € C", the Euclidean ball
centered at z with radius r is denoted by

Bz, r)={weC":|lw—zl<r}.

Lemma 2.1 There exists a positive integer N such that for any r > 0, we can find a
sequence {ay} in C"* with the following properties:

® U2 B (ax, 1) = C";
(i1) {B (ak, %)};il are pairwise disjoint;
(iii) Each point 7 € C" belongs to at most N of the sets B (ay, 2r).

The sequence {ax} satisfying the conditions of Lemma 2.1 is called an r-lattice. We
write By = B(ax, r), Bx = B(ag, 2r) for convenience throughout the paper.

Let u be a positive Borel measure on C". Notice that v(B(z,r)) is a constant
independent of z, the average function of u is defined by

wr(z) == n(B(z,r))

for z € C". Let Ky (z, w) = ¢*&®) denote the reproducing kernel of the Fock space
F2.Fort > 0, the ¢-Berezin transform of 4 is defined by

() = / K@) [ 4 0)
9= o [ VRaG oRaowy|
_ / e~ 1P 4 (). @1

Lemma 2.2 [12, Theorem 3.1] Let u be a positive Borel measure on C". Set . = q/p
and 1 < A < oo. Then the following statements are equivalent:

(1) misa (A, a)-Fock—Carleson measure;
(ii) ity is bounded on C" for some (or any) t > 0;
(iii) w(B(-, 8)) is bounded on C" for some (or any) § > 0;
(iv) For some (or any) r > 0, the sequence {j (B (ax, r))}72, is bounded.

Furthermore,

el 2 e lloo 2 (B (- 8 lloo = [Ifm (B (ak, m))}le

where

F@e 3P du(z).

lll = sup /
FEFG N fllpa=<t/C"

Lemma 2.3 [12, Theorem 3.2] Let u be a positive Borel measure on C". Set . = q/p
and 1 < A < oo. Then the following statements are equivalent:

) Birkhauser
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(1) w is a vanishing (A, @)-Fock—Carleson measure;

(i1) w:(z) = 0as z — oo for some (or any) t > 0;
(i) w(B(z,8)) — 0asz — oo for some (or any) § > 0;
@iv) w (B (ak,r)) — 0ask — oo for some (or any) r > Q.

Lemma 2.4 [12, Theorem 3.3] Let u be a positive Borel measure on C". Set . = q/p
and 0 < A < 1. Then the following statements are equivalent:

(1) misa (A, a)-Fock—Carleson measure;
(i1) w is a vanishing (A, a)-Fock—Carleson measure;
(i) 71, € LY for some (or any) t > 0;
(iv) w(B(-, 8) € LYY for some (or any) § > 0;
) Z,fil u (B (ag, r))l/(lf)‘) < oo for some (or any) r > 0.

Furthermore,

Nl 2= el y—ny = 1B Gy D Nya-a = I (B (ak, r) /a2 -

Lemma 2.5 [8, Lemma 3] Suppose 0 < p < oo. Then
a2
1Ko D)llpa = e2F. 2.2)

Lemma 2.6 Let v be a positive Borel measure on C" and 0 < p,t < oo. If {fi} is a
sequence of Lebesgue measurable functions such that

o p/t
/(Zm(zn’) dv(z) < oo,
" N\ g=1

then

00 00 p/t
ZfN |fk(z)|”dv<z)Smax{l,N“"’”’}/ (ka(z)v) dv(2).
k=1" Bk " N g=1

Proof The proof is divided into two cases. If p/t > 1, then ¢! injects continuously
into £7. Thus, we obtain
.

n
/én

IA

/ > @I x5, (dv(z)
C" =1

k=1

00 p/t
1A g, (z)) dv(z)

IA

p/t
(Z |fk<z>|‘> dv(2).

k=1

W Birkhauser
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If0 < p/t < 1,thent/p > 1. Using Holder’s inequality, we have

A

00 o0 rlt | o (t=p)/t
/ D AP XE ()dv() < / (ka(z)v) (Zxa@ dv(z)
= C" \k=1 k=1
00 p/t
NP f (ka(zw) dv(2).
C" \k=1

IA

The proof is complete. O

Lemma 2.7 Let {ay} be an r-lattice, 0 < p < oo and {A} € £P. If

o0
f2) = Z)\keak,amf%\aklz,

k=1
then f € Fy and || fllpo S Il {2k} ller-

Proof Since the result has been proven in [12, Lemma 2.4] for 1 < p < oo, it suffices
toprove the case 0 < p < 1. If 0 < p < 1, then we get

_a 2 _ a1 2|P
¥ ar) =3 lakl” ,— 7zl dv(2)

o0
IPE ]
k=1 c
ad 2
ap
SCZIW/ em 2T du(z)
(Cn
k=1

o0
SOl

k=1

The proof is complete. O

3 Proof of Theorem 1.3

We are devoted to proving Theorem 1.3 in this section. Two inequalities related to
Rademacher functions will be used. We use the notation r; to denote Rademacher
functions as follows

1, 0<s—[s]<1/2,
-1, 1/2<s—[s] <1,

r(s) = ro@ks) fork=1,2,....

ro(s) =

) Birkhauser
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Here [s] denotes the largest integer not greater than s. One is Khinchine’s inequality.
For 0 < p < oo, there exist constants 0 < A, < B, < 0o such that

m p/2 1 m p/2
Ap (Z |ck|2) < / ds < B, <Z lex?
k=1 0 k=1

for all nonnegative integers m and all complex numbers ¢y, ¢2, .. ., ¢;;. The other one
is Khinchine-Kahane-Kalton inequality. If 0 < p, g < oo, then

([ ) (o] )

for any sequence {x;} C X, where X is a quasi-Banach space with quasi-norm || - || x.
See [23] in detail.

p

> k(s
k=1

> xr(s) > xur(s)
k=1 k=1

Proof of Theorem 1.3 We divide the proof into two cases: A > land 0 < A < 1.
CaseI: A > 1. For fixed a € C", set

ev1z.a)

n

fa) =S, zeC.
eTlal

It follows from Lemma 2.5 that f, € thl‘ and || fall py.ey S 1. Since for any z, w €
B(a, §) with some given § > 0, we have

lz—w| <|z—a|+|w—a| <?26.

Therefore, for any z € B(a, §), we get

u(B(a,d)) = / dp(w)

B(a,8)

aIr o2 apt 2 ot 2 o r 2
<ez% .7 @) / e~ 2 Il o= lw=alt g ()
B(a,8)

t t
_ oA+ g 09 / e~ T £ ) e TP dp(w)
B(a,$)

ayr oot
< TIHFON gt g (), 3.1)

Thus,

n(B(a, 8)"dv(z) S / Sy fa(2)P?dv(z)
B(a.9)

n(B(a, 8)) 5/

B(a,$)

s[c ST £u@) |7 dv(@) < ClLfull Py < C.

W Birkhauser
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This shows that u is a (A, y)-Fock—Carleson measure by Lemma 2.2.
Casell: 0 < A < 1.Let {ax} be an r-lattice on C". For any sequence of real numbers
{Ar} € P, set

£:@) =) rk(s)gr(2),
k=1
where

o
ay(z.ap)— 5 lay ?

gk(z) =e

Then Lemma 2.7 implies f;(z) € F(fll and || fs
s € (0, 1). Hence, the condition shows that

Iy e < I{Ak}lgr1 for almost every

sy £l = /C IS £, dv@) < CP 1 ful By < CP2 IAILE?

for almost every s € (0, 1). Integrating both sides with respect to s from 0 to 1, we
have

1
/O s 122 ds < €7 105 (3.2)

Applying Fubini’s theorem and Khinchine-Kahane-Kalton inequality, we obtain

/“ tfy|l77ds ff|sztfy(2)|p2dsdv(z)

P2
Z/f /e_agilz_w'qZkkrk(S)gk(w)V@_aZ]'wzrdu(w)> dsdv(z)
nJ0o cn f—1
1 apl 2 ad o] 2 P
Zf f/e*T'““' 1> mr()gew)| e T dpwyds | du().
Cn 0 'n k:l

Therefore, using Fubini’s theorem and Khinchine’s inequality, we have

/”s”fs|md5>/ (/ (Zlm |gk<w>|)

Remember that By := B(ay, §) and Ek := B(ayg, 26) with § > 0. A similar discussion
to (3.1) implies that

/2 2
_wt 2 ey,
Pl e 2l ’du(w)) dv(z).

(3.3)

By < = Fle-wl? ~Fluwlrg
wB s [ e lgk(w)l"e f(w)
By

) Birkhauser
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for z € By. Thus,

P < — 2 —wf? —Flwlry ”
wB)? s\ [ e lgk(w)!"e pu(w)
By

apt 2 af 2 P2
< / ( / e 2 g (w)|re 2 v ’du(w)) dv(z)
By Ek

,Lzrlsz‘Z - 70171|w|2r P2
/~ /~e 2 lgr(w)| e 2 du(w) | dv(z).
By By

A

It follows that

o0 o0 o o P2

S Bl uBo” < Y /~ m(”( / e’%'ﬂf‘z|gk(w>|’e*7"W'2’du(w)> dv ().
B, B,

k=1 k=1 k k

Using Lemma 2.6 twice, we obtain

(o]
> Bl P2 (B < /

o Cn

o) r/2 e
S / (fc (Z|)\k|2|gk(w)|2) eﬁ”’zez"“’z’du(w) dv(2).
k=1

This, together with (3.2) and (3.3), yields

ad ot 2 L 2 P2
(Zwv /~ e F 0l gy (e F ’du(w)) dv(z)
k=1 Bk

o
DIl u(BP S g -
k=1

The duality of [71/¢P2) and [1/((1=1P2) gijves
((Bo} € /10,

This shows w is a (A, y)-Fock—Carleson measure in view of Lemma 2.4. The proof is
complete. O

4 Proofs of Theorems 1.1 and 1.2

Lemma4.1 Let0 < p;,gi < 00,0 <o < 00, fi € F‘)Z"/q",wherei =1,2,...,k

If

W Birkhauser
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then]_[f, eFl/)" nd
i=1

k
[15

i=1

1/xy

Proof Let f; € F()Zi/qf, where i = 1,2, ...

from Holder’s inequality that

L/xy

k
T1»

S

—~ =~

1

=~

”fl ”pt/q: 7

I
—-

The proof is complete.

k
_Y.2
[T1fi@1e 2
C izt

k
< T g (@.1)

i=1

k. Since Y¥_, ¢i/(pir) = 1, it follows

1/x A
dv(z)

. A
( / [T e—“z’zlz/kdv(z)>
Ccr
i=1
- 4i/ pi
(f |fi(z)|(1/x)(p,-x/q,-)e(—7|z| /M(pfk/qi)dv(z))

RS qi/pi
(/ |fi(z)|[7i/4i e~ 2l (pi/Qi)dv(Z)>
(Cn

]

Proof of Theorem 1.1 First, we prove the necessity. Assume that p is a (A, y)-Fock—
Carleson measure. It suffices to prove k > 2, since the result is just the definition when

k = 1. It follows from Lemma 4.1 that if #; € Foﬁi/qi foranyi = 1,2,...,

k, then

]_[le hi € F]}/)". Because u is a (A, y)-Fock—Carleson measure, we have

J.

This, together with (4.1), gives

Hh @)

e HPap () < C||Hh /-

k k
_%y,2
/C 1‘[(|hi<z>|e 2kl )du(z>scl"[||hi||,,i/qi,ai. (4.2)
i=1 i=1

) Birkhauser
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Let

k k
duy = <H|h Ie_ilz‘ dM) / (1_[ ”hiHPi/Qiy“i)’
i=2

i=2

Then (4.2) is equivalent to
_9,2
/C @l e=HPdur @) < Clllpy g
Thus, p; is a (q1/p1, @1)-Fock—Carleson measure. Therefore, for any f] € F,fll R

/Cm(z)r“e TR () < CIAND o

which is the same as

/ |fi@)r e TP ql]’[m @le 1 ap) < LA, m]‘[uh s /gt -

i=2
4.3)

Let

k k
_4 .2 %2
dM2=(|f1|q‘e 2 [T inile 2 du)/(ﬂf]npl all"[||hi||,,,./ql.,a,.>-
3

i=3

Then (4.3) is the same as

_9 0,2
f lha (@) e™ 2 dpa(z) < Clihall pyyg.an-

This means that p is a (g2 / p2, a2)-Fock—Carleson measure. Therefore, for any f> €
Fi%,

/C|fz<z>|‘ﬂe PPy (2) < ClLAIR 0

that is

k
[ 1h@im e e e Fee [T i@l e a0
Ccn

i=3

< ClLAND e Il 215 0 H 1Ri s gyt -

W Birkhauser
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Continuing this process, we eventually have

k k
%2, .
/C [11£@1% e vy < CTT 1A e -
i=1 i=1

Hence, we obtain (1.2). The proof of the necessity for Theorem 1.1 is complete.

Next, we prove the sufficiency. Assume that (1.2) holds for any f; € F£i/ M=
1,2,..., k. We aim to prove that u is a (A, y)-Fock—Carleson measure. The proof is
divided into two cases: A > land 0 < A < 1.

CaseI: A > 1. For fixed z € C", set

e%i(w,2)
fi,z(w)z o; 2 we(cﬂ’
e 2l
wherei =1,2,...,k. By (2.2), wehave f; ; € FoZi with || fi 2|l pi,; = 1. Thus, (1.2)

implies

k k
| fi o) e T au ) < CTT | fic]® - 4.4)
Cn Pi %
i=1 i=1

eV {w.2)

t
du(w)

S

Lett = max {q1, g2, ..., qx}. Then
e
el

() 2/
(Cn
k
<
- ‘/(;n 11]

k
=/ [T1)|* =% P o).
iz

Qi (w,2)

qi
du(w)

9 2
o= Flwl

-
JETNE

This, together with (4.4), shows

k
@ <CIIfilhe SC.

i=1

Thus, 17 (z) is bounded. It follows from Lemma 2.2 that u is a (A, y)-Fock—Carleson
measure.

Case II: 0 < A < 1. The proof is by induction on k. If k = 1, then (1.2) is just the
definition of (X, y)-Fock—Carleson measure. Assume that the result holds for k — 1
functions for k > 2. Set Ay = A, yr = y and

k—1 k—1
gi

Ag—1 = E p—l Vk—1 = E o
! i=1

i=1

) Birkhauser
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Denote

due(2) = | fi (@)% e™ TP wdp z).

Then we rewrite the condition (1.2) as
k—1 v k—1
[ T e g < coo [T
i=1 i=1

with C(fx) = CJ| fk||%’2,ak- It follows from the induction assumption that p is a
(Ak—1, Yk—1)-Fock—Carleson measure with ||ug|| < C(f). Since 0 < Agp—; < A < 1,
it follows from Lemma 2.4 that iz, € LY 1= for any ¢ > 0 with

~ q
1kl a=nae S Clfll By e s

where

- Mkl 2
Wkt =/ e T g (w).
That is,

</ [ e e F P )

S Cllficll Py -

1/(1=Ag—1) 1—=Ak—1
dv(z))

This, together with the definition of SZ" " in Theorem 1.3, implies
.t q
I8 fill s,y < CLl B

where f; € Foﬁf. Thus, by Theorem 1.3, u is a (A*, y*)-Fock—Carleson measure,
where

qk
=1+ o (=21, v"=vi—1 + .

It follows from the definitions of Ax_1, yx—1 and (1.1) that A* = A and y* = y. The
proof is complete. O

Proof of Theorem 1.2 If 0 < A < 1, then by Lemma 2.4 we know that u is a (A, «)-
Fock—Carleson measure if and only if x is a vanishing (A, «)-Fock—Carleson measure.
It is just a consequence of Theorem 1.1. And so it suffices to prove the theorem in the
case of A > 1. Since (ii)==(iii) is obvious, the theorem will be proved by showing
(1) =(i1) and (ii))==(1).

(i) =(i1). Assume that p is a vanishing (X, y)-Fock—Carleson measure. Let { S, 1}
be any bounded sequence in FJ! and f;; — 0 uniformly on each compact subset of

W Birkhauser
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C™ as I — oo. Suppose that { f;} is an arbitrary sequence in FOZ’ with || fill pei <1

fori =2,3,..., k. Forr > 0, denote B, := B(0, r), and u, the restriction of u to
C"\B,. Then p, is also a (X, y)-Fock—Carleson measure, and

lim [, || = 0.
r—00

On one hand, by Theorem 1.1, we obtain that for any ¢ > 0 small enough, there exists
an r large enough such that

/ )fl,l(z)e_%llz‘2
(C"\Br

/;n

<Dl - Il ]"[nﬁn,,, IS

qi
du(z)

k
"1 ‘fi(z)e_%i'z‘2
i=2
k -
I | iy 1

o q1
—F 1l

qi
dﬂr (z)

Fix this r. Since { 11, 1} converges to 0 uniformly on each compact subset of C", there
i < ¢ for any z € B,. Therefore,

using Theorem 1.1 again, we have

qi
du(z)

k
1_[ ’fi(z)e—%ldz
=2

q1
./ ‘fl,l(Z)e_uTl‘ZIZ
B, i

k
i1219
< g/ 1.e~ 71l ar 1_[ ‘fi(z)e—%’\zlz
n .

i du(z)

Sl o ]‘[nﬁn,,, w S

for/ > K. Thus, we get

qi
du(z)

li —Sz?
m sup Sr1(@)e 2
(Cn

[— o0

qi
du(z) Se.

k
Tl ’fi(z)e_%i'z‘2
i=2
k o
H ‘fi(z)e—%IZIz
i=2

T _ﬂlzlz q1
= lim sup + Sri(@e 2
[—o00 B "\ B, _

It follows from the arbitrariness of ¢ that llim F{)=0.
—> 00
(iii) = (i). For fixed a € C", take

aj(z.a)

fta(Z) zeC",

L%a
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where i = 1,2,..., k. By (2.2), we know that fi, € Fg' with || fiallpje; = 1.
Furthermore, it is easy to check that f; , — 0 uniformly on any compact subset of C"
as |a] — oo. Thus, (iii) implies

kolewiwal o o]
lim —— T )
lal—o0 Jcn ol 7’|a\2
Lett = max {q1,q2, ..., qx}- Then
Y z—af? LI o
lim Tdu(z) < hm / e 2% du(z) =0.
Jim ) e n@) < ) H e e

This shows  is a vanishing (A, y )-Fock—Carleson measure by Lemma 2.3. The proof
is complete. O
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