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Abstract
Wecharacterize (vanishing) Fock–Carlesonmeasures by products of functions in Fock
spaces. We also study the boundedness of Berezin-type operators from a weighted
Fock space to a Lebesgue space. Due to the special properties of Fock–Carleson
measures, the boundedness of Berezin-type operators on Fock spaces is different from
the corresponding results on Bergman spaces.

Keywords Carleson measure · Fock space · Product of functions · Integral operator ·
Berezin transform
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1 Introduction

Carleson measures are important research objects and play powerful role in function
spaces and the theory of operators. The concept of it was first introduced by Carleson
in [5, 6], where it is used to study interpolating sequences and the corona problem of
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all bounded analytic functions on the unit disc. After that, there are a large amount
of works on characterizations of Carleson measures in or between spaces, including
Hardy spaces and Bergman spaces, on various domains, such as Hardy–Carleson
measures on the unit disc [9, 22, 31] and on the unit ball [11, 24, 27], Bergman–
Carleson measures on the unit ball [19–21, 23] and on the polydisc [10] and so on.
Then it has been further investigated with the development of the theory of Toeplitz
operators, such as harmonic Bergman–Carleson measures on the upper half space [7],
holomorphic Bergman-Carleson measures on the strongly pseudoconvex domain [1–
4, 15] and on the Siegel upper half space [17, 30], Besov–Carleson measures on the
unit ball [16, 26, 29], and Fock–Carleson measures in Cn [12–14, 33].

In 2010, Zhao [34] gave a characterization of Carleson measures using products of
functions in Hardy spaces on the unit disc. In 2015, Pau and Zhao [25] overcame the
lack of Riesz factorization theorem on weighted Bergman spaces and gave a corre-
sponding result on the unit ball. Recently, Abate, Mongodi, and Raissy [1, 4] extended
Pau and Zhao’s results to strongly pseudoconvex domains and gave a characteriza-
tion of skew Carleson measures through products of functions in weighted Bergman
spaces. They also obtained the boundedness and compactness of a larger class of
Toeplitz operators from one weighted Bergman space to another. Wang and Zhou [32]
investigated tent Carleson measures in terms of products of functions in Hardy-type
tent spaces and also obtained the boundedness and compactness of Toeplitz operators
between distinct Hardy-type tent spaces. Motivated by these results, we aim to give
some characterizations of Fock–Carleson measures involving products of functions in
Fock spaces.

Let Cn be the n-dimensional complex Euclidean space. For 0 < p < ∞ and
0 < α < ∞, the function space L p

α consists of all measurable functions f on C
n for

which

‖ f ‖p,α =
(∫

Cn

∣∣∣ f (z)e− α
2 |z|2

∣∣∣p
dv(z)

) 1
p

< ∞,

where dv denotes the Lebesgue volume measure. When α = 0, we write L p
0 = L p.

Let H (Cn) be the family of all holomorphic functions onCn . Fock space F p
α is defined

by

F p
α := L p

α ∩ H
(
C

n)
.

It is clear that F p
α is a Banach space under the norm ‖ · ‖p,α for 1 ≤ p < ∞ and is an

Fréchet space under d( f , g) = ‖ f − g‖p
p,α for 0 < p < 1.

For 0 < p, q < ∞, a positive Borel measure μ on C
n is called a (p, q)-Fock–

Carleson measure if there is a constant C > 0 such that

∫
Cn

∣∣∣ f (z)e− α
2 |z|2

∣∣∣q
dμ(z) ≤ C‖ f ‖q

p,α
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for any f ∈ F p
α . We say μ is a vanishing (p, q)-Fock–Carleson measure if

lim
k→∞

∫
Cn

∣∣∣ fk(z)e
− α

2 |z|2
∣∣∣q
dμ(z) = 0

whenever { fk} is a bounded sequence in F p
α that converges to 0 uniformly on any

compact subset of Cn as k → ∞. Since (p, q)-Fock–Carleson measures only depend
on the ratio λ := q/p, we simply say (vanishing) (λ, α)-Fock–Carleson measures for
(vanishing) (p, q)-Fock–Carleson measures. We refer the reader to [12] for details.
Our main results are the following three theorems.

Theorem 1.1 Let μ be a positive Borel measure on C
n, 0 < pi , qi < ∞ and 0 <

αi < ∞, where i = 1, 2, . . . , k and k ≥ 1. Set

λ =
k∑

i=1

qi

pi
, γ =

k∑
i=1

αi . (1.1)

Then μ is a (λ, γ )-Fock–Carleson measure if and only if there is a constant C > 0
such that for any fi ∈ F pi

αi ,

∫
Cn

k∏
i=1

| fi (z)|qi e− αi
2 |z|2qi dμ(z) ≤ C

k∏
i=1

‖ fi‖qi
pi ,αi . (1.2)

Theorem 1.2 Let μ be a positive Borel measure on C
n, 0 < pi , qi < ∞ and 0 <

αi < ∞, where i = 1, 2, . . . , k and k ≥ 1. Let

λ =
k∑

i=1

qi

pi
, γ =

k∑
i=1

αi .

Then the following statements are equivalent:

(i) μ is a vanishing (λ, γ )-Fock–Carleson measure;
(ii) For any sequence

{
f1,l

}
in F p1

α1 that is convergent to 0 uniformly on any compact
subset of Cn,

lim
l→∞ F(l) = 0,

where

F(l) = sup
‖ fi‖pi ,αi

≤ 1
i = 2, . . . , k

{∫
Cn

∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z)

}
;
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(iii) For any sequences
{

f1,l
}
,
{

f2,l
}
, . . . ,

{
fk,l

}
in F p1

α1 , F p2
α2 , . . . , F pk

αk , respectively,
that are all convergent to 0 uniformly on any compact subset of Cn,

lim
l→∞

∫
Cn

k∏
i=1

∣∣∣ fi,l(z)e
− αi

2 |z|2
∣∣∣qi

dμ(z) = 0.

The proof of Theorem 1.1, especially the necessity for the case of 0 < λ < 1, is
related to the boundedness of a class of integral operators defined by

Sr ,t
μ f (z) =

∫
Cn

e− α2 t
2 |z−w|2 | f (w)|r e− α1

2 |w|2rdμ(w)

for 0 < r , t < ∞. When r = 0, it is that

S0,t
μ (z) := μ̃t (z) =

∫
Cn

e− αt
2 |z−w|2dμ(w). (1.3)

It is just the t-Berezin transform of μ defined in [12]. And we see (2.1) in detail.
Therefore, we call Sr ,t

μ a Berezin-type operator of μ on Fock spaces.
Here and follows, we say that the Berezin-type operator Sr ,t

μ is bounded from a
weighted Fock space F p1

α1 to a Lebesgue space L p2 if there is a constant C > 0 such
that ‖Sr ,t

μ f ‖p2 ≤ C‖ f ‖r
p1,α1 for any f ∈ F p1

α1 .

Theorem 1.3 Let μ be a positive Borel measure on C
n, 0 < p1, p2 < ∞ and 0 <

α1, α2 < ∞. Let

λ = 1 + r

p1
− 1

p2
, γ = α1 + α2.

Suppose λ > 0. If Sr ,t
μ is bounded from F p1

α1 to L p2 , then μ is a (λ, γ )-Fock–Carleson
measure.

Asimilar class of integral operators on the unit ball ofCn was studied in [25, Lemma
3.3], and then its generalizations were studied in [18, 28]. Since the characterization of
the Fock–Carleson measure is different from that of the Bergman–Carleson measure
on the unit ball, we only give the necessity of the boundedness of Sr ,t

μ from F p1
α1 to L p2 .

This is enough for proving Theorem 1.1, but we do not know whether the sufficiency
of it holds or not. We list it as an open problem.

Open Problem Let μ be a positive Borel measure on C
n , 0 < p1, p2 < ∞ and

0 < λ, γ < ∞. If μ is a (λ, γ )-Fock–Carleson measure, then how is the boundedness
of Sr ,t

μ from F p1
α1 to L p2?

The paper is organized as follows.We collect somenotations and preliminary results
in Sect. 2. We are devoted to proving Theorem 1.3 in Sect. 3 and proving Theorems
1.1 and 1.2 in Sect. 4.

In what follows, the positive constant C may change from line to line but does not
depend on the functions. The notation A � B means that there is a constant C such
that A ≤ C B, and A 	 B means that A � B and B � A.
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2 Preliminaries

We list some lemmas in this section. Given r > 0 and z ∈ C
n , the Euclidean ball

centered at z with radius r is denoted by

B(z, r) = {
w ∈ C

n : |w − z| < r
}
.

Lemma 2.1 There exists a positive integer N such that for any r > 0, we can find a
sequence {ak} in C

n with the following properties:

(i)
⋃∞

k=1 B (ak, r) = C
n;

(ii)
{

B
(
ak,

r
2

)}∞
k=1 are pairwise disjoint;

(iii) Each point z ∈ C
n belongs to at most N of the sets B (ak, 2r).

The sequence {ak} satisfying the conditions of Lemma 2.1 is called an r -lattice. We
write Bk = B(ak, r), B̃k = B(ak, 2r) for convenience throughout the paper.

Let μ be a positive Borel measure on C
n . Notice that v(B(z, r)) is a constant

independent of z, the average function of μ is defined by

μ̂r (z) := μ(B(z, r))

for z ∈ C
n . Let Kα(z, w) = eα〈z,w〉 denote the reproducing kernel of the Fock space

F2
α . For t > 0, the t-Berezin transform of μ is defined by

μ̃t (z) =
∫
Cn

∣∣∣∣ Kα(z, w)√
Kα(z, z)Kα(w,w)

∣∣∣∣
t

dμ(w)

=
∫
Cn

e− αt
2 |z−w|2dμ(w). (2.1)

Lemma 2.2 [12, Theorem 3.1] Let μ be a positive Borel measure on C
n. Set λ = q/p

and 1 ≤ λ < ∞. Then the following statements are equivalent:

(i) μ is a (λ, α)-Fock–Carleson measure;
(ii) μ̃t is bounded on C

n for some (or any) t > 0;
(iii) μ(B(·, δ)) is bounded on C

n for some (or any) δ > 0;
(iv) For some (or any) r > 0, the sequence {μ (B (ak, r))}∞k=1 is bounded.

Furthermore,

‖μ‖ 	 ‖μ̃t‖∞ 	 ‖μ(B(·, δ))‖∞ 	 ‖{μ (B (ak, r))}‖�∞ ,

where

‖μ‖ = sup
f ∈F p

α ,‖ f ‖p,α≤1

∫
Cn

∣∣∣ f (z)e− α
2 |z|2

∣∣∣q
dμ(z).

Lemma 2.3 [12, Theorem 3.2] Let μ be a positive Borel measure on C
n. Set λ = q/p

and 1 ≤ λ < ∞. Then the following statements are equivalent:
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(i) μ is a vanishing (λ, α)-Fock–Carleson measure;
(ii) μ̃t (z) → 0 as z → ∞ for some (or any) t > 0;
(iii) μ(B(z, δ)) → 0 as z → ∞ for some (or any) δ > 0;
(iv) μ (B (ak, r)) → 0 as k → ∞ for some (or any) r > 0.

Lemma 2.4 [12, Theorem 3.3] Let μ be a positive Borel measure on C
n. Set λ = q/p

and 0 < λ < 1. Then the following statements are equivalent:

(i) μ is a (λ, α)-Fock–Carleson measure;
(ii) μ is a vanishing (λ, α)-Fock–Carleson measure;
(iii) μ̃t ∈ L1/(1−λ) for some (or any) t > 0;
(iv) μ(B(·, δ)) ∈ L1/(1−λ) for some (or any) δ > 0;
(v)

∑∞
k=1 μ (B (ak, r))1/(1−λ) < ∞ for some (or any) r > 0.

Furthermore,

‖μ‖ 	 ‖μ̃t‖1/(1−λ) 	 ‖μ(B(·, δ))‖1/(1−λ) 	 ‖{μ (B (ak, r))}‖�1/(1−λ) .

Lemma 2.5 [8, Lemma 3] Suppose 0 < p < ∞. Then

‖Kα(·, z)‖p,α 	 e
α
2 |z|2 . (2.2)

Lemma 2.6 Let ν be a positive Borel measure on C
n and 0 < p, t < ∞. If { fk} is a

sequence of Lebesgue measurable functions such that

∫
Cn

( ∞∑
k=1

| fk(z)|t
)p/t

dν(z) < ∞,

then

∞∑
k=1

∫
B̃k

| fk(z)|pdν(z) ≤ max{1, N (t−p)/t }
∫
Cn

( ∞∑
k=1

| fk(z)|t
)p/t

dν(z).

Proof The proof is divided into two cases. If p/t ≥ 1, then �t injects continuously
into �p. Thus, we obtain

∫
Cn

∞∑
k=1

| fk(z)|pχB̃k
(z)dν(z) ≤

∫
Cn

( ∞∑
k=1

| fk(z)|tχB̃k
(z)

)p/t

dν(z)

≤
∫
Cn

( ∞∑
k=1

| fk(z)|t
)p/t

dν(z).
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If 0 < p/t < 1, then t/p > 1. Using Hölder’s inequality, we have

∫
Cn

∞∑
k=1

| fk(z)|pχB̃k
(z)dν(z) ≤

∫
Cn

( ∞∑
k=1

| fk(z)|t
)p/t ( ∞∑

k=1

χB̃k
(z)

)(t−p)/t

dν(z)

≤ N (t−p)/t
∫
Cn

( ∞∑
k=1

| fk(z)|t
)p/t

dν(z).

The proof is complete. �

Lemma 2.7 Let {ak} be an r-lattice, 0 < p ≤ ∞ and {λk} ∈ �p. If

f (z) =
∞∑

k=1

λkeα〈z,ak 〉− α
2 |ak |2 ,

then f ∈ F p
α and ‖ f ‖p,α � ‖ {λk} ‖�p .

Proof Since the result has been proven in [12, Lemma 2.4] for 1 ≤ p ≤ ∞, it suffices
to prove the case 0 < p < 1. If 0 < p < 1, then we get

‖ f ‖p
p,α ≤

∞∑
k=1

|λk |p
∫
Cn

∣∣∣eα〈z,ak 〉− α
2 |ak |2e− α

2 |z|2
∣∣∣p

dv(z)

≤C
∞∑

k=1

|λk |p
∫
Cn

e− α p
2 |z−ak |2dv(z)

�
∞∑

k=1

|λk |p.

The proof is complete. �

3 Proof of Theorem 1.3

We are devoted to proving Theorem 1.3 in this section. Two inequalities related to
Rademacher functions will be used. We use the notation rk to denote Rademacher
functions as follows

r0(s) =
{
1, 0 ≤ s − [s] < 1/2,

−1, 1/2 ≤ s − [s] < 1,

rk(s) = r0(2
ks) for k = 1, 2, . . . .
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Here [s] denotes the largest integer not greater than s. One is Khinchine’s inequality.
For 0 < p < ∞, there exist constants 0 < Ap ≤ Bp < ∞ such that

Ap

(
m∑

k=1

|ck |2
)p/2

≤
∫ 1

0

∣∣∣∣∣
m∑

k=1

ckrk(s)

∣∣∣∣∣
p

ds ≤ Bp

(
m∑

k=1

|ck |2
)p/2

for all nonnegative integers m and all complex numbers c1, c2, . . . , cm . The other one
is Khinchine-Kahane-Kalton inequality. If 0 < p, q < ∞, then

(∫ 1

0

∥∥∥∥∥
∞∑

k=1

xkrk(s)

∥∥∥∥∥
q

X

ds

) 1
q

	
(∫ 1

0

∥∥∥∥∥
∞∑

k=1

xkrk(s)

∥∥∥∥∥
p

X

ds

) 1
p

for any sequence {xk} ⊂ X , where X is a quasi-Banach space with quasi-norm ‖ · ‖X .
See [23] in detail.

Proof of Theorem 1.3 We divide the proof into two cases: λ ≥ 1 and 0 < λ < 1.
Case I: λ ≥ 1. For fixed a ∈ C

n , set

fa(z) = eα1〈z,a〉

e
α1
2 |a|2 , z ∈ C

n .

It follows from Lemma 2.5 that fa ∈ F p1
α1 and ‖ fa‖p1,α1 � 1. Since for any z, w ∈

B(a, δ) with some given δ > 0, we have

|z − w| ≤ |z − a| + |w − a| < 2δ.

Therefore, for any z ∈ B(a, δ), we get

μ(B(a, δ)) =
∫

B(a,δ)

dμ(w)

≤ e
α1r
2 δ2 · e

α2 t
2 (2δ)2 ·

∫
B(a,δ)

e− α2 t
2 |z−w|2 · e− α1r

2 |w−a|2dμ(w)

= e
α1r
2 δ2+ α2 t

2 (2δ)2
∫

B(a,δ)

e− α2 t
2 |z−w|2 | fa(w)|r e− α1

2 |w|2rdμ(w)

≤ e
α1r
2 δ2+ α2 t

2 (2δ)2 Sr ,t
μ fa(z). (3.1)

Thus,

μ(B(a, δ))p2 �
∫

B(a,δ)

μ(B(a, δ))p2dv(z) �
∫

B(a,δ)

Sr ,t
μ fa(z)p2dv(z)

≤
∫
Cn

∣∣Sr ,t
μ fa(z)

∣∣p2 dv(z) ≤ C‖ fa‖r p2
p1,α1 � C .
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This shows that μ is a (λ, γ )-Fock–Carleson measure by Lemma 2.2.
Case II: 0 < λ < 1. Let {ak} be an r -lattice onCn . For any sequence of real numbers

{λk} ∈ �p1 , set

fs(z) =
∞∑

k=1

λkrk(s)gk(z),

where

gk(z) = eα1〈z,ak 〉− α1
2 |ak |2 .

Then Lemma 2.7 implies fs(z) ∈ F p1
α1 and ‖ fs‖p1,α1 � ‖{λk}‖�p1 for almost every

s ∈ (0, 1). Hence, the condition shows that

∥∥Sr ,t
μ fs

∥∥p2
p2

=
∫
Cn

∣∣Sr ,t
μ fs(z)

∣∣p2 dv(z) ≤ C p2‖ fs‖r p2
p1,α1 � C p2 ‖{λk}‖r p2

�p1

for almost every s ∈ (0, 1). Integrating both sides with respect to s from 0 to 1, we
have

∫ 1

0

∥∥Sr ,t
μ fs

∥∥p2
p2
ds � C p2 ‖{λk}‖r p2

�p1 . (3.2)

Applying Fubini’s theorem and Khinchine-Kahane-Kalton inequality, we obtain

∫ 1

0

∥∥Sr ,t
μ fs

∥∥p2
p2
ds =

∫
Cn

∫ 1

0

∣∣Sr ,t
μ fs(z)

∣∣p2 dsdv(z)

=
∫
Cn

∫ 1

0

(∫
Cn

e− α2 t
2 |z−w|2 ∣∣ ∞∑

k=1

λkrk(s)gk(w)
∣∣r e− α1

2 |w|2rdμ(w)

)p2

dsdv(z)

�
∫
Cn

(∫ 1

0

∫
Cn

e− α2 t
2 |z−w|2 ∣∣ ∞∑

k=1

λkrk(s)gk(w)
∣∣r e− α1

2 |w|2rdμ(w)ds

)p2

dv(z).

Therefore, using Fubini’s theorem and Khinchine’s inequality, we have

∫ 1

0

∥∥Sr ,t
μ fs

∥∥p2
p2
ds �

∫
Cn

⎛
⎝∫

Cn

( ∞∑
k=1

|λk |2|gk(w)|2
)r/2

e− α2 t
2 |z−w|2e− α1

2 |w|2rdμ(w)

⎞
⎠

p2

dv(z).

(3.3)

Remember that Bk := B(ak, δ) and B̃k := B(ak, 2δ)with δ > 0. A similar discussion
to (3.1) implies that

μ(Bk) �
∫

Bk

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)
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for z ∈ Bk . Thus,

μ(Bk)
p2 �

( ∫
B̃k

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)

)p2

�
∫

Bk

( ∫
B̃k

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)

)p2
dv(z)

�
∫

B̃k

( ∫
B̃k

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)

)p2
dv(z).

It follows that

∞∑
k=1

|λk |r p2μ(Bk)
p2 �

∞∑
k=1

∫
B̃k

|λk |r p2

( ∫
B̃k

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)

)p2
dv(z).

Using Lemma 2.6 twice, we obtain

∞∑
k=1

|λk |r p2μ(Bk)
p2 �

∫
Cn

( ∞∑
k=1

|λk |r
∫

B̃k

e− α2 t
2 |z−w|2 |gk(w)|r e− α1

2 |w|2rdμ(w)

)p2
dv(z)

�
∫
Cn

⎛
⎝∫

Cn

( ∞∑
k=1

|λk |2|gk(w)|2
)r/2

e− α2 t
2 |z−w|2e− α1

2 |w|2rdμ(w)

⎞
⎠

p2

dv(z).

This, together with (3.2) and (3.3), yields

∞∑
k=1

|λk |r p2μ(Bk)
p2 � ‖{λk}‖r p2

�p1 .

The duality of l p1/(r p2) and l1/((1−λ)p2) gives

{μ(Bk)} ∈ �1/(1−λ).

This shows μ is a (λ, γ )-Fock–Carleson measure in view of Lemma 2.4. The proof is
complete. �

4 Proofs of Theorems 1.1 and 1.2

Lemma 4.1 Let 0 < pi , qi < ∞, 0 < αi < ∞, fi ∈ F pi /qi
αi , where i = 1, 2, . . . , k.

If

λ =
k∑

i=1

qi

pi
, γ =

k∑
i=1

αi ,
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then
k∏

i=1
fi ∈ F1/λ

γ and

∥∥∥∥∥
k∏

i=1

fi

∥∥∥∥∥
1/λ,γ

�
k∏

i=1

‖ fi‖pi /qi ,αi
. (4.1)

Proof Let fi ∈ F pi /qi
αi , where i = 1, 2, . . . , k. Since

∑k
i=1 qi/(piλ) = 1, it follows

from Hölder’s inequality that

∥∥∥
k∏

i=1

fi

∥∥∥
1/λ,γ

=
⎛
⎝∫

Cn

∣∣∣∣∣
k∏

i=1

| fi (z)|e− γ
2 |z|2

∣∣∣∣∣
1/λ

dv(z)

⎞
⎠

λ

=
(∫

Cn

k∏
i=1

| fi (z)|1/λ e− αi
2 |z|2/λdv(z)

)λ

�
k∏

i=1

(∫
Cn

| fi (z)|(1/λ)(pi λ/qi ) e(− αi
2 |z|2/λ)(pi λ/qi )dv(z)

)qi /pi

=
k∏

i=1

(∫
Cn

| fi (z)|pi /qi e− αi
2 |z|2(pi /qi )dv(z)

)qi /pi

�
k∏

i=1

‖ fi‖pi /qi ,αi
.

The proof is complete. �

Proof of Theorem 1.1 First, we prove the necessity. Assume that μ is a (λ, γ )-Fock–
Carleson measure. It suffices to prove k ≥ 2, since the result is just the definition when
k = 1. It follows from Lemma 4.1 that if hi ∈ F pi /qi

αi for any i = 1, 2, . . . , k, then∏k
i=1 hi ∈ F1/λ

γ . Because μ is a (λ, γ )-Fock–Carleson measure, we have

∫
Cn

∣∣∣∣∣
k∏

i=1

hi (z)

∣∣∣∣∣ e− γ
2 |z|2dμ(z) ≤ C‖

k∏
i=1

hi‖1/λ,γ .

This, together with (4.1), gives

∫
Cn

k∏
i=1

(
|hi (z)|e− αi

2 |z|2
)
dμ(z) ≤ C

k∏
i=1

‖hi‖pi /qi ,αi
. (4.2)
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Let

dμ1 =
(

k∏
i=2

|hi |e− αi
2 |z|2dμ

) / (
k∏

i=2

‖hi‖pi /qi ,αi

)
.

Then (4.2) is equivalent to

∫
Cn

|h1(z)| e− α1
2 |z|2dμ1(z) ≤ C‖h1‖p1/q1,α1 .

Thus, μ1 is a (q1/p1, α1)-Fock–Carleson measure. Therefore, for any f1 ∈ F p1
α1 ,

∫
Cn

| f1(z)|q1 e− α1
2 |z|2q1dμ1(z) ≤ C‖ f1‖q1

p1,α1 ,

which is the same as

∫
Cn

| f1(z)|q1 e− α1
2 |z|2q1

k∏
i=2

|hi (z)|e− αi
2 |z|2dμ(z) ≤ C‖ f1‖q1

p1,α1

k∏
i=2

‖hi‖pi /qi ,αi
.

(4.3)

Let

dμ2 =
(

| f1|q1e− α1
2 |z|2q1

k∏
i=3

|hi |e− αi
2 |z|2dμ

) / (
‖ f1‖q1

p1,α1

k∏
i=3

‖hi‖pi /qi ,αi

)
.

Then (4.3) is the same as

∫
Cn

|h2(z)| e− α2
2 |z|2dμ2(z) ≤ C‖h2‖p2/q2,α2 .

This means that μ2 is a (q2/p2, α2)-Fock–Carleson measure. Therefore, for any f2 ∈
F p2

α2 ,

∫
Cn

| f2(z)|q2 e− α2
2 |z|2q2dμ2(z) ≤ C‖ f2‖q2

p2,α2 ,

that is

∫
Cn

| f1(z)|q1 e− α1
2 |z|2q1 | f2(z)|q2 e− α2

2 |z|2q2
k∏

i=3

|hi (z)|e− αi
2 |z|2dμ(z)

≤ C‖ f1‖q1
p1,α1‖ f2‖q2

p2,α2

k∏
i=3

‖hi‖pi /qi ,αi
.
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Continuing this process, we eventually have

∫
Cn

k∏
i=1

| fi (z)|qi e− αi
2 |z|2qi dμ(z) ≤ C

k∏
i=1

‖ fi‖qi
pi ,αi .

Hence, we obtain (1.2). The proof of the necessity for Theorem 1.1 is complete.
Next, we prove the sufficiency. Assume that (1.2) holds for any fi ∈ F pi /qi

αi , i =
1, 2, . . . , k. We aim to prove that μ is a (λ, γ )-Fock–Carleson measure. The proof is
divided into two cases: λ ≥ 1 and 0 < λ < 1.

Case I: λ ≥ 1. For fixed z ∈ C
n , set

fi,z(w) = eαi 〈w,z〉

e
αi
2 |z|2 , w ∈ C

n,

where i = 1, 2, . . . , k. By (2.2), we have fi,z ∈ F pi
αi with ‖ fi,z‖pi ,αi 	 1. Thus, (1.2)

implies ∫
Cn

k∏
i=1

∣∣ fi,z(w)
∣∣qi e− αi

2 |w|2qi dμ(w) ≤ C
k∏

i=1

∥∥ fi,z
∥∥qi

pi ,αi
. (4.4)

Let t = max {q1, q2, . . . , qk}. Then

μ̃t (z) 	
∫
Cn

∣∣∣∣eγ 〈w,z〉

e
γ
2 |z|2 e− γ

2 |w|2
∣∣∣∣
t

dμ(w)

≤
∫
Cn

k∏
i=1

∣∣∣∣eαi 〈w,z〉

e
αi
2 |z|2 e− αi

2 |w|2
∣∣∣∣
qi

dμ(w)

=
∫
Cn

k∏
i=1

∣∣ fi,z(w)
∣∣qi e− αi

2 |w|2qi dμ(w).

This, together with (4.4), shows

μ̃t (z) ≤ C
k∏

i=1

‖ fi,z‖qi
pi ,αi � C .

Thus, μ̃t (z) is bounded. It follows from Lemma 2.2 that μ is a (λ, γ )-Fock–Carleson
measure.

Case II: 0 < λ < 1. The proof is by induction on k. If k = 1, then (1.2) is just the
definition of (λ, γ )-Fock–Carleson measure. Assume that the result holds for k − 1
functions for k ≥ 2. Set λk = λ, γk = γ and

λk−1 =
k−1∑
i=1

qi

pi
, γk−1 =

k−1∑
i=1

αi .
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Denote

dμk(z) = | fk(z)|qk e− αk
2 |z|2qkdμ(z).

Then we rewrite the condition (1.2) as

∫
Cn

k−1∏
i=1

| fi (z)|qi e− αi
2 |z|2qi dμk(z) ≤ C( fk)

k−1∏
i=1

‖ fi‖qi
pi ,αi

with C( fk) = C‖ fk‖qk
pk ,αk . It follows from the induction assumption that μk is a

(λk−1, γk−1)-Fock–Carleson measure with ‖μk‖ � C( fk). Since 0 < λk−1 < λ < 1,
it follows from Lemma 2.4 that μ̃k,t ∈ L1/(1−λk−1) for any t > 0 with

‖μ̃k,t‖1/(1−λk−1) � C‖ fk‖qk
pk ,αk ,

where

μ̃k,t =
∫
Cn

e− tγk−1
2 |z−w|2dμk(w).

That is,

( ∫
Cn

∣∣∣∣
∫
Cn

e− γk−1 t
2 |z−w|2 | fk(w)|qk e− αk

2 |w|2qkdμ(w)

∣∣∣∣
1/(1−λk−1)

dv(z)

)1−λk−1

� C‖ fk‖qk
pk ,αk .

This, together with the definition of Sqk ,t
μ in Theorem 1.3, implies

∥∥Sqk ,t
μ fk

∥∥
1/(1−λk−1)

≤ C‖ fk‖qk
pk ,αk ,

where fk ∈ F pk
αk . Thus, by Theorem 1.3, μ is a (λ∗, γ ∗)-Fock–Carleson measure,

where

λ∗ = 1 + qk

pk
− (1 − λk−1), γ ∗ = γk−1 + αk .

It follows from the definitions of λk−1, γk−1 and (1.1) that λ∗ = λ and γ ∗ = γ . The
proof is complete. �
Proof of Theorem 1.2 If 0 < λ < 1, then by Lemma 2.4 we know that μ is a (λ, α)-
Fock–Carlesonmeasure if and only ifμ is a vanishing (λ, α)-Fock–Carlesonmeasure.
It is just a consequence of Theorem 1.1. And so it suffices to prove the theorem in the
case of λ > 1. Since (ii)�⇒(iii) is obvious, the theorem will be proved by showing
(i) �⇒(ii) and (iii)�⇒(i).

(i)�⇒(ii). Assume thatμ is a vanishing (λ, γ )-Fock–Carleson measure. Let
{

f1,l
}

be any bounded sequence in F p1
α1 and f1,l → 0 uniformly on each compact subset of
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C
n as l → ∞. Suppose that { fi } is an arbitrary sequence in F pi

αi with ‖ fi‖pi ,αi ≤ 1
for i = 2, 3, . . . , k. For r > 0, denote Br := B(0, r), and μr the restriction of μ to
C

n\Br . Then μr is also a (λ, γ )-Fock–Carleson measure, and

lim
r→∞ ‖μr‖ = 0.

On one hand, by Theorem 1.1, we obtain that for any ε > 0 small enough, there exists
an r large enough such that

∫
Cn\Br

∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z)

=
∫
Cn

∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμr (z)

≤ ‖μr‖ · ‖ f1,l‖q1
p1,α1 ·

k∏
i=2

‖ fi‖qi
pi ,αi � ε.

Fix this r . Since
{

f1,l
}
converges to 0 uniformly on each compact subset of Cn , there

is a constant K > 0 such that for any l > K ,
∣∣ f1,l(z)

∣∣ < ε for any z ∈ Br . Therefore,
using Theorem 1.1 again, we have

∫
Br

∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z)

≤ ε

∫
Cn

1 · e− α1
2 |z|2q1 ·

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z)

� ε ‖1‖q1
p1,α1

k∏
i=2

‖ fi‖qi
pi ,αi � ε

for l > K . Thus, we get

lim sup
l→∞

∫
Cn

∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z)

= lim sup
l→∞

(∫
Br

+
∫
Cn\Br

) ∣∣∣ f1,l(z)e
− α1

2 |z|2
∣∣∣q1

k∏
i=2

∣∣∣ fi (z)e
− αi

2 |z|2
∣∣∣qi

dμ(z) � ε.

It follows from the arbitrariness of ε that lim
l→∞ F(l) = 0.

(iii) �⇒ (i). For fixed a ∈ C
n , take

fi,a(z) = eαi 〈z,a〉

e
αi
2 |a|2 , z ∈ C

n,
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where i = 1, 2, . . . , k. By (2.2), we know that fi,a ∈ F pi
αi with ‖ fi,a‖pi ,αi 	 1.

Furthermore, it is easy to check that fi,a → 0 uniformly on any compact subset ofCn

as |a| → ∞. Thus, (iii) implies

lim|a|→∞

∫
Cn

k∏
i=1

∣∣∣∣eαi 〈z,a〉

e
αi
2 |a|2 e− αi

2 |z|2
∣∣∣∣
qi

dμ(z) = 0.

Let t = max {q1, q2, . . . , qk}. Then

lim|a|→∞

∫
Cn

e− γ t
2 |z−a|2dμ(z) ≤ lim|a|→∞

∫
Cn

k∏
i=1

∣∣∣∣eαi 〈z,a〉

e
αi
2 |a|2 e− αi

2 |z|2
∣∣∣∣
qi

dμ(z) = 0.

This shows μ is a vanishing (λ, γ )-Fock–Carleson measure by Lemma 2.3. The proof
is complete. �
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