1 Introduction

The notion of frame dates back to [11], and was formally introduced by Duffin and Schaeffer in studying nonharmonic Fourier series [8]. But it had not generated much interest until the ground breaking work [6] by Daubechies, Grossmann and Meyer. Since then the theory of frames has been growing rapidly. Now it has seen great achievements in a variety of areas throughout mathematics and engineering [2, 12,13,14].

Let \(\mathcal {H}\) be a separable Hilbert space, and \(\mathrm{f}=\{f_{i}\}_{i\in {{\mathbb {N}}}}\) an at most countable sequence in \(\mathcal {H}\). \(\mathrm{f}\) is called a frame for \(\mathcal {H}\) if there exist constants \(0<A\le B<\infty \) such that

$$\begin{aligned} A\Vert f\Vert ^2\le \sum _{i \in {\mathbb {N}}}\left| \,\big <f,\,f_i\big >\right| ^2\le B\Vert f\Vert ^2 \end{aligned}$$
(1)

for all \(f\in {\mathcal H}\), where A and B are called lower and upper frame bounds respectively. It is called a tight (Parseval) frame if \(A=B\) (\(A=B=1\)) in (1), and a Bessel sequence with Bessel bound B if the right-hand side inequality in (1) holds. It is called a frame sequence if it is a frame for its closed linear span \(\overline{\mathrm{span}}\{f_{i}\}_{i\in {{\mathbb {N}}}}\). It is called a Riesz sequence in \(\mathcal {H}\) if there exist constants \(0<A\le B<\infty \) such that

$$\begin{aligned} A\sum \limits _{i\in {{\mathbb {N}}}}\left| c_{i}\right| ^{2}\le \left\| \sum \limits _{i\in {{\mathbb {N}}}} c_{i}f_{i}\right\| ^{2}\le B\sum \limits _{i\in {{\mathbb {N}}}}\left| c_{i}\right| ^{2} \end{aligned}$$
(2)

for all finitely supported sequences \(\mathrm{c}=\{c_{i}\}_{i\in {{\mathbb {N}}}}\), where A and B are called Riesz bounds. And it is called a Riesz basis for \(\mathcal {H}\) if it is a Riesz sequence and \(\overline{\mathrm{span}}\{f_{i}\}_{i\in {{\mathbb {N}}}}=\mathcal {H}\). For a Bessel sequence \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) in \(\mathcal {H}\), we denote by \(T_\mathrm{f}\) its synthesis operator, i.e.,

$$\begin{aligned} T_\mathrm{f}\mathrm{c}=\sum \limits _{i=1}^\infty c_{i}f_{i}\quad \text{ for } \mathrm{c}=\{c_{i}\}_{i\in {\mathbb {N}}}\in l^2({\mathbb {N}}), \end{aligned}$$

by \(T_\mathrm{f}^*\) the adjoint operator of \(T_\mathrm{f}\), i.e.,

$$\begin{aligned} T_\mathrm{f}^*\xi =\{\langle \xi ,\,f_i\rangle \}_{i\in {\mathbb {N}}}\quad \text{ for } \xi \in \mathcal {H}, \end{aligned}$$

and by \(S_\mathrm{f}\) the associated frame operator, i.e., \(S_\mathrm{f}=T_\mathrm{f}T_\mathrm{f}^*\). Two frames \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}=\{g_{i}\}_{i\in \mathbb {N}}\) for \(\mathcal {H}\) are said to be equivalent (unitarily equivalent) if there exists an invertible bounded operator (a unitary operator) U on \({\mathcal H}\) such that \(Uf_{i}=g_{i}\) for each \( i\in \mathbb {N}\). Recall that a sequence is a Riesz sequence (Riesz basis) if and only if it is an exact frame sequence (frame), i.e., it is a frame sequence (frame), but removing an arbitrary element from it cannot leave frame sequence (frame) for the initial space. For basics on frames, see e.g., [2, 12, 15].

Reference [2, Corollary 3.7.4] reduces the verification that a sequence in \(\mathcal {H}\) is a Riesz sequence to a calculation of a countable collection of numbers. And by the beginning argument in [2, Sect. 3], at least conceptually, it is easier to check that sequence is a Riesz sequence than to check the frame property.

The frame literature contains several results relating frames and Riesz sequences. For example, in finite-dimensional setting, given a \(n\times m\) matrix, its columns constitute a frame for \(\mathbb {C}^{n}\) if and only if its rows form a Riesz sequence in \(\mathbb {C}^{m}\). One of the prominent connections is the duality principle in Gabor analysis which was discovered almost simultaneously by three groups of researchers: Janssen[16], Daubechies, Landau, and Landau[7], and Ron and Shen[17]. In [12], it was called the Ron-Shen duality principle. Given \(g\in L^{2}(\mathbb {R})\) and two parameters \(a,b>0\), define the associated Gabor system \(\mathcal {G(}g,a,b)\) by

$$\begin{aligned} \mathcal {G}(g,a,b)=\{E_{mb}T_{na}g:m,n\in \mathbb {Z}\}, \end{aligned}$$

where

$$\begin{aligned} T_{na}f(\cdot )=f(\cdot -na)\text { }and\text { }E_{mb}f(\cdot )=e^{2\pi imb\cdot }f(\cdot ) \end{aligned}$$

for \(f\in L^{2}(\mathbb {R})\) and \(m,n\in \mathbb {Z}\). The Ron-Shen duality principle states that, for each \(g\in L^{2}(\mathbb {R})\) and \(a,b>0\) with \(ab\le 1\), \(\mathcal {G(}g,a,b)\) is a frame for \(L^{2}(\mathbb {R})\) if and only if \(\mathcal {G(}g,\frac{1}{b},\frac{1}{a})\) is a Riesz sequence in \(L^{2}(\mathbb {R})\). Another important result is the Wexler-Raz biorthogonality relations[21] (see also [12, Theorem 7.3.1]). Partly motivated by the above results, Casazza et al. in [1] introduced the notion of R-duals in general Hilbert spaces. They characterized exactly properties of a sequence in terms of its R-dual sequence, which yields duality relations for the abstract frame setting. In particular, they also proved that \(\mathcal {G(}g,\frac{1}{b},\frac{1}{a})\) is exactly one of its R-dual sequences if \(\mathcal {G(}g,a,b)\) is a tight frame for \(L^{2}(\mathbb {R})\). Christensen et al. in [3] derived conditions for a sequence to be a R-dual of a given frame, and considered a relaxation of the R-dual setup. Later, Xiao and Zhu in [22] extended the concept of R-duals to Banach spaces, and Christensen et al. in [4] presented some characterizations of R-dual sequences in Banach spaces. Chuang and Zhao in [5] characterized a class of R-duals. Stoeva and Christensen in [18, 19] introduced R-duals of type II and III and showed that for tight frames these classes coincide with the R-duals. In particular, they proved that for a Gabor frame \(\mathcal {G(}g,a,b)\), \(\frac{1}{\sqrt{ab}}\mathcal {G(}g,\frac{1}{b},\frac{1}{a})\) is exactly one of its R-duals of type III. We may refer to [9, 10] for other related results.

Definition 1

Let \(\mathcal {H}\) be a separable Hilbert space, and \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be orthonormal bases for \(\mathcal {H}.\) Given \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N }}\subset \mathcal {H}\) satifying \(\sum \nolimits _{j=1}^{\infty }\left| \left\langle f_{j},e_{i}\right\rangle \right| ^{2}<\infty \) for each \(i\in \mathbb {N}\), define \({{\omega }}=\{\omega _{i}\}_{i\in \mathbb {N}}\) by

$$\begin{aligned} \omega _i =\sum \limits _{j=1}^\infty \langle f_{j},\,e_{i}\rangle h_j\quad \text{ for } \text{ each } i\in {\mathbb {N}}. \end{aligned}$$
(3)

Then \({{\omega }}\) is called the R-dual sequence of \({\mathrm{f}}\) with respect to \({{\mathrm{e}}}\) and \({\mathrm{h}}\).

In this paper, we propose a kind of new R-duals called weak R-duals. Recall that a Parseval frame is a frame most like an orthonormal basis since if admits an orthonormal basis-like expansion, i.e., if \({\mathrm{e}}\) is a Parseval frame for a Hilbert space \(\mathcal {H}\), then

$$\begin{aligned} f=\underset{i\in \mathbb {N}}{\sum }\left\langle f,\,e_{i}\right\rangle e_{i} \quad {\quad \text{ for } }f\in \mathcal {H}. \end{aligned}$$

A natural problem is to ask what we will obtain if orthonormal bases \({\mathrm{e}}\) and \({\mathrm{h}}\) in Definition 1 are replaced by two Parseval frames. This motivates us to introduce the following definition of weak R-duals.

Let \(\mathcal {H}\) be a separable Hilbert space. For an infinite matrix \(\mathcal {A=(}a_{ij}\mathcal {)}_{i, j\in \mathbb {N}}\) and a sequence \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) in \(\mathcal {H}\), we write

$$\begin{aligned} \mathcal {A}\mathrm{f}=\left\{ \underset{j\in \mathbb {N}}{\sum }a_{ij}f_{j}\right\} _{i\in \mathbb {N}} \end{aligned}$$

if every \(\sum \nolimits _{j\in \mathbb {N}} a_{ij}f_{j}\) with \(i\in \mathbb {N}\) is well defined. Given sequences \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{g}}=\{g_{i}\}_{i\in \mathbb {N}}\) in \(\mathcal {H}\), we define the matrix \(M({\mathrm{f}},{\mathrm{g}})\) by

$$\begin{aligned} M({\mathrm{f}},{\mathrm{g}})=(\left\langle f_{j},\,g_{i}\right\rangle )_{i,j\in \mathbb {N}}, \end{aligned}$$

i.e., the (ij)-entry of \(M({\mathrm{f}},{\mathrm{g}})\) is \(\left\langle f_{j},\,g_{i}\right\rangle \). For simplicity, we write \(M({\mathrm{f}},{\mathrm{f}})=M({\mathrm{f}})\) which is exactly the Gram matrix associated with \(\mathrm{f}\). For general \({\mathrm{f}}\) and \({\mathrm{g}}\), we call \(M({\mathrm{f}},{\mathrm{g}})\) the mixed Gram matrix associated with \({\mathrm{f}}\) and \({\mathrm{g}}\). We denote by I the identity matrix, by \(A^t\) and \(A^*\) its transpose and conjugate transpose for a matrix A, respectively, by \(l_{0}(\mathbb {N})\) the set of finitely supported sequences defined on \({\mathbb {N}}\), and by \(\mathscr {B}(l^{2}(\mathbb {N}))\) the set of bounded operators on \(l^{2}(\mathbb {N})\).

Definition 2

Let \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({{\mathrm{h}}}=\{h_{i}\}_{i\in \mathbb { N}}\) be Parseval frames for \(\mathcal {H}\), and let \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) be a sequence in \({\mathcal {H}}\) such that

$$\begin{aligned} \sum \limits _{j=1}^\infty \left| \langle f_{j},\,e_{i}\rangle \right| ^2<\infty {\quad \text{ for } \text{ each } } i\in \mathbb {N}, \end{aligned}$$
(4)

and

$$\begin{aligned} (M({{\mathrm{h}}})-I)M({\mathrm{f}},{{\mathrm{e}}})^{t}=0. \end{aligned}$$
(5)

Define the sequence \(\omega \) by

$$\begin{aligned} \omega =\{\omega _{i}\}_{i\in \mathbb {N}}=M({\mathrm{f}},{{\mathrm{e}}}){{\mathrm{h}}}. \end{aligned}$$
(6)

Then \({{\omega }}\) is called a weak R-dual sequence of the sequence \({\mathrm{f}}\) with respect to \({{\mathrm{e}}}\) and \({{\mathrm{h}}}\).

Remark 1

  1. (i)

    (4) shows that every row vector of \(M(\mathrm{f},{\mathrm{e}})\) belongs to \(l^{2}(\mathbb {N})\). This implies that \({\omega }\) and \((M({{\mathrm{h}}})-I)M({\mathrm{f}},{{\mathrm{e}}})^{t}\) are both well defined since \(M({{\mathrm{h}}})\in \mathscr {B}(l^{2}(\mathbb {N}))\) by Lemma 2.

  2. (ii)

    The condition (5) is a technical condition for establishing the link between the synthesis and analysis operators of \({\omega }\) and \(\mathrm{f}\). This can be seen in Lemma 5.

  3. (iii)

    Observe that, whenever \(\mathrm{h}\) is an orthonormal basis, we have that \(M(\mathrm{{h}})=I\), and thus (5) holds. In this case, we do not require that \({\mathrm{e}}\) must be an orthonormal basis. Hence, “weak R-dual” is a genuine generalization of “R-dual”. Example 1 below provides us with another example satisfying (5) for the case that \(\mathrm{e}\) and \(\mathrm{h}\) are both Parseval frames but neither of them is an orthonormal basis. In particular, the “weak R-dual sequences” reduces to “R-dual sequences” if \(\mathrm{e}\) and \(\mathrm{h}\) are orthonormal bases for \(\mathcal {H}\).

By a standard argument, we have

Example 1

Let \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}\) be a Parseval frame for \(\mathcal {H}\) and \(\{\widetilde{h}_{i}\}_{i\in \mathbb {N}}\) an orthonormal basis for \(\mathcal {H}\). Define \({{\mathrm{h}}}=\{h_{i}\}_{i\in \mathbb {N}}\) by

$$\begin{aligned} h_{2i-1}=h_{2i}=\frac{1}{\sqrt{2}}\widetilde{h}_{i}\quad {\quad \text{ for } }i \in \mathbb {N}. \end{aligned}$$

Then \({\mathrm{h}}\) is a Parseval frame for \(\mathcal H\), and (4) and (5) hold for an arbitrary Bessel sequence \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) satisfying

$$\begin{aligned} f_{2i-1}=f_{2i}{\quad \text{ for } } i\in \mathbb {N}. \end{aligned}$$

The authors in [1] established duality principles based on R-duals. Precisely, they characterized frame properties of initial sequences and equivalence of frames using their R-duals, presented an explicit expression of the canonical duals of R-duals. Recall from [1, Theorem 2] that a sequence is a frame if and only if its R-dual is a Riesz sequence. It turns out that it is not the case for weak R-duals. See Theorems 1 and 2 for details. In particular, Theorem 2 gives the new dual relation that the weak R-dual of a frame (Riesz basis) is a frame sequence (frame). Corollaries 13 and Remark 3 demonstrate that weak R-dual is a genuine extension of R-dual. It should be of independent interest and hopefully will motivate new research. On the other hand, we characterize (unitarily) equivalent frames in terms of weak R-duals similarly to [1, Theorem 17, 18], and derive an explicit expression of the canonical dual of a weak R-dual.

The rest of this paper is organized as follows. Section 2 focuses on dual relations based on weak R-duals. Section 3 is devoted to expressing the canonical dual of a weak R-dual.

2 Duality relations

This section focuses on duality relations based on weak R-duals. For this purpose, we first need to introduce some lemmas.

The following lemma can be obtained by the same procedure as in [15, Theorem 3.33] which dealt with finite dimensional case.

Lemma 1

Two frames \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}=\{g_{i}\}_{i\in \mathbb {N}}\) for \(\mathcal {H}\) are equivalent if and only if \(ker(T_\mathrm{f})=ker(T_\mathrm{g})\).

Lemma 2

  1. (i)

    \(M({\mathrm{f}},{\mathrm{g}})=T_{{\mathrm{g}}}^*T_{{\mathrm{f}}}\) for arbitrary Bessel sequences \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{g}}=\{g_{i}\}_{i\in \mathbb {N}}\) in \(\mathcal {H}\), and thus \(M({\mathrm{f}},{\mathrm{g}})\in \mathscr {B}(l^{2}(\mathbb {N}))\).

  2. (ii)

    \(M({\mathrm{f}},{\mathrm{g}})\) is a bounded invertible operator on \(l^{2}(\mathbb {N})\) for arbitrary Riesz bases \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{g}}=\{g_{i}\}_{i\in \mathbb {N}}\) for \(\mathcal {H}\).

Proof

(i) By a standard argument, we have that

$$\begin{aligned} \left\langle T_{{\mathrm{g}}}^*T_{{\mathrm{f}}}c,\,d\right\rangle =\left\langle T_{{\mathrm{f}}}c,\,T_{{\mathrm{g}}}d\right\rangle =\left\langle M({\mathrm{f}},{\mathrm{g}})c,\,d\right\rangle \end{aligned}$$

for \(c,d \in l_{0}(\mathbb {N})\). This implies that \(M({\mathrm{f}},{\mathrm{g}})=T_{{\mathrm{g}}}^*T_{{\mathrm{f}}}\) due to \(l_{0}(\mathbb {N})\) being dense in \(l^2(\mathbb {N})\).

(ii) Since \(T_{{\mathrm{f}}}\) and \(T_{{\mathrm{g}}}\) are bijections from \(l^2(\mathbb {N})\) onto \(\mathcal {H}\) if \({\mathrm{f}}\) and \({\mathrm{g}}\) are Riesz bases, (i) implies (ii).

Lemma 3

Let \(\mathrm{{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Then, given sequences \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\), \(\omega \) is the weak R-dual sequence of the sequence \(\mathrm{{f}}\) with respect to \(\mathrm{{e}}\) and \(\mathrm{{h}}\) if and only if \(\mathrm{{f}}\) is the weak R-dual sequence of \({{\omega }}\) with respect to \(\mathrm{{h}}\) and \(\mathrm{{e}}\).

Proof

By the symmetry, we only need to prove the necessity. Suppose \({{\omega }}\) is the weak R-dual sequence of the sequence \(\mathrm{{f}}\) with respect to \(\mathrm{{e}}\) and \(\mathrm{{h}}\). Then

$$\begin{aligned}&(M(\mathrm{{h}})-I)M(\mathrm{{f}},\mathrm{{e}})^{t}=0, \end{aligned}$$
(7)
$$\begin{aligned}&{{\omega }} =M(\mathrm{{f}},\mathrm{{e}})\mathrm{{h}}. \end{aligned}$$
(8)

It follows that

$$\begin{aligned} \left\langle f_{i},\,e_{j}\right\rangle =\sum \limits _{k=1}^{\infty }\left\langle f_{k},\,e_{j}\right\rangle \left\langle h_{k},\,h_{i}\right\rangle =\left\langle \omega _{j},\,h_{i}\right\rangle {\quad \text{ for } } i,j\in \mathbb {N} \end{aligned}$$
(9)

by a simple computation. This implies that

$$\begin{aligned} \sum \limits _{j=1}^{\infty }\left| \left\langle \omega _{j},\,h_{i}\right\rangle \right| ^{2}=\sum \limits _{j=1}^{\infty }\left| \left\langle f_{i},\,e_{j}\right\rangle \right| ^{2}=\Vert f_i\Vert ^2<\infty {\quad \text{ for } } i\in \mathbb {N}, \end{aligned}$$
(10)

and

$$\begin{aligned} \begin{aligned} f_{i}=\sum \limits _{j=1}^{\infty }\left\langle f_{i},\,e_{j}\right\rangle e_{j}=\sum \limits _{j=1}^{\infty } \left\langle \omega _{j},\,h_{i}\right\rangle e_{j} {\quad \text { for } } i\in \mathbb {N} \end{aligned} \end{aligned}$$
(11)

due to \({{\mathrm{e}}}\) being a Parseval frame. It follows from (9) and (11) that

$$\begin{aligned} \left\langle \omega _{j},\,h_{i}\right\rangle =\left\langle f _{i},\,e_{j}\right\rangle = \sum \limits _{k=1}^{\infty }\left\langle \omega _{k},\,h_{i}\right\rangle \left\langle e_{k},\,e_{j}\right\rangle {\quad \text{ for } } i,j\in \mathbb {N} \end{aligned}$$
(12)

which is equivalent to \((M(\mathrm{{e}})-I)M({{\omega }} ,\mathrm{{h}})^{t}=0\). Collecting (10)–(12) leads to the necessity.

Remark 2

When \(\{e_{i}\}_{i\in \mathbb {N}}\) and \(\{h_{i}\}_{i\in \mathbb {N}}\) are orthonormal bases, it is obvious that \(M({{\mathrm{h}}})=I,\) therefore Lemma 3 above will degenerate Lemma 1 in [1].

Lemma 4

Let \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({{\mathrm{h}}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Assume that \({{\omega }}=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) with respect to e and h. Then, for all \(\mathrm{{a}}=\{a_{i}\}_{i\in \mathbb {N}}\), \({\mathrm{b}}=\{b_{i}\}_{i\in \mathbb {N}}\in l_{0}(\mathbb {N}),\) we have

$$\begin{aligned} \begin{aligned} \left\| \sum \limits _{j=1}^{\infty }a_{j}\omega _{j}\right\| ^{2}=\sum \limits _{i=1}^{\infty }\left| \left\langle \phi ,\,f_{i}\right\rangle \right| ^{2} \text{ and } \left\| \sum \limits _{i=1}^{\infty }b_{i}f_{i}\right\| ^{2}=\sum \limits _{j=1}^{\infty }\left| \left\langle g,\,\omega _{j}\right\rangle \right| ^{2} \end{aligned}\end{aligned}$$

where \(\phi =\sum \nolimits _{j=1}^{\infty }\overline{a _{j}}e_{j}\) and \(g=\sum \nolimits _{i=1}^{\infty }\overline{b_{i}}h_{i}.\)

Proof

We only need to prove first equation because the second equation automatically holds by Lemma 3. Fix \(\phi =\sum \nolimits _{j=1}^{\infty }\overline{a_{j}}e_{j} \text { with } a\in l_{0}(\mathbb {N})\). Since \({{\omega }}\) is the weak R-dual sequence of the sequence \(\mathrm{{f}}\) with respect to \(\mathrm{{e}}\) and \(\mathrm{{h}}\), we have

$$\begin{aligned} {{\omega }} =M(\mathrm{{f}},\mathrm{{e}})\mathrm{{h}} \end{aligned}$$
(13)

and

$$\begin{aligned} (M(\mathrm{{h}})-I)M(\mathrm{{f}},\mathrm{{e}})^{t}=0. \end{aligned}$$
(14)

From (13), it follows that

$$\begin{aligned} \omega _{j}=\sum \limits _{k=1}^{\infty }\left\langle f_{k},\,e _{j}\right\rangle h_{k} \quad \text{ for } j\in \mathbb {N}. \end{aligned}$$
(15)

By (14), we have

$$\begin{aligned} \left\langle f_{i},\,e_{j}\right\rangle =\sum \limits _{k=1}^{\infty }\left\langle f_{k},\,e_{j}\right\rangle \left\langle h_{k},\,h_{i}\right\rangle {\quad \text{ for } } i,j\in \mathbb {N}. \end{aligned}$$
(16)

It follows that

$$\begin{aligned} \left\langle f_{i},\,\phi \right\rangle= & {} \sum \limits _{j=1}^{\infty }a_{j}\left\langle f_{i},\,e_{j}\right\rangle \\= & {} \sum \limits _{j=1}^{\infty }a_{j}\left\langle \sum \limits _{k=1}^{\infty }\left\langle f_{k},\,e_{j}\right\rangle h_{k},\,h_{i}\right\rangle , \end{aligned}$$

and thus

$$\begin{aligned} \left\langle f_{i},\,\phi \right\rangle =\left\langle \sum \limits _{j=1}^{\infty }a_{j}\omega _{j},\,h_{i} \right\rangle \quad \text{ for } i\in \mathbb {N} \end{aligned}$$
(17)

by (15). It follows

$$\begin{aligned} \sum \limits _{i=1}^{\infty }|\left\langle f_{i},\,\phi \right\rangle |^2=\left\| \sum \limits _{j=1}^{\infty }a_{j}\omega _{j}\right\| ^{2} \end{aligned}$$
(18)

due to \({{\mathrm{h}}}\) being a Parseval frame. \(\square \)

Proposition 5 in [1] established the connection between a sequence and its R-dual sequence. As an immediate consequence of Lemma 4, we have following lemma. It extends Proposition 5 in [1], and establishes the connection between a sequence and its weak R-dual sequence.

Lemma 5

Let \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({{\mathrm{h}}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Assume that \({{\omega }}=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) with respect to e and h. Then \({\mathrm{f}}\) is a Bessel sequence in \( \mathcal {H}\) with bound B if and only if \({{\omega }}\) is a Bessel sequence in \(\mathcal {H}\) with bound B. In this case, for all \(\mathrm{{a}}=\{a_{i}\}_{i\in \mathbb {N}}\), \({\mathrm{b}}=\{b_{i}\}_{i\in \mathbb {N}}\in l^{2}(\mathbb {N}),\) we have

$$\begin{aligned} \begin{aligned} \left\| \sum \limits _{j=1}^{\infty }a_{j}\omega _{j}\right\| ^{2}=\sum \limits _{i=1}^{\infty }\left| \left\langle \phi ,\,f_{i}\right\rangle \right| ^{2} \text{ and } \left\| \sum \limits _{i=1}^{\infty }b_{i}f_{i}\right\| ^{2}=\sum \limits _{j=1}^{\infty }\left| \left\langle g,\,\omega _{j}\right\rangle \right| ^{2}, \end{aligned}\end{aligned}$$

where \(\phi =\sum \nolimits _{j=1}^{\infty }\overline{a_{j}}e_{j}\) and \(g=\sum \nolimits _{i=1}^{\infty }\overline{b_{i}}h_{i}.\)

Lemma 6

Let \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Bessel sequences in \(\mathcal {H}\), and \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be complete in \(\mathcal {H}\). Define

$$\begin{aligned} \omega _{j}=\sum \limits _{i=1}^{\infty }\left\langle f_{i},\,e_{j}\right\rangle h_{i}\quad \text{ for } j\in \mathbb {N}. \end{aligned}$$

Then, for \(g\in \mathcal {H}\), we have that \(g\in (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }\) if and only if \(\{\left\langle h_{i},\,g\right\rangle \}_{i\in \mathbb {N}}\in ker (T_{\mathrm {f}}).\)

Proof

The proof is similar to that of [1, Lemma 3]. For completeness, we give it here. By a simple computation, we have

$$\begin{aligned} \left\langle g,\,\omega _{j}\right\rangle =\left\langle e_{j},\,\sum \limits _{i=1}^{\infty }\left\langle h_{i},\,g\right\rangle f_{i}\right\rangle \quad \text{ for } j\in \mathbb {N}. \end{aligned}$$

This implies that \(g\in (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }\) if and only if

$$\begin{aligned} \left\langle e_{j},\,\sum \limits _{i=1}^{\infty }\left\langle h_{i},\,g\right\rangle f_{i}\right\rangle =0\quad \text{ for } j\in \mathbb {N}. \end{aligned}$$

It is in turn equivalent to \(\{\left\langle h_{i},\,g\right\rangle \} _{i\in \mathbb {N}}\in ker (T_\mathrm {f})\) by the completeness of \({\mathrm{e}}\) in \(\mathcal {H}\). \(\square \)

Lemma 7

Let \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}=\{g_{i}\}_{i\in \mathbb {N}}\) be frames for \(\mathcal {H}\), then \(\mathrm{f}\) is unitarily equivalent to \(\mathrm{g}\) if and only if

$$\begin{aligned} \left\| \sum \limits _{i=1}^{\infty }c_{i}f_{i}\right\| ^{2}=\left\| \sum \limits _{i=1}^{\infty }c_{i}g_{i}\right\| ^{2} { \text{ for } } \mathrm{c}=\{c_{i}\}_{i\in \mathbb {N}}\in l^{2}(\mathbb {N}). \end{aligned}$$
(19)

Proof

Neccssity. Suppose \(\mathcal {A}\) is a unitary operator on \(\mathcal {H}\) satisfying \(\mathcal {A}f_{i}=g_{i}\) for \(i\in \mathbb {N}\). Then

$$\begin{aligned} \mathcal {A}(\sum \limits _{i=1}^{\infty }c_{i}f_{i})=\sum \limits _{i=1}^{\infty }c_{i}g_{i} \quad \text{ for } \mathrm{c}\in l^2(\mathbb {N}). \end{aligned}$$

This leads to (19) by the unitarity of \(\mathcal {A}\).

Sufficiency. Suppose (19) holds. Then \(ker(T_\mathrm{f})=ker(T_\mathrm{g})\). This implies that, for \(\mathrm{c}, \mathrm{d}\in l^2(\mathbb {N})\),

$$\begin{aligned} \sum \limits _{i=1}^{\infty }c_{i}f_{i}=\sum \limits _{i=1}^{\infty }d_{i}f_{i} \text{ if } \text{ and } \text{ only } \text{ if } \sum \limits _{i=1}^{\infty }c_{i}g_{i}=\sum \limits _{i=1}^{\infty }d_{i}g_{i}. \end{aligned}$$

For an arbitrary \(f\in \mathcal {H}\), there exists \(\mathrm{c}\in l^2(\mathbb {N})\) such that \(f=\sum \nolimits _{i=1}^{\infty }c_{i}f_{i}\) since f is a frame for \(\mathcal {H}\). Define the operator \(\mathcal {A}\) on \(\mathcal {H}\) by

$$\begin{aligned} \mathcal {A}(\sum \limits _{i=1}^{\infty }c_{i}f_{i})=\sum \limits _{i=1}^{\infty }c_{i}g_{i} \quad \text{ for } \mathrm{c}\in l^2(\mathbb {N}). \end{aligned}$$
(20)

Then \(\mathcal {A}\) is a well-defined isometry by (19) and the above arguments. Also observing that \(\mathrm{g}\) is a frame, we have that \(\mathcal {A}\) is also onto. So \(\mathcal {A}\) is a unitary operator on \(\mathcal {H}\). By (20), we also have \(\mathcal {A}f_{i}=g_{i}\) for \(i\in \mathbb {N}\). The proof is completed.

Theorem 1

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\), and \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) be a Bessel sequence in \(\mathcal {H}\). Assume that \({{\omega }}=\{{\omega } _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \(\mathrm{f}\) with respect to e and h. Then \(\mathrm{f}\) is a frame for \(\mathcal {H}\) with bounds A and B if and only if

$$\begin{aligned} \begin{aligned} A\sum \limits _{j=1}^{\infty }\left| a_{j}\right| ^{2}\le \left\| \sum \limits _{j=1}^{\infty }\overline{a_{j}}\omega _{j}\right\| ^{2}\le B\sum \limits _{j=1}^{\infty } \left| a_{j}\right| ^{2} {\quad \text { for } } \mathrm {a}=\{a_{i}\}_{i\in \mathbb {N}}\in (ker(T_{\mathrm {e}}))^{\bot }. \end{aligned} \end{aligned}$$
(21)

Proof

By Lemma 5.5.5 in [2] and Lemma 5, we have

$$\begin{aligned} \left\| T_{{\mathrm{e}}}\mathrm{a}\right\| ^{2}=\sum \limits _{j=1}^{\infty }\left| a_{j}\right| ^{2} \end{aligned}$$
(22)

and

$$\begin{aligned} \begin{aligned} \left\| \sum \limits _{j=1}^{\infty }{\overline{a_{j}}}\omega _{j}\right\| ^{2}=\sum \limits _{i=1}^{\infty }\left| \left\langle T_{{\mathrm {e}}}\mathrm {a} ,\,f_{i}\right\rangle \right| ^{2} \end{aligned} \end{aligned}$$
(23)

for \(\mathrm{a}=\{a_{i}\}_{i\in \mathbb {N}}\in (ker(T_{\mathrm{e}}))^{\bot }\), respectively. Therefore, (21) is equivalent to

$$\begin{aligned} A\left\| T_{{\mathrm{e}}}\mathrm{a}\right\| ^{2}\le \sum \limits _{i=1}^{\infty }\left| \left\langle T_{{\mathrm{e}}}\mathrm{a},\,f_{i}\right\rangle \right| ^{2}\le B\left\| T_{{\mathrm{e}}}\mathrm{a}\right\| ^{2}{ \text{ for } \mathrm{a}\in (ker(T_{\mathrm{e}}))^{\bot }}. \end{aligned}$$

It is in turn equivalent to

$$\begin{aligned} A\left\| f\right\| ^{2}\le \sum \limits _{i=1}^{\infty }\left| \left\langle f,\,f_{i}\right\rangle \right| ^{2}\le B\left\| f\right\| ^{2}{ \text{ for } } f\in \mathcal {H}. \end{aligned}$$

Since \(T_{{\mathrm{e}}}((ker(T_{\mathrm{e}}))^{\bot })=\mathcal {H}\). This finishes the proof. \(\square \)

Corollary 1

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Assume that \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\). Then the following statements hold:

  1. (i)

    If \({\mathrm{e}}\) is an orthonormal basis for \(\mathcal {H}\), then \(\mathrm{f}\) is a frame for \(\mathcal {H}\) with bounds A and B if and only if \({\omega }\) is a Riesz sequence in \(\mathcal {H}\) with bounds A and B.

  2. (ii)

    If \({\mathrm{e}}\) is not an orthonormal basis for \(\mathcal {H}\), then \({\omega }\) cannot be a Riesz sequence.

Proof

(i) \(ker(T_{\mathrm{e}})=\{0\}\) if \({\mathrm{e}}\) is an orthonormal basis for \(\mathcal {H}\). This leads to (i) by Theorem 1.

(ii) \(ker(T_{\mathrm{e}})\ne \{0\}\) if \({\mathrm{e}}\) is not an orthonormal basis. It follows that \(ker(T_{\omega })\ne \{0\}\) by (27). This leads to (ii).

Remark 3

In Corollary 1(i), \({\mathrm{h}}\) need not be an orthonormal basis. So Corollary 1(i) is a genuine extension of [1, Theorem 2].

Theorem 2

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Assume that \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\). Then the following statements hold:

  1. (i)

    If \(\mathrm{f}\) is a frame for \(\mathcal {H}\) with bounds A and B, then \({\omega }\) is a frame sequence in \(\mathcal {H}\) with the same bounds.

  2. (ii)

    If \(\mathrm{f}\) is a Riesz basis for \(\mathcal {H}\) with bounds A and B, then \({\omega }\) is a frame for \(\mathcal {H}\) with the same bounds.

Proof

(i) First we prove that

$$\begin{aligned} T_{{\omega } }\overline{\mathrm{c}}=T_{{\mathrm{h}}}\overline{T_{\mathrm{f}}^{*}T_{{\mathrm{e}}}\mathrm{c}}{\quad \text{ for } }\mathrm{c}=\{c_{i}\}_{i\in \mathbb {N}}\in l^{2}(\mathbb {N}). \end{aligned}$$
(24)

By Lemma 5, \({\omega }\) is a Bessel sequence in \(\mathcal {H}\). This implies that \(T_{{\omega } }\) is well defined and a bounded operator from \(l^{2}(\mathbb {N})\) to \(\mathcal {H}\). Observing that \(T_{{\mathrm{h}}}\), \(T_{\mathrm{f}}^{*}\) and \(T_{{\mathrm{e}}}\) are also bounded operators, in order to get (24), we only need to prove that

$$\begin{aligned} T_{{\omega } }\overline{\mathrm{c}}=T_{{\mathrm{h}}}\overline{T_{\mathrm{f}}^{*}T_{{\mathrm{e}}}\mathrm{c}}{\quad \text{ for } }\mathrm{c}=\{c_{i}\}_{i\in \mathbb {N}}\in l_{0}(\mathbb {N}). \end{aligned}$$
(25)

Next we prove (25). Since \({\omega }\) is the weak R-dual of \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\), we have

$$\begin{aligned} \omega _{j}=\sum \limits _{i=1}^{\infty }\left\langle f_{i},\,e_{j}\right\rangle h_{i} \quad \text{ for } j\in \mathbb {N}. \end{aligned}$$
(26)

It follows that

$$\begin{aligned} T_{\omega }\overline{\mathrm{c}}= & {} \sum \limits _{j=1}^{\infty }\overline{c_{j}}\omega _{j} \\= & {} \sum \limits _{j=1}^{\infty }\overline{c_{j}}\sum \limits _{i=1}^{\infty }\left\langle f_{i},\,e_{j}\right\rangle h_{i} \\= & {} \sum \limits _{i=1}^{\infty }\left\langle f_{i},\,\sum \limits _{j=1}^{\infty }c_{j}e_{j}\right\rangle h_{i} \end{aligned}$$

equivalently,

$$\begin{aligned} T_{{\omega } }\overline{\mathrm{c}}=T_{{\mathrm{h}}}\overline{T_{\mathrm{f}}^{*}T_{{\mathrm{e}}}\mathrm{c}} \end{aligned}$$

for \(\mathrm{c}\in l_{0}(\mathbb {N})\). This shows that (25) holds, and thus (24) holds.

By (24), we have

$$\begin{aligned} \{\overline{\mathrm{c}}:\mathrm{c}\in ker(T_{\mathrm{e}})\}\subset ker(T_{\omega }). \end{aligned}$$
(27)

This leads to

$$\begin{aligned} (ker(T_{\omega }))^{\bot }\subset \{\overline{\mathrm{c}}:\mathrm{c}\in (ker(T_{\mathrm{e}}))^{\bot }\}. \end{aligned}$$
(28)

By Theorem 1,

$$\begin{aligned} A\sum \limits _{j=1}^{\infty }\left| a_{j}\right| ^{2}\le \left\| \sum \limits _{j=1}^{\infty }{a} _{j}\omega _{j}\right\| ^{2}\le B\sum \limits _{j=1}^{\infty } \left| a_{j}\right| ^{2} \end{aligned}$$

for \(\mathrm{a}\in \{\overline{\mathrm{c}}:\mathrm{c}\in (ker(T_{\mathrm{e}}))^{\bot }\}\). This implies that

$$\begin{aligned} A\sum \limits _{j=1}^{\infty }\left| a_{j}\right| ^{2}\le \left\| \sum \limits _{j=1}^{\infty }{a} _{j}\omega _{j}\right\| ^{2}\le B\sum \limits _{j=1}^{\infty } \left| a_{j}\right| ^{2} {\quad \text{ for } } \mathrm{a}\in (ker(T_{\omega }))^{\bot } \end{aligned}$$

by (28). Therefore, \(\omega \) is a frame sequence in \(\mathcal {H}\) with bounds A and B by Lemma 5.5.5 in [2].

(ii) Suppose \(\mathrm{f}\) is a Riesz basis for \(\mathcal {H}\) with bounds A and B, then \({\omega }\) is a frame sequence in \(\mathcal {H}\) with the same bounds. So, in order to get (ii), we only need to prove it is complete in \(\mathcal {H}\). Suppose \(g\in \mathcal {H}\) satisfies

$$\begin{aligned} \left\langle \omega _{j},\,g\right\rangle =0 { \text{ for } \text{ all } } j\in \mathbb {N}. \end{aligned}$$

Then, using (26) we have

$$\begin{aligned} 0=\left\langle \omega _{j},\,g\right\rangle =\left\langle \sum \limits _{i=1}^{\infty }\left\langle h_{i},\,g\right\rangle f_{i},\,e_{j}\right\rangle \end{aligned}$$

for \(j\in \mathbb {N}\) by a simple computation. This implies that

$$\begin{aligned} \sum \limits _{i=1}^{\infty }\left\langle h_{i},\,g\right\rangle f_{i}=0 \end{aligned}$$

since \({\mathrm{e}}\) is complete in \(\mathcal {H}\). Thus \(g=0\) by the fact that \(\mathrm{f}\) is a Riesz basis and \({\mathrm{h}}\) is a frame for \(\mathcal {H}\). \(\square \)

Observing that the Eq. (5) in Definition 2 automatically holds if \({\mathrm{h}}\) is an orthonormal basis for \(\mathcal {H}\) (even if \({\mathrm{e}}\) is not an orthonormal basis for \(\mathcal {H}\)). As an immediate consequence of Theorem 2, we have the following corollary:

Corollary 2

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be a Parseval frame for \(\mathcal {H}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be an orthonormal basis for \(\mathcal {H}\). Then the following statements hold:

  1. (i)

    If \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) is a frame for \(\mathcal {H}\) with bounds A and B, then its weak R-dual sequence \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\) is a frame sequence in \(\mathcal {H}\) with the same bounds.

  2. (ii)

    If \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) is a Riesz basis for \(\mathcal {H}\) with bounds A and B, then its weak R-dual sequence \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\) is a frame for \(\mathcal {H}\) with the same bounds.

The following is an example of Theorem 2(i).

Example 2

Let \(\{\widetilde{h}_{i}\}_{i\in \mathbb {N}}\) be an orthonormal basis for \(\mathcal {H}\). Define \({{\mathrm{h}}}=\{h_{i}\}_{i\in \mathbb {N}}\) by

$$\begin{aligned} h_{2i-1}=h_{2i}=\frac{1}{\sqrt{2}}\widetilde{h}_{i}{\quad \text{ for } }i \in \mathbb {N}, \end{aligned}$$

and \({{\mathrm{e}}}=\{e_{i}\}_{i\in \mathbb {N}}={{\mathrm{h}}}\). Then \({\mathrm{e}}\) and \({\mathrm{h}}\) are Parseval frames for \(\mathcal H\). Take \({\mathrm{f}}=\{f_{i}\}_{i\in \mathbb {N}}\) by

$$\begin{aligned} f_{4i-3}=f_{4i-2}=\widetilde{h}_{i}, f_{4i-1}=f_{4i}=0{\quad \text{ for } }i \in \mathbb {N}. \end{aligned}$$

Then it is easy to check that \({\mathrm{f}}\) is a frame for \(\mathcal {H}\) satisfying

$$\begin{aligned} f_{2i-1}=f_{2i}{\quad \text{ for } } i\in \mathbb {N}. \end{aligned}$$

This implies that (4) and (5) hold by Example 1. By Theorem 2(i), the weak R-dual sequence \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) of the sequence \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\) is a frame sequence. We claim that it is not a frame although it is a frame sequence. Indeed, by Definition 2, \({\omega }\) has the form

$$\begin{aligned} \omega _i=\sum \limits _{j=1}^{\infty }\left\langle f _{j},\,e _{i}\right\rangle h _{j}{\quad \text{ for } }i \in \mathbb {N}. \end{aligned}$$

By a simple computation, we have

$$\begin{aligned} \omega _{2i-1}=\omega _{2i}=\widetilde{h} _{2i-1}{\quad \text{ for } } i\in \mathbb {N}. \end{aligned}$$

Obviously, \(\left\langle \widetilde{h} _{2k},\,\omega _i \right\rangle =0{\quad \text{ for } } i, k \in \mathbb {N}\). This shows that \({\omega }\) cannot be complete in \(\mathcal {H}\). Thus it is not a frame.

By Theorems 1 and 2(ii), we have the following corollary.

Corollary 3

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be an orthonormal basis for \(\mathcal {H}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be a Parseval frame for \(\mathcal {H}\). Assume that \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) is a Riesz basis for \(\mathcal {H}\) and \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\). Then \(\omega \) is a Riesz basis for \(\mathcal {H}\).

The following theorem generalizes [1, Proposition 17] to the weak R-dual case. It characterizes the equivalence between two frames in terms of corresponding weak R-duals.

Theorem 3

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be a Parseval frame for \(\mathcal {H}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be an orthonormal basis for \(\mathcal {H}\). Assume that \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}=\{g_{i}\}_{i\in \mathbb {N}}\) are frames for \(\mathcal {H}\), and that \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\) and \(\gamma =\{\gamma _{i}\}_{i\in \mathbb {N}}\) are the weak R-duals of \(\mathrm{f}\) and \(\mathrm{g}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\), respectively. Then \(\mathrm{f}\) is equivalent to \(\mathrm{g}\) if and only if

$$\begin{aligned} \overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}=\overline{span}\{\gamma _{i}\}_{i\in \mathbb {N}} \end{aligned}$$
(29)

Proof

By Lemma 1, \(\mathrm{f}\) is equivalent to \(\mathrm{g}\) if and only if

$$\begin{aligned} ker(T_\mathrm{f})=ker(T_\mathrm{g}). \end{aligned}$$
(30)

So, to finish the proof, we only need to prove the equivalence between (30) and (29).

Suppose (30) holds. Next we prove

$$\begin{aligned} (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }=(span\{\gamma _{j}\}_{j\in \mathbb {N}})^{\perp } \end{aligned}$$

which implies (29). Let \(\varphi \in (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }\). Then

$$\begin{aligned} \begin{aligned} \{\left\langle h_{i},\,\varphi \right\rangle \}_{i\in \mathbb {N}}\in ker (T_{\mathrm {f}}) \end{aligned} \end{aligned}$$

by Lemma 6, and thus

$$\begin{aligned} \begin{aligned} \{\left\langle h_{i},\,\varphi \right\rangle \}_{i\in \mathbb {N}}\in ker (T_{\mathrm {g}}) \end{aligned} \end{aligned}$$

by (30). Again by Lemma 6, it follows that \(\varphi \in (span\{\gamma _{j}\}_{j\in \mathbb {N}})^{\perp }\). Thus

$$\begin{aligned} (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }\subset (span\{\gamma _{j}\}_{j\in \mathbb {N}})^{\perp } \end{aligned}$$

by the arbitrariness of \(\varphi \). Similarly, we can prove the converse inclusion. Therefore,

$$\begin{aligned} (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }=(span\{\gamma _{j}\}_{j\in \mathbb {N}})^{\perp }. \end{aligned}$$

Now we prove that (29) implies (30). By (29), we have

$$\begin{aligned} (span\{\omega _{j}\}_{j\in \mathbb {N}})^{\perp }=(span\{\gamma _{j}\}_{j\in \mathbb {N}})^{\perp }. \end{aligned}$$

By Lemma 6, this implies that, for \(\xi \in \mathcal {H}\),

$$\begin{aligned} \begin{aligned} \{\left\langle h_{i},\,\xi \right\rangle \}_{i\in \mathbb {N}}\in ker (T_{\mathrm {f}}) \text { if } \text { and } \text { only } \text { if } \{\left\langle h_{i},\,\xi \right\rangle \}_{i\in \mathbb {N}}\in ker (T_{\mathrm {g}}). \end{aligned} \end{aligned}$$
(31)

Define \(\varTheta :\mathcal {H}\rightarrow l^2(\mathbb {N})\) by

$$\begin{aligned} \varTheta \xi =\{\left\langle h_{i},\,\xi \right\rangle \}_{i\in \mathbb {N}}\quad \text{ for } \xi \in \mathcal {H}. \end{aligned}$$

Then \(\varTheta \) is a bijection since \({\mathrm{h}}\) is an orthonormal basis for \(\mathcal {H}\). So the statement (31) implies that, for every \(\xi \in \mathcal {H}\),

$$\begin{aligned} \varTheta \xi \in ker(T_\mathrm{f}) \text{ if } \text{ and } \text{ only } \text{ if } \varTheta \xi \in ker(T_\mathrm{g}), \end{aligned}$$

equivalently,

$$\begin{aligned} \xi \in \varTheta ^{-1}ker(T_\mathrm{f}) \text{ if } \text{ and } \text{ only } \text{ if } \xi \in \varTheta ^{-1}ker(T_\mathrm{g}). \end{aligned}$$

That is to say \(\varTheta ^{-1}ker(T_\mathrm{f})=\varTheta ^{-1}ker(T_\mathrm{g})\). Therefore \(ker(T_\mathrm{f})=ker(T_\mathrm{g})\). \(\square \)

Theorem 4

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Assume that \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}= \{g_{i}\}_{i\in \mathbb {N}}\) are frames for \(\mathcal {H}\), and that \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\) and \(\gamma =\{\gamma _{i}\}_{i\in \mathbb {N}}\) are the weak R-duals of \(\mathrm{f}\) and \(\mathrm{g}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\), respectively. Then \(\mathrm{f}\) is unitarily equivalent to \(\mathrm{g}\) if and only if \(S_{\omega }=S_{\gamma }\).

Proof

\(S_{\omega }=S_{\gamma }\) if and only if

$$\begin{aligned} \left\langle S_{\omega }\phi ,\,\phi \right\rangle =\left\langle S_{\gamma }\phi ,\,\phi \right\rangle \quad \text{ for } \phi \in \mathcal {H}. \end{aligned}$$
(32)

Since \({\mathrm{h}}\) is a frame for \(\mathcal {H}\), for every \(\phi \in \mathcal {H}\) there exists \(\mathrm{c}\in l^2(\mathbb {N})\) such that \(\phi =\sum \nolimits _{i=1}^{\infty }\overline{c_{i}}h_{i}\). Applying Lemma 5 to \(\phi \), we have

$$\begin{aligned} \left\| \sum \limits _{i=1}^{\infty }c_{i}f_{i}\right\| ^{2}=\left\langle S_{\omega }\phi ,\,\phi \right\rangle \end{aligned}$$

and

$$\begin{aligned} \left\| \sum \limits _{i=1}^{\infty }c_{i}g_{i}\right\| ^{2}=\left\langle S_{\gamma }\phi ,\,\phi \right\rangle . \end{aligned}$$

Therefore, (32) is equivalent to

$$\begin{aligned} \left\| \sum \limits _{i=1}^{\infty }c_{i}f_{i}\right\| ^{2}=\left\| \sum \limits _{i=1}^{\infty }c_{i}g_{i}\right\| ^{2}\quad \text{ for } \mathrm{c}\in l^2(\mathbb {N}), \end{aligned}$$

where the arbitrariness of \(\mathrm{c}\) follows from that of \(\phi \). This is in turn equivalent to the fact that \(\mathrm{f}\) is unitarily equivalent to \(\mathrm{g}\) by Lemma 7. The proof is completed. \(\square \)

3 An expression of the canonical duals of weak R-duals

When \({\mathrm{e}}\) and \({\mathrm{h}}\) are orthonormal bases for \(\mathcal {H}\) and \(\mathrm{f}\) is a frame for \(\mathcal {H}\) with frame operator \(S_\mathrm{f}\), the canonical dual of R-dual sequence \({\omega }\) can be represented as \(\sum \nolimits _{j=1}^{\infty } \left\langle S_\mathrm{f}^{-1}f_{j},\,e_{i}\right\rangle h_{j}.\) In this section, we give an expression of canonical dual of weak R-dual sequence. For this purpose, we first give some lemmas.

Applying (4.9-6), (4.9-7) and Theorem 4.9-A in [20], by a standard argument, we have the following lemma.

Lemma 8

For an arbitrary \(T\in {\mathscr {B}}(\mathcal {H})\), if one of range(T), range\((T^*)\), range\((TT^*)\) and range\((T^*T)\) is a closed subspace of \(\mathcal {H}\), so are the other three.

Lemma 9

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be a frame sequence in \(\mathcal {H}.\) Then \(M({\mathrm{e}})\) is a bounded operator with closed range.

Proof

Let \(\tau \) be a unitary operator from \(\mathcal {H}\) onto \(l^{2}(\mathbb {N})\). Then \(T_{\mathrm{e}}\) is a bounded operator with closed range, and so is \(T_{\mathrm{e}}\tau \). This implies that \((T_{\mathrm{e}}\tau )^*(T_{\mathrm{e}}\tau )=\tau ^*T_{\mathrm{e}}^*T_{\mathrm{e}}\tau \) is also a bounded operator with closed range by Lemma 8. Also observe that \(\tau \) is unitary and \(M({{\mathrm{e}}})=T_{\mathrm{e}}^*T_{\mathrm{e}}\). It follows that \(M({\mathrm{e}})\) is a bounded operator with closed range.

Lemma 10

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) be a frame for \(\mathcal {H}\) and \( \mathcal {A}:\mathcal {H\rightarrow K}\) be a bounded operator with closed range, then

$$\begin{aligned} \overline{span}\{\mathcal {A}e_{j}\}_{j\in \mathbb {N}}=range(\mathcal {A} ). \end{aligned}$$

Proof

It is obvious that \(\overline{span}\{\mathcal {A} e_{j}\}_{j\in \mathbb {N}}\subset range(\mathcal {A}),\) we only need to prove \(\overline{span}\{\mathcal {A}e_{j}\}_{j\in \mathbb {N}}\supset range(\mathcal {A})\). For arbitrary \(f\in range(\mathcal {A})\), we have \(\mathcal {A}g=f\) for some \(g\in \mathcal {H}\). Since \({\mathrm{e}}\) is a frame for \(\mathcal {H}\), we have \(g=\sum \nolimits _{i=1}^{\infty }a_{i}e_{i}\) for some \(\mathrm{a}=\{a_{i}\}_{i\in \mathbb {N}}\in l^{2}(\mathbb {N})\). Let \(a_{i}^{(n)}=\left\{ \begin{array}{ll}a_{i}, &{} \hbox {if } i\le n; \\ 0, &{} \hbox {if } i>n \end{array}\right. \), then \(g=\lim \nolimits _{n\rightarrow \infty }\sum \nolimits _{i=1}^{\infty }a_{i}^{(n)}e_{i}.\) Thus \(f=\mathcal {A}g=\lim \nolimits _{n\rightarrow \infty }\sum \nolimits _{i=1}^{\infty }a_{i}^{(n)}\mathcal {A}e_{i}\in \overline{span}\{\mathcal {A}e_{j}\}_{j\in \mathbb {N}}\). The proof is completed. \(\square \)

Lemma 11

Let \(M_{1},M_{2}\subset \mathcal {H}\), \(\overline{M_{1}}=\overline{M_{2}},\) and \(\mathcal {A}:\mathcal {H\rightarrow K}\) be a bounded operator, then \( \overline{\mathcal {A}M_{1}}=\overline{\mathcal {A}M_{2}}.\)

Proof

By the symmetry, we only need to prove \({\mathcal {A}M_{1}}\subset \overline{\mathcal {A}M_{2}}\). For \(x\in M_1\), we have \(x\in \overline{M_2}\) since \(\overline{M_1}=\overline{M_2}\). This implies that \(x=\lim \nolimits _{n\rightarrow \infty }x_n\) for some sequence \(\{x_{n}\}_{n\in \mathbb {N}}\) in \(M_2\). It leads to

$$\begin{aligned} \mathcal {A}x=\lim \limits _{n\rightarrow \infty }\mathcal {A}x_n\in \overline{\mathcal {A}M_{2}}. \end{aligned}$$
(33)

Thus \({\mathcal {A}M_{1}}\subset \overline{\mathcal {A}M_{2}}\) by the arbitrariness of x.

The following lemma is a generalization of Proposition 12 and Corollary 1 in [1] which deals with the case of R-duals.

Lemma 12

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\), and \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) a Bessel sequence in \(\mathcal {H}\). Assume that \({\omega }=\{\omega _{i}\}_{i\in \mathbb {N}}\) is the weak R-dual of \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\). Then the following statements hold:

  1. (i)

    For all \(j,k\in \mathbb {N}\),

    $$\begin{aligned} \left\langle \omega _{j},\,\omega _{k}\right\rangle =\left\langle S_\mathrm{f}^{\frac{1}{2 }}e_{k},\,S_\mathrm{f}^{\frac{1}{2}}e_{j}\right\rangle ; \end{aligned}$$
  2. (ii)

    For all \(\mathrm{a}=\{a_{i}\}_{i\in \mathbb {N}}\in l^{2}(\mathbb {N})\),

    $$\begin{aligned} \begin{aligned} \left\| \sum \limits _{j=1}^{\infty }a_{j}\omega _{j}\right\| =\left\| \sum \limits _{j=1}^{\infty } \overline{a_{j}}S_\mathrm {f}^{\frac{1}{2}}e_{j}\right\| . \end{aligned} \end{aligned}$$

Proof

(i) By Definition 2, we have \(M(\mathrm{{f}},\mathrm{{e}})^{t}=M(\mathrm{{h}})M(\mathrm{{f}},\mathrm{{e}})^{t}\). It is equivalent to

$$\begin{aligned} \left\langle f_{i},\,e_{j}\right\rangle =\sum \limits _{k=1}^{\infty }\left\langle f_{k},\,e_{j}\right\rangle \left\langle h_{k},\,h_{i}\right\rangle {\quad \text{ for } } i,j\in \mathbb {N}. \end{aligned}$$
(34)

On the other hand, we have

$$\begin{aligned} \left\langle \omega _{j},\,\omega _{k}\right\rangle= & {} \left\langle \underset{i=1}{\overset{\infty }{\sum }}\left\langle f_{i},\,e_{j}\right\rangle h_{i},\,\sum \limits _{m=1}^{\infty }\left\langle f_{m},\,e_{k}\right\rangle h_{m}\right\rangle \end{aligned}$$
(35)
$$\begin{aligned}= & {} \sum \limits _{i=1}^{\infty }\left\langle f_{i},\,e_{j}\right\rangle \overline{\sum \limits _{m=1}^{\infty } \left\langle f_{m},\,e_{k}\right\rangle \left\langle h_{m},\,h_{i}\right\rangle }. \end{aligned}$$
(36)

Collecting (34) and (36) leads to

$$\begin{aligned} \left\langle \omega _{j},\,\omega _{k}\right\rangle= & {} \underset{i=1}{\overset{\infty }{\sum }}\left\langle f_{i},\,e_{j}\right\rangle \overline{\left\langle f_{i},\,e_{k}\right\rangle } \\= & {} \left\langle S_\mathrm{f}e_{k},\,e_{j}\right\rangle \\= & {} \left\langle S_\mathrm{f}^{\frac{1}{2}}e_{k},\,S_\mathrm{f}^{\frac{1}{2}}e_{j}\right\rangle . \end{aligned}$$

(ii) By (i), we have

$$\begin{aligned} \begin{aligned} \left\| \sum \limits _{j=1}^{\infty }a_{j}\omega _{j}\right\| ^{2}=&{} \underset{j,k=1}{\overset{\infty }{\sum }}a_{j} \overline{a_{k}}\left\langle \omega _{j},\,\omega _{k}\right\rangle \\ =&{} \underset{j,k=1}{\overset{\infty }{\sum }}a_{j}\overline{a_{k}}\left\langle S_\mathrm {f}^{\frac{1}{2}}e_{k},\,S_\mathrm {f}^{\frac{1}{2}}e_{j}\right\rangle \\ =&{} \left\| \sum \limits _{j=1}^{\infty }\overline{a_{j}}S_\mathrm {f}^{ \frac{1}{2}}e_{j}\right\| ^{2}\text{. } \end{aligned} \end{aligned}$$

Lemma 13

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}\). Two Bessel sequences \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) and \(\mathrm{g}=\{g_{i}\}_{i\in \mathbb {N}}\) in \(\mathcal {H}\) form a pair of dual frames for \(\mathcal {H}\) if and only if

$$\begin{aligned} \left\langle \omega _{i},\,\gamma _{k}\right\rangle =\left\langle e_{k},\,e_{i}\right\rangle { \text{ for } } i,k\in \mathbb {N}. \end{aligned}$$
(37)

whenever \({\gamma }=\{\gamma _{i}\}_{i\in \mathbb {N}}\) is a weak R-dual of \(\mathrm{g}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\), and

$$\begin{aligned} \omega _{i}=\sum \limits _{j=1}^{\infty }\left\langle f_{j},\,e_{i}\right\rangle h_{j} { \text{ for } } i\in \mathbb {N}. \end{aligned}$$

Proof

For the weak R-duals \(\omega \) of \(\mathrm{f}\), \(\gamma \) of \(\mathrm{g}\), we have

$$\begin{aligned} \left\langle \omega _{i},\,\gamma _{k}\right\rangle= & {} \left\langle \sum \limits _{j=1}^{\infty }\left\langle f_{j},\,e_{i}\right\rangle h_{j},\,\sum \limits _{j=1}^{\infty }\left\langle g_{j},\,e_{k}\right\rangle h_{j}\right\rangle \\= & {} \sum \limits _{j=1}^{\infty }\left\langle f_{j},\,e_{i}\right\rangle \sum \limits _{m=1}^{\infty }\overline{\left\langle g_{m},\,e_{k}\right\rangle \left\langle h_{m},\,h_{j}\right\rangle } \end{aligned}$$

for \(i,k\in \mathbb {N}\). On the other hand, by Definition 2, we have \(M(\mathrm{{g}},\mathrm{{e}})^{t}=M(\mathrm{{h}})M(\mathrm{{g}},\mathrm{{e}})^{t}\), equivalently,

$$\begin{aligned} \begin{aligned} \left\langle g_{j},\,e_{k}\right\rangle =\sum \limits _{m=1}^{\infty }\left\langle g_{m},\,e_{k}\right\rangle \left\langle h_{m},\,h_{j}\right\rangle {\quad \text { for } } j,k\in \mathbb {N}. \end{aligned} \end{aligned}$$
(38)

It follows that

$$\begin{aligned} \left\langle \omega _{i},\,\gamma _{k}\right\rangle= & {} \sum \limits _{j=1}^{\infty }\left\langle f_{j},\,e_{i}\right\rangle \overline{\left\langle g_{j},\,e_{k}\right\rangle } \\= & {} \left\langle e_{k},\,\sum \limits _{j=1}^{\infty }\left\langle e_{i},\,f_{j}\right\rangle g_{j}\right\rangle \end{aligned}$$

for \(i,k\in \mathbb {N}\). Therefore, (37) holds if and only if

$$\begin{aligned} e_{i}=\sum \limits _{j=1}^{\infty }\left\langle e_{i},\,f_{j}\right\rangle g_{j} \quad \text{ for } i\in \mathbb {N}, \end{aligned}$$
(39)

equivalently, \(\mathrm{{f}}\) and \(\mathrm{{g}}\) form a pair of dual frames by the completeness of \(\mathrm{{e}}\) in \(\mathcal {H}\). The proof is completed.

Recall from Theorem 2 and Proposition 14 in [1] that, if \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) is a frame, and \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) are orthonormal bases for \(\mathcal {H}\), then the R-dual \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\) of \(\mathrm{f}\) associated with \(\mathrm{e}\) and \(\mathrm{h}\) is a Riesz sequence in \(\mathcal {H}\), and its canonical dual \(\{S_{\omega }^{-1}\omega _{i}\}_{i\in \mathbb {N}}\) can be represented as

$$\begin{aligned} S_{\omega }^{-1}\omega _{i}=\sum \limits _{j=1}^{\infty } \left\langle S_\mathrm{f}^{-1}f_{j},\,e_{i}\right\rangle h_{j}. \end{aligned}$$

Theorem 2 shows that, if \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) are Parseval frames for \(\mathcal {H}\), \(\mathrm{f}=\{f_{i}\}_{i\in \mathbb {N}}\) is a frame for \(\mathcal {H}\), and \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\) be the weak R-dual of \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\), then \(\omega \) is a frame sequence which need not to be a Riesz sequence. So it is a natural problem to express the canonical dual of \(\omega \) in this case. The following theorem gives an explicit expression in terms of pseudo-inverse of \(M(\mathrm{e}).\)

Theorem 5

Let \({\mathrm{e}}=\{e_{i}\}_{i\in \mathbb {N}}\) and \({\mathrm{h}}=\{h_{i}\}_{i\in \mathbb {N}}\) be Parseval frames for \(\mathcal {H}.\) Let \(\mathrm{f}= \{f_{i}\}_{i\in \mathbb {N}}\) be a frame for \(\mathcal {H}\) with frame operator \(S_\mathrm{f}\) and \(\omega =\{\omega _{i}\}_{i\in \mathbb {N}}\) be the weak R-dual of \(\mathrm{f}\) with respect to \({\mathrm{e}}\) and \({\mathrm{h}}\). Define \(\omega _{i}^{*}\) for each \(i\in \mathbb {N}\) by

$$\begin{aligned} \omega _{i}^{*}=\sum \limits _{j=1}^{\infty }\left\langle S_\mathrm{f}^{-1}f_{j},\,e_{i}\right\rangle h_{j}. \end{aligned}$$

Then

$$\begin{aligned} \{S_{\omega }^{-1}\omega _{i}\}_{i\in \mathbb {N}}=M({\mathrm{e}})^{\dag }\{\omega _{i}^{*}\}_{i\in \mathbb {N}}. \end{aligned}$$
(40)

Proof

Since \(T_\mathrm{f}^{*}S_\mathrm{f}^{-1}\) and \(T_\mathrm{f}^{*}\) are bounded operators with closed range and \({\mathrm{e}}\) is Parseval frame for \(\mathcal {H}\), we have

$$\begin{aligned} \overline{span}\{T_\mathrm{f}^{*}S_\mathrm{f}^{-1}e_{i}\}_{i\in \mathbb {N}}=range(T_\mathrm{f}^{*}S_\mathrm{f}^{-1})=range(T_\mathrm{f}^{*})=\overline{span} \{T_\mathrm{f}^{*}e_{i}\}_{i\in \mathbb {N}} \end{aligned}$$

by Lemma 10. It follows that

$$\begin{aligned} \overline{span}\{\overline{ T_\mathrm{f}^{*}S_\mathrm{f}^{-1}e_{i}}\}_{i\in \mathbb {N}}=\overline{span}\{\overline{ T_\mathrm{f}^{*}e_{i}}\}_{i\in \mathbb {N}}, \end{aligned}$$

and thus

$$\begin{aligned} \overline{span}\{T_{\mathrm{h}}\overline{T_\mathrm{f}^{*}S_\mathrm{f}^{-1}e_{i}}\}_{i\in \mathbb {N}}=\overline{span}\{T_{\mathrm{h}}\overline{ T_\mathrm{f}^{*}e_{i}}\}_{i\in \mathbb {N}} \end{aligned}$$

by Lemma 11. Also observing that

$$\begin{aligned} \omega _{i}^{*}=T_{\mathrm{h}}\overline{T_\mathrm{f}^{*}S_\mathrm{f}^{-1}e_{i}} \text{ and } \omega _{i}=T_{\mathrm{h}}\overline{ T_\mathrm{f}^{*}e_{i}} \end{aligned}$$

leads to

$$\begin{aligned} \overline{span}\{\omega _{i}^{*}\}_{i\in \mathbb {N}}=\overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}. \end{aligned}$$
(41)

By Lemma 2, \(M(\{S_\mathrm{f}^{-1}f_{j}\}_{j\in \mathbb {N}},{\mathrm{e}}) \in \mathscr {B}(l^{2}(\mathbb {N}))\). So its transpose operator \(M(\{S_\mathrm{f}^{-1}f_{j}\}_{j\in \mathbb {N}},{\mathrm{e}})^{t} \in \mathscr {B}(l^{2}(\mathbb {N}))\). For \(\mathrm{c}\in l_0(\mathbb {N})\), it is easy to check that

$$\begin{aligned} \sum \limits _{i=1}^{\infty }c_{i}\omega ^*_{i}=T_{\mathrm{h}}M(\{S_\mathrm{f}^{-1}f_{j}\}_{j\in \mathbb {N}},{\mathrm{e}})^{t}\mathrm{c}. \end{aligned}$$

It follows that

$$\begin{aligned} \left\| \sum \limits _{i=1}^{\infty }c_{i}\omega _{i}^{*}\right\|\le & {} \left\| T_{{\mathrm{h}}}\right\| \left\| M(\{S_\mathrm{f}^{-1}f_{j}\}_{j\in \mathbb {N}},{\mathrm{e}})^{t}\mathrm{c}\right\| \\\le & {} \left\| T_{{\mathrm{h}}}\right\| \left\| M(\{S_\mathrm{f}^{-1}f_{j}\}_{j\in \mathbb {N}},{\mathrm{e}})^{t}\right\| \left\| \mathrm{c}\right\| \end{aligned}$$

for \(\mathrm{c}\in l_0(\mathbb {N})\). This implies that \(\{\omega ^*_{i}\}_{i\in \mathbb {N}}\) is a Bessel sequence in \(\overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}\) by (41). By Lemma 9, \(M({\mathrm{e}})\) is a bounded operator with closed range which shows that \(M({\mathrm{e}})^{\dag }\) is well defined and bounded. Therefore, \(M({\mathrm{e}})^{\dag }\{\omega _{i}^{*}\}_{i\in \mathbb {N}}\) in (40) is well defined. Next we prove (40) to finish the proof. By Theorem 2, \({\omega }\) is a frame sequence in \(\mathcal {H}\). And by Lemma 13,

$$\begin{aligned} M({\mathrm{e}})=\overline{M(\omega ,\omega ^*)}. \end{aligned}$$

It follows that

$$\begin{aligned} M({\mathrm{e}})\overline{\mathrm{a}}=\overline{M(\omega ,\omega ^*)\mathrm{a}}. \end{aligned}$$

for \(\mathrm{a}\in l^2(\mathbb {N})\). This is in turn equivalent to

$$\begin{aligned} M({\mathrm{e}})\overline{\mathrm{a}}=\{\left\langle \omega _{i}^{*},\,\varphi \right\rangle \}_{i\in \mathbb {N}} \end{aligned}$$
(42)

with \(\varphi =\sum \nolimits _{j=1}^{\infty }a_{j}\omega _{j}\) and \(\mathrm{a}\in l^2(\mathbb {N})\) by a standard computation. In other words, (42) tells us that, for \(\varphi \in \overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}\), a is a solution to the equation

$$\begin{aligned} \varphi =\sum \limits _{j=1}^{\infty }a_{j}\omega _{j} \end{aligned}$$
(43)

in \(l^2(\mathbb {N})\) if and only if it is a solution to (42) in \(l^2(\mathbb {N})\). This leads to the fact that (42) and (43) share the same unique \(l^2(\mathbb {N})\)-solution with the minimal norm. Also observe that (42) implies that this solution is \(\mathrm{a}=\overline{M({\mathrm{e}})^{\dag }\{\left\langle \omega _{i}^{*},\,\varphi \right\rangle \}}_{i\in \mathbb {N}}\), and that (43) implies that this solution is \(\mathrm{a}=\{ \left\langle \varphi ,\,S_{\omega }^{-1}\omega _{i}\right\rangle \} _{i\in \mathbb {N}}\). Therefore, we have

$$\begin{aligned} \left\{ \left\langle \varphi ,\,S_{\omega }^{-1}\omega _{i}\right\rangle \right\} _{i\in \mathbb {N}}=\overline{M({\mathrm{e}})^{\dag }\{\left\langle \omega _{i}^{*},\,\varphi \right\rangle \}}_{i\in \mathbb {N}}\quad \text{ for } \varphi \in \overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}. \end{aligned}$$
(44)

Let \(M(\mathrm{e})^{\dag }=(b_{ij})_{i,j\in \mathbb {N}}\). Then, from (44), we have

$$\begin{aligned} \begin{aligned} \left\{ \left\langle \varphi ,\,S_{\omega }^{-1}\omega _{i}\right\rangle \right\} _{i\in \mathbb {N}}=&{} \left\{ \underset{j=1}{\overset{\infty }{\sum }}\overline{b_{ij}}\left\langle \varphi ,\,\omega _{j}^{*}\right\rangle \right\} _{i\in \mathbb {N}} \\=&{} \left\{ \left\langle \varphi ,\,\sum \limits _{j=1}^{\infty } b_{ij}\omega _{j}^{*}\right\rangle \right\} _{i\in \mathbb {N}} \end{aligned}\end{aligned}$$

for \(\varphi \in \overline{span}\{\omega _{i}\}_{i\in \mathbb {N}}\). This leads to (40) by the arbitrariness of \(\varphi \).

Remark 4

In particular, if \({\mathrm{e}}\) is an orthonormal basis for \(\mathcal {H}\) (even if \({\mathrm{h}}\) is not) in Theorem 5, then \(M({\mathrm{e}})=I\), and thus \(\{S_{\omega }^{-1}\omega _{i}\}_{i\in \mathbb {N}}=\{\omega _{i}^{*}\}_{i\in \mathbb {N}}\). So Theorem 5 is a genuine generalization of Proposition 14 in [1].