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Abstract
The concept of R-duals of a sequencewas first introducedwith themotivation to obtain
a general version of duality principle in Gabor analysis. Since then, various R-duals
(types II, III, IV) and some relaxations of the R-dual setup have been introduced and
studied by some mathematicians. All these “R-duals” provide a powerful tool in the
analysis of duality relations in general frame theory. It is of independent interest in
mathematics and far beyond the duality principle in Gabor analysis. Observe that the
underlying sequences of aR-dual are a pair of orthonormal bases. In this paperwe intro-
duce the concept of weak R-duals based on a pair of Parseval frames. It is a new relax-
ation of the R-dual setup. We obtain a characterization of frames based on their weak
R-duals, and prove that the weak R-dual of a frame (Riesz basis) is a frame sequence
(frame). We also characterize (unitarily) equivalent frames in terms of weak R-duals.
Finally, we present an explicit expression of the canonical duals of weak R-duals.

Keywords Frame · Riesz basis · R-dual · Weak R-dual · Duality principle

Mathematics Subject Classification 47A80 · 42C15 · 41A58

1 Introduction

The notion of frame dates back to [11], and was formally introduced by Duffin and
Schaeffer in studying nonharmonic Fourier series [8]. But it had not generated much
interest until the ground breaking work [6] by Daubechies, Grossmann and Meyer.
Since then the theory of frames has been growing rapidly. Now it has seen great
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achievements in a variety of areas throughout mathematics and engineering [2,12–
14].

LetH be a separable Hilbert space, and f = { fi }i∈N an at most countable sequence
inH. f is called a frame forH if there exist constants 0 < A ≤ B < ∞ such that

A‖ f ‖2 ≤
∑

i∈N

∣∣ 〈 f , fi
〉∣∣2 ≤ B‖ f ‖2 (1)

for all f ∈ H, where A and B are called lower and upper frame bounds respectively. It
is called a tight (Parseval) frame if A = B (A = B = 1) in (1), and a Bessel sequence
with Bessel bound B if the right-hand side inequality in (1) holds. It is called a frame
sequence if it is a frame for its closed linear span span{ fi }i∈N. It is called a Riesz
sequence inH if there exist constants 0 < A ≤ B < ∞ such that

A
∑

i∈N
|ci |2 ≤

∥∥∥∥∥
∑

i∈N
ci fi

∥∥∥∥∥

2

≤ B
∑

i∈N
|ci |2 (2)

for all finitely supported sequences c = {ci }i∈N, where A and B are called Riesz
bounds. And it is called a Riesz basis forH if it is a Riesz sequence and span{ fi }i∈N =
H. For a Bessel sequence f = { fi }i∈N in H, we denote by Tf its synthesis operator,
i.e.,

Tf c =
∞∑

i=1

ci fi for c = {ci }i∈N ∈ l2(N),

by T ∗
f the adjoint operator of Tf , i.e.,

T ∗
f ξ = {〈ξ, fi 〉}i∈N for ξ ∈ H,

and by Sf the associated frame operator, i.e., Sf = TfT ∗
f . Two frames f = { fi }i∈N

and g = {gi }i∈N for H are said to be equivalent (unitarily equivalent) if there exists
an invertible bounded operator (a unitary operator) U on H such that U fi = gi for
each i ∈ N. Recall that a sequence is a Riesz sequence (Riesz basis) if and only if it
is an exact frame sequence (frame), i.e., it is a frame sequence (frame), but removing
an arbitrary element from it cannot leave frame sequence (frame) for the initial space.
For basics on frames, see e.g., [2,12,15].

Reference [2, Corollary 3.7.4] reduces the verification that a sequence in H is a
Riesz sequence to a calculation of a countable collection of numbers. And by the
beginning argument in [2, Sect. 3], at least conceptually, it is easier to check that
sequence is a Riesz sequence than to check the frame property.

The frame literature contains several results relating frames and Riesz sequences.
For example, in finite-dimensional setting, given a n×m matrix, its columns constitute
a frame forCn if and only if its rows formaRiesz sequence inCm . One of the prominent
connections is the duality principle in Gabor analysis which was discovered almost
simultaneously by three groups of researchers: Janssen[16], Daubechies, Landau, and
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Landau[7], andRon andShen[17]. In [12], itwas called theRon-Shenduality principle.
Given g ∈ L2(R) and two parameters a, b > 0, define the associated Gabor system
G(g, a, b) by

G(g, a, b) = {EmbTnag : m, n ∈ Z},
where

Tna f (·) = f (· − na) and Emb f (·) = e2π imb· f (·)
for f ∈ L2(R) and m, n ∈ Z. The Ron-Shen duality principle states that, for each
g ∈ L2(R) and a, b > 0 with ab ≤ 1, G(g, a, b) is a frame for L2(R) if and only if
G(g, 1

b , 1
a ) is a Riesz sequence in L2(R). Another important result is the Wexler-Raz

biorthogonality relations[21] (see also [12, Theorem 7.3.1]). Partly motivated by the
above results, Casazza et al. in [1] introduced the notion of R-duals in general Hilbert
spaces. They characterized exactly properties of a sequence in terms of its R-dual
sequence, which yields duality relations for the abstract frame setting. In particular,
they also proved that G(g, 1

b , 1
a ) is exactly one of its R-dual sequences if G(g, a, b) is a

tight frame for L2(R). Christensen et al. in [3] derived conditions for a sequence to be
a R-dual of a given frame, and considered a relaxation of the R-dual setup. Later, Xiao
and Zhu in [22] extended the concept of R-duals to Banach spaces, and Christensen et
al. in [4] presented some characterizations of R-dual sequences in Banach spaces.
Chuang and Zhao in [5] characterized a class of R-duals. Stoeva and Christensen in
[18,19] introduced R-duals of type II and III and showed that for tight frames these
classes coincide with the R-duals. In particular, they proved that for a Gabor frame
G(g, a, b), 1√

ab
G(g, 1

b , 1
a ) is exactly one of its R-duals of type III. We may refer to

[9,10] for other related results.

Definition 1 LetH be a separable Hilbert space, and e = {ei }i∈N and h = {hi }i∈N be
orthonormal bases for H. Given f = { fi }i∈N ⊂ H satifying

∑∞
j=1

∣∣〈 f j , ei
〉∣∣2 < ∞

for each i ∈ N, define ω = {ωi }i∈N by

ωi =
∞∑

j=1

〈 f j , ei 〉h j for each i ∈ N. (3)

Then ω is called the R-dual sequence of f with respect to e and h.

In this paper, we propose a kind of new R-duals called weak R-duals. Recall that a
Parseval frame is a framemost like an orthonormal basis since if admits an orthonormal
basis-like expansion, i.e., if e is a Parseval frame for a Hilbert spaceH, then

f =
∑

i∈N
〈 f , ei 〉 ei for f ∈ H.

A natural problem is to ask what we will obtain if orthonormal bases e and h in
Definition 1 are replaced by two Parseval frames. This motivates us to introduce the
following definition of weak R-duals.
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Let H be a separable Hilbert space. For an infinite matrix A = (ai j )i, j∈N and a
sequence f = { fi }i∈N inH, we write

Af =
⎧
⎨

⎩
∑

j∈N
ai j f j

⎫
⎬

⎭
i∈N

if every
∑

j∈N ai j f j with i ∈ N is well defined. Given sequences f = { fi }i∈N and
g = {gi }i∈N inH, we define the matrix M(f, g) by

M(f, g) = (
〈
f j , gi

〉
)i, j∈N,

i.e., the (i, j)-entry of M(f, g) is
〈
f j , gi

〉
. For simplicity, we write M(f, f) = M(f)

which is exactly theGrammatrix associatedwith f. For general f and g,we callM(f, g)
the mixed Gram matrix associated with f and g. We denote by I the identity matrix,
by At and A∗ its transpose and conjugate transpose for a matrix A, respectively, by
l0(N) the set of finitely supported sequences defined on N, and by B(l2(N)) the set
of bounded operators on l2(N).

Definition 2 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H, and let
f = { fi }i∈N be a sequence inH such that

∞∑

j=1

∣∣〈 f j , ei 〉
∣∣2 < ∞ for each i ∈ N, (4)

and
(M(h) − I )M(f, e)t = 0. (5)

Define the sequence ω by

ω = {ωi }i∈N = M(f, e)h. (6)

Then ω is called a weak R-dual sequence of the sequence f with respect to e and h.

Remark 1 (i) (4) shows that every rowvector ofM(f, e) belongs to l2(N). This implies
that ω and (M(h) − I )M(f, e)t are both well defined since M(h) ∈ B(l2(N)) by
Lemma 2.

(ii) The condition (5) is a technical condition for establishing the link between the
synthesis and analysis operators of ω and f. This can be seen in Lemma 5.

(iii) Observe that, whenever h is an orthonormal basis, we have that M(h) = I , and
thus (5) holds. In this case, we do not require that e must be an orthonormal
basis. Hence, “weak R-dual” is a genuine generalization of “R-dual”. Example 1
below provides us with another example satisfying (5) for the case that e and h
are both Parseval frames but neither of them is an orthonormal basis. In partic-
ular, the “weak R-dual sequences” reduces to “R-dual sequences” if e and h are
orthonormal bases for H.
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By a standard argument, we have

Example 1 Let e = {ei }i∈N be a Parseval frame for H and {̃hi }i∈N an orthonormal
basis for H. Define h = {hi }i∈N by

h2i−1 = h2i = 1√
2
h̃i for i ∈ N.

Then h is a Parseval frame forH, and (4) and (5) hold for an arbitrary Bessel sequence
f = { fi }i∈N satisfying

f2i−1 = f2i for i ∈ N.

The authors in [1] established duality principles based on R-duals. Precisely, they
characterized frame properties of initial sequences and equivalence of frames using
their R-duals, presented an explicit expression of the canonical duals of R-duals.
Recall from [1, Theorem 2] that a sequence is a frame if and only if its R-dual is a
Riesz sequence. It turns out that it is not the case for weak R-duals. See Theorems 1
and 2 for details. In particular, Theorem 2 gives the new dual relation that the weak
R-dual of a frame (Riesz basis) is a frame sequence (frame). Corollaries 1, 3 and
Remark 3 demonstrate that weak R-dual is a genuine extension of R-dual. It should be
of independent interest and hopefully will motivate new research. On the other hand,
we characterize (unitarily) equivalent frames in terms of weak R-duals similarly to [1,
Theorem 17, 18], and derive an explicit expression of the canonical dual of a weak
R-dual.

The rest of this paper is organized as follows. Section 2 focuses on dual relations
based on weak R-duals. Section 3 is devoted to expressing the canonical dual of a
weak R-dual.

2 Duality relations

This section focuses on duality relations based on weak R-duals. For this purpose, we
first need to introduce some lemmas.

The following lemma can be obtained by the same procedure as in [15, Theorem
3.33] which dealt with finite dimensional case.

Lemma 1 Two frames f = { fi }i∈N and g = {gi }i∈N for H are equivalent if and only
if ker(Tf) = ker(Tg).

Lemma 2 (i) M(f, g) = T ∗
g Tf for arbitrary Bessel sequences f = { fi }i∈N and

g = {gi }i∈N inH, and thus M(f, g) ∈ B(l2(N)).
(ii) M(f, g) is a bounded invertible operator on l2(N) for arbitrary Riesz bases

f = { fi }i∈N and g = {gi }i∈N for H.

Proof (i) By a standard argument, we have that

〈
T ∗
g Tfc, d

〉
= 〈

Tfc, Tgd
〉 = 〈M(f, g)c, d〉
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for c, d ∈ l0(N). This implies that M(f, g) = T ∗
g Tf due to l0(N) being dense in l2(N).

(ii) Since Tf and Tg are bijections from l2(N) ontoH if f and g are Riesz bases, (i)
implies (ii).

Lemma 3 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Then, given
sequences f = { fi }i∈N and ω = {ωi }i∈N, ω is the weak R-dual sequence of the
sequence f with respect to e and h if and only if f is the weak R-dual sequence of ω

with respect to h and e.

Proof By the symmetry, we only need to prove the necessity. Suppose ω is the weak
R-dual sequence of the sequence f with respect to e and h. Then

(M(h) − I )M(f, e)t = 0, (7)

ω = M(f, e)h. (8)

It follows that

〈
fi , e j

〉 =
∞∑

k=1

〈
fk, e j

〉 〈hk, hi 〉 = 〈
ω j , hi

〉
for i, j ∈ N (9)

by a simple computation. This implies that

∞∑

j=1

∣∣〈ω j , hi
〉∣∣2 =

∞∑

j=1

∣∣〈 fi , e j
〉∣∣2 = ‖ fi‖2 < ∞ for i ∈ N, (10)

and

fi =
∞∑

j=1

〈
fi , e j

〉
e j =

∞∑

j=1

〈
ω j , hi

〉
e j for i ∈ N (11)

due to e being a Parseval frame. It follows from (9) and (11) that

〈
ω j , hi

〉 = 〈
fi , e j

〉 =
∞∑

k=1

〈ωk, hi 〉
〈
ek, e j

〉
for i, j ∈ N (12)

which is equivalent to (M(e) − I )M(ω, h)t = 0. Collecting (10)–(12) leads to the
necessity.

Remark 2 When {ei }i∈N and {hi }i∈N are orthonormal bases, it is obvious that M(h) =
I , therefore Lemma 3 above will degenerate Lemma 1 in [1].

Lemma 4 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Assume that
ω = {ωi }i∈N is the weak R-dual of f = { fi }i∈N with respect to e and h. Then, for all
a = {ai }i∈N, b = {bi }i∈N ∈ l0(N), we have

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

=
∞∑

i=1

|〈φ, fi 〉|2 and

∥∥∥∥∥

∞∑

i=1

bi fi

∥∥∥∥∥

2

=
∞∑

j=1

∣∣〈g, ω j
〉∣∣2
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where φ = ∑∞
j=1 a j e j and g = ∑∞

i=1 bi hi .

Proof We only need to prove first equation because the second equation automatically
holds by Lemma 3. Fix φ = ∑∞

j=1 a j e j with a ∈ l0(N). Since ω is the weak R-dual
sequence of the sequence f with respect to e and h, we have

ω = M(f, e)h (13)

and
(M(h) − I )M(f, e)t = 0. (14)

From (13), it follows that

ω j =
∞∑

k=1

〈
fk, e j

〉
hk for j ∈ N. (15)

By (14), we have

〈
fi , e j

〉 =
∞∑

k=1

〈
fk, e j

〉 〈hk, hi 〉 for i, j ∈ N. (16)

It follows that

〈 fi , φ〉 =
∞∑

j=1

a j
〈
fi , e j

〉

=
∞∑

j=1

a j

〈 ∞∑

k=1

〈
fk, e j

〉
hk, hi

〉
,

and thus

〈 fi , φ〉 =
〈 ∞∑

j=1

a jω j , hi

〉
for i ∈ N (17)

by (15). It follows
∞∑

i=1

| 〈 fi , φ〉 |2 =
∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

(18)

due to h being a Parseval frame. ��
Proposition 5 in [1] established the connection between a sequence and its R-dual

sequence. As an immediate consequence of Lemma 4, we have following lemma. It
extends Proposition 5 in [1], and establishes the connection between a sequence and
its weak R-dual sequence.
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Lemma 5 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Assume that
ω = {ωi }i∈N is the weak R-dual of f = { fi }i∈N with respect to e and h. Then f is a
Bessel sequence in H with bound B if and only if ω is a Bessel sequence in H with
bound B. In this case, for all a = {ai }i∈N, b = {bi }i∈N ∈ l2(N), we have

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

=
∞∑

i=1

|〈φ, fi 〉|2 and

∥∥∥∥∥

∞∑

i=1

bi fi

∥∥∥∥∥

2

=
∞∑

j=1

∣∣〈g, ω j
〉∣∣2 ,

where φ = ∑∞
j=1 a j e j and g = ∑∞

i=1 bi hi .

Lemma 6 Let f = { fi }i∈N and h = {hi }i∈N be Bessel sequences inH, and e = {ei }i∈N
be complete inH. Define

ω j =
∞∑

i=1

〈
fi , e j

〉
hi for j ∈ N.

Then, for g ∈ H, we have that g ∈ (span{ω j } j∈N)⊥ if and only if {〈hi , g〉}i∈N ∈
ker(Tf).

Proof The proof is similar to that of [1, Lemma 3]. For completeness, we give it here.
By a simple computation, we have

〈
g, ω j

〉 =
〈
e j ,

∞∑

i=1

〈hi , g〉 fi

〉
for j ∈ N.

This implies that g ∈ (span{ω j } j∈N)⊥ if and only if

〈
e j ,

∞∑

i=1

〈hi , g〉 fi

〉
= 0 for j ∈ N.

It is in turn equivalent to {〈hi , g〉}i∈N ∈ ker(Tf) by the completeness of e in H. ��
Lemma 7 Let f = { fi }i∈N and g = {gi }i∈N be frames for H, then f is unitarily
equivalent to g if and only if

∥∥∥∥∥

∞∑

i=1

ci fi

∥∥∥∥∥

2

=
∥∥∥∥∥

∞∑

i=1

ci gi

∥∥∥∥∥

2

for c = {ci }i∈N ∈ l2(N). (19)

Proof Neccssity. SupposeA is a unitary operator onH satisfyingA fi = gi for i ∈ N.
Then

A(

∞∑

i=1

ci fi ) =
∞∑

i=1

ci gi for c ∈ l2(N).
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This leads to (19) by the unitarity of A.
Sufficiency. Suppose (19) holds. Then ker(Tf) = ker(Tg). This implies that, for

c, d ∈ l2(N),

∞∑

i=1

ci fi =
∞∑

i=1

di fi if and only if
∞∑

i=1

ci gi =
∞∑

i=1

di gi .

For an arbitrary f ∈ H, there exists c ∈ l2(N) such that f = ∑∞
i=1 ci fi since f is a

frame forH. Define the operator A onH by

A(

∞∑

i=1

ci fi ) =
∞∑

i=1

ci gi for c ∈ l2(N). (20)

Then A is a well-defined isometry by (19) and the above arguments. Also observing
that g is a frame, we have that A is also onto. So A is a unitary operator on H. By
(20), we also have A fi = gi for i ∈ N. The proof is completed.

Theorem 1 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H, and f =
{ fi }i∈N be a Bessel sequence in H. Assume that ω = {ωi }i∈N is the weak R-dual of f
with respect to e and h. Then f is a frame for H with bounds A and B if and only if

A
∞∑

j=1

∣∣a j
∣∣2 ≤

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

≤ B
∞∑

j=1

∣∣a j
∣∣2 for a = {ai }i∈N ∈ (ker(Te))

⊥. (21)

Proof By Lemma 5.5.5 in [2] and Lemma 5, we have

‖Tea‖2 =
∞∑

j=1

∣∣a j
∣∣2 (22)

and ∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

=
∞∑

i=1

|〈Tea, fi 〉|2 (23)

for a = {ai }i∈N ∈ (ker(Te))⊥, respectively. Therefore, (21) is equivalent to

A ‖Tea‖2 ≤
∞∑

i=1

|〈Tea, fi 〉|2 ≤ B ‖Tea‖2 for a ∈ (ker(Te))
⊥.

It is in turn equivalent to

A ‖ f ‖2 ≤
∞∑

i=1

|〈 f , fi 〉|2 ≤ B ‖ f ‖2 for f ∈ H.
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Since Te((ker(Te))⊥) = H. This finishes the proof. ��

Corollary 1 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Assume that
ω = {ωi }i∈N is the weak R-dual of f = { fi }i∈N with respect to e and h. Then the
following statements hold:

(i) If e is an orthonormal basis forH, then f is a frame forH with bounds A and B
if and only if ω is a Riesz sequence inH with bounds A and B.

(ii) If e is not an orthonormal basis forH, then ω cannot be a Riesz sequence.

Proof (i) ker(Te) = {0} if e is an orthonormal basis for H. This leads to (i) by
Theorem 1.

(ii) ker(Te) �= {0} if e is not an orthonormal basis. It follows that ker(Tω) �= {0}
by (27). This leads to (ii).

Remark 3 In Corollary 1(i), h need not be an orthonormal basis. So Corollary 1(i) is
a genuine extension of [1, Theorem 2].

Theorem 2 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Assume that
ω = {ωi }i∈N is the weak R-dual of f = { fi }i∈N with respect to e and h. Then the
following statements hold:

(i) If f is a frame forH with bounds A and B, then ω is a frame sequence inH with
the same bounds.

(ii) If f is a Riesz basis forH with bounds A and B, then ω is a frame forH with the
same bounds.

Proof (i) First we prove that

Tωc = ThT ∗
f Tec for c = {ci }i∈N ∈ l2(N). (24)

By Lemma 5, ω is a Bessel sequence in H. This implies that Tω is well defined and
a bounded operator from l2(N) to H. Observing that Th, T ∗

f and Te are also bounded
operators, in order to get (24), we only need to prove that

Tωc = ThT ∗
f Tec for c = {ci }i∈N ∈ l0(N). (25)

Next we prove (25). Since ω is the weak R-dual of f with respect to e and h, we have

ω j =
∞∑

i=1

〈
fi , e j

〉
hi for j ∈ N. (26)

It follows that
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Tωc =
∞∑

j=1

c jω j

=
∞∑

j=1

c j

∞∑

i=1

〈
fi , e j

〉
hi

=
∞∑

i=1

〈
fi ,

∞∑

j=1

c j e j

〉
hi

equivalently,
Tωc = ThT ∗

f Tec

for c ∈ l0(N). This shows that (25) holds, and thus (24) holds.
By (24), we have

{c : c ∈ ker(Te)} ⊂ ker(Tω). (27)

This leads to
(ker(Tω))⊥ ⊂ {c : c ∈ (ker(Te))

⊥}. (28)

By Theorem 1,

A
∞∑

j=1

∣∣a j
∣∣2 ≤

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

≤ B
∞∑

j=1

∣∣a j
∣∣2

for a ∈ {c : c ∈ (ker(Te))⊥}. This implies that

A
∞∑

j=1

∣∣a j
∣∣2 ≤

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

≤ B
∞∑

j=1

∣∣a j
∣∣2 for a ∈ (ker(Tω))⊥

by (28). Therefore, ω is a frame sequence inH with bounds A and B by Lemma 5.5.5
in [2].

(ii) Suppose f is a Riesz basis for H with bounds A and B, then ω is a frame
sequence inH with the same bounds. So, in order to get (ii), we only need to prove it
is complete inH. Suppose g ∈ H satisfies

〈
ω j , g

〉 = 0 for all j ∈ N.

Then, using (26) we have

0 = 〈
ω j , g

〉 =
〈 ∞∑

i=1

〈hi , g〉 fi , e j

〉

for j ∈ N by a simple computation. This implies that

∞∑

i=1

〈hi , g〉 fi = 0
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since e is complete inH. Thus g = 0 by the fact that f is a Riesz basis and h is a frame
forH. ��

Observing that the Eq. (5) in Definition 2 automatically holds if h is an orthonormal
basis forH (even if e is not an orthonormal basis forH). As an immediate consequence
of Theorem 2, we have the following corollary:

Corollary 2 Let e = {ei }i∈N be a Parseval frame for H and h = {hi }i∈N be an
orthonormal basis forH. Then the following statements hold:

(i) If f = { fi }i∈N is a frame for H with bounds A and B, then its weak R-dual
sequence ω = {ωi }i∈N with respect to e and h is a frame sequence inH with the
same bounds.

(ii) If f = { fi }i∈N is a Riesz basis forH with bounds A and B, then its weak R-dual
sequence ω = {ωi }i∈N with respect to e and h is a frame for H with the same
bounds.

The following is an example of Theorem 2(i).

Example 2 Let {̃hi }i∈N be an orthonormal basis for H. Define h = {hi }i∈N by

h2i−1 = h2i = 1√
2
h̃i for i ∈ N,

and e = {ei }i∈N = h. Then e and h are Parseval frames forH. Take f = { fi }i∈N by

f4i−3 = f4i−2 = h̃i , f4i−1 = f4i = 0 for i ∈ N.

Then it is easy to check that f is a frame for H satisfying

f2i−1 = f2i for i ∈ N.

This implies that (4) and (5) hold by Example 1. By Theorem 2(i), the weak R-dual
sequence ω = {ωi }i∈N of the sequence f with respect to e and h is a frame sequence.
We claim that it is not a frame although it is a frame sequence. Indeed, by Definition 2,
ω has the form

ωi =
∞∑

j=1

〈
f j , ei

〉
h j for i ∈ N.

By a simple computation, we have

ω2i−1 = ω2i = h̃2i−1 for i ∈ N.

Obviously,
〈̃
h2k, ωi

〉 = 0 for i, k ∈ N. This shows that ω cannot be complete in H.
Thus it is not a frame.

By Theorems 1 and 2(ii), we have the following corollary.
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Corollary 3 Let e = {ei }i∈N be an orthonormal basis for H and h = {hi }i∈N be a
Parseval frame forH. Assume that f = { fi }i∈N is a Riesz basis forH andω = {ωi }i∈N
is the weak R-dual of f with respect to e and h. Then ω is a Riesz basis forH.

The following theorem generalizes [1, Proposition 17] to the weak R-dual case.
It characterizes the equivalence between two frames in terms of corresponding weak
R-duals.

Theorem 3 Let e = {ei }i∈N be a Parseval frame for H and h = {hi }i∈N be an
orthonormal basis forH. Assume that f = { fi }i∈N and g = {gi }i∈N are frames forH,
and that ω = {ωi }i∈N and γ = {γi }i∈N are the weak R-duals of f and g with respect
to e and h, respectively. Then f is equivalent to g if and only if

span{ωi }i∈N = span{γi }i∈N (29)

Proof By Lemma 1, f is equivalent to g if and only if

ker(Tf) = ker(Tg). (30)

So, to finish the proof, we only need to prove the equivalence between (30) and (29).
Suppose (30) holds. Next we prove

(span{ω j } j∈N)⊥ = (span{γ j } j∈N)⊥

which implies (29). Let ϕ ∈ (span{ω j } j∈N)⊥. Then

{〈hi , ϕ〉}i∈N ∈ ker(Tf)

by Lemma 6, and thus
{〈hi , ϕ〉}i∈N ∈ ker(Tg)

by (30). Again by Lemma 6, it follows that ϕ ∈ (span{γ j } j∈N)⊥. Thus

(span{ω j } j∈N)⊥ ⊂ (span{γ j } j∈N)⊥

by the arbitrariness of ϕ. Similarly, we can prove the converse inclusion. Therefore,

(span{ω j } j∈N)⊥ = (span{γ j } j∈N)⊥.

Now we prove that (29) implies (30). By (29), we have

(span{ω j } j∈N)⊥ = (span{γ j } j∈N)⊥.

By Lemma 6, this implies that, for ξ ∈ H,

{〈hi , ξ 〉}i∈N ∈ ker(Tf) if and only if {〈hi , ξ 〉}i∈N ∈ ker(Tg). (31)
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Define Θ : H → l2(N) by

Θξ = {〈hi , ξ 〉}i∈N for ξ ∈ H.

Then Θ is a bijection since h is an orthonormal basis for H. So the statement (31)
implies that, for every ξ ∈ H,

Θξ ∈ ker(Tf) if and only if Θξ ∈ ker(Tg),

equivalently,
ξ ∈ Θ−1ker(Tf) if and only if ξ ∈ Θ−1ker(Tg).

That is to say Θ−1ker(Tf) = Θ−1ker(Tg). Therefore ker(Tf) = ker(Tg). ��
Theorem 4 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Assume that
f = { fi }i∈N and g = {gi }i∈N are frames forH, and thatω = {ωi }i∈N and γ = {γi }i∈N
are the weak R-duals of f and gwith respect to e and h, respectively. Then f is unitarily
equivalent to g if and only if Sω = Sγ .

Proof Sω = Sγ if and only if

〈Sωφ, φ〉 = 〈
Sγ φ, φ

〉
for φ ∈ H. (32)

Since h is a frame for H, for every φ ∈ H there exists c ∈ l2(N) such that φ =∑∞
i=1 ci hi . Applying Lemma 5 to φ, we have

∥∥∥∥∥

∞∑

i=1

ci fi

∥∥∥∥∥

2

= 〈Sωφ, φ〉

and ∥∥∥∥∥

∞∑

i=1

ci gi

∥∥∥∥∥

2

= 〈
Sγ φ, φ

〉
.

Therefore, (32) is equivalent to

∥∥∥∥∥

∞∑

i=1

ci fi

∥∥∥∥∥

2

=
∥∥∥∥∥

∞∑

i=1

ci gi

∥∥∥∥∥

2

for c ∈ l2(N),

where the arbitrariness of c follows from that of φ. This is in turn equivalent to the
fact that f is unitarily equivalent to g by Lemma 7. The proof is completed. ��

3 An expression of the canonical duals of weak R-duals

Whene andh are orthonormal bases forH and f is a frame forHwith frameoperator Sf ,

the canonical dual of R-dual sequence ω can be represented as
∑∞

j=1

〈
S−1
f f j , ei

〉
h j .
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In this section, we give an expression of canonical dual of weak R-dual sequence. For
this purpose, we first give some lemmas.

Applying (4.9-6), (4.9-7) and Theorem 4.9-A in [20], by a standard argument, we
have the following lemma.

Lemma 8 For an arbitrary T ∈ B(H), if one of range(T ), range(T ∗), range(T T ∗)
and range(T ∗T ) is a closed subspace of H, so are the other three.

Lemma 9 Let e = {ei }i∈N be a frame sequence inH.Then M(e) is a bounded operator
with closed range.

Proof Let τ be a unitary operator from H onto l2(N). Then Te is a bounded operator
with closed range, and so is Teτ . This implies that (Teτ)∗(Teτ) = τ ∗T ∗

e Teτ is also a
bounded operator with closed range by Lemma 8. Also observe that τ is unitary and
M(e) = T ∗

e Te. It follows that M(e) is a bounded operator with closed range.

Lemma 10 Let e = {ei }i∈N be a frame forH andA : H → K be a bounded operator
with closed range, then

span{Ae j } j∈N = range(A).

Proof It is obvious that span{Ae j } j∈N ⊂ range(A), we only need to prove
span{Ae j } j∈N ⊃ range(A). For arbitrary f ∈ range(A), we have Ag = f
for some g ∈ H. Since e is a frame for H, we have g = ∑∞

i=1 ai ei for some

a = {ai }i∈N ∈ l2(N). Let a(n)
i =

{
ai , if i ≤ n;
0, if i > n

, then g = limn→∞
∑∞

i=1 a
(n)
i ei .

Thus f = Ag = limn→∞
∑∞

i=1 a
(n)
i Aei ∈ span{Ae j } j∈N. The proof is completed.

��
Lemma 11 Let M1, M2 ⊂ H, M1 = M2, and A : H → K be a bounded operator,
then AM1 = AM2.

Proof By the symmetry, we only need to prove AM1 ⊂ AM2. For x ∈ M1, we have
x ∈ M2 sinceM1 = M2. This implies that x = limn→∞ xn for some sequence {xn}n∈N
in M2. It leads to

Ax = lim
n→∞Axn ∈ AM2. (33)

Thus AM1 ⊂ AM2 by the arbitrariness of x .

The following lemma is a generalization of Proposition 12 and Corollary 1 in [1]
which deals with the case of R-duals.

Lemma 12 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H, and f =
{ fi }i∈N a Bessel sequence inH. Assume that ω = {ωi }i∈N is the weak R-dual of f with
respect to e and h. Then the following statements hold:

(i) For all j, k ∈ N,
〈
ω j , ωk

〉 =
〈
S

1
2
f ek, S

1
2
f e j

〉
;
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(ii) For all a = {ai }i∈N ∈ l2(N),

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∞∑

j=1

a j S
1
2
f e j

∥∥∥∥∥∥
.

Proof (i) By Definition 2, we have M(f, e)t = M(h)M(f, e)t . It is equivalent to

〈
fi , e j

〉 =
∞∑

k=1

〈
fk, e j

〉 〈hk, hi 〉 for i, j ∈ N. (34)

On the other hand, we have

〈
ω j , ωk

〉 =
〈 ∞∑

i=1

〈
fi , e j

〉
hi ,

∞∑

m=1

〈 fm, ek〉 hm
〉

(35)

=
∞∑

i=1

〈
fi , e j

〉 ∞∑

m=1

〈 fm, ek〉 〈hm, hi 〉. (36)

Collecting (34) and (36) leads to

〈
ω j , ωk

〉 =
∞∑

i=1

〈
fi , e j

〉 〈 fi , ek〉

= 〈
Sfek, e j

〉

=
〈
S

1
2
f ek, S

1
2
f e j

〉
.

(ii) By (i), we have

∥∥∥∥∥∥

∞∑

j=1

a jω j

∥∥∥∥∥∥

2

=
∞∑

j,k=1

a jak
〈
ω j , ωk

〉

=
∞∑

j,k=1

a jak

〈
S

1
2
f ek, S

1
2
f e j

〉

=
∥∥∥∥∥∥

∞∑

j=1

a j S
1
2
f e j

∥∥∥∥∥∥

2

.

Lemma 13 Let e = {ei }i∈N and h = {hi }i∈N be Parseval frames for H. Two Bessel
sequences f = { fi }i∈N and g = {gi }i∈N in H form a pair of dual frames for H if and
only if

〈ωi , γk〉 = 〈ek, ei 〉 for i, k ∈ N. (37)
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whenever γ = {γi }i∈N is a weak R-dual of g with respect to e and h, and

ωi =
∞∑

j=1

〈
f j , ei

〉
h j for i ∈ N.

Proof For the weak R-duals ω of f, γ of g, we have

〈ωi , γk〉 =
〈 ∞∑

j=1

〈
f j , ei

〉
h j ,

∞∑

j=1

〈
g j , ek

〉
h j

〉

=
∞∑

j=1

〈
f j , ei

〉 ∞∑

m=1

〈gm, ek〉
〈
hm, h j

〉

for i, k ∈ N. On the other hand, by Definition 2, we have M(g, e)t = M(h)M(g, e)t ,
equivalently,

〈
g j , ek

〉 =
∞∑

m=1

〈gm, ek〉
〈
hm, h j

〉
for j, k ∈ N. (38)

It follows that

〈ωi , γk〉 =
∞∑

j=1

〈
f j , ei

〉 〈
g j , ek

〉

=
〈
ek,

∞∑

j=1

〈
ei , f j

〉
g j

〉

for i, k ∈ N. Therefore, (37) holds if and only if

ei =
∞∑

j=1

〈
ei , f j

〉
g j for i ∈ N, (39)

equivalently, f and g form a pair of dual frames by the completeness of e in H. The
proof is completed.

Recall from Theorem 2 and Proposition 14 in [1] that, if f = { fi }i∈N is a frame,
and e = {ei }i∈N and h = {hi }i∈N are orthonormal bases for H, then the R-dual
ω = {ωi }i∈N of f associated with e and h is a Riesz sequence in H, and its canonical
dual {S−1

ω ωi }i∈N can be represented as

S−1
ω ωi =

∞∑

j=1

〈
S−1
f f j , ei

〉
h j .

Theorem 2 shows that, if e = {ei }i∈N and h = {hi }i∈N are Parseval frames for H,
f = { fi }i∈N is a frame for H, and ω = {ωi }i∈N be the weak R-dual of f with respect
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to e and h, then ω is a frame sequence which need not to be a Riesz sequence. So
it is a natural problem to express the canonical dual of ω in this case. The following
theorem gives an explicit expression in terms of pseudo-inverse of M(e).

Theorem 5 Let e = {ei }i∈N andh = {hi }i∈N beParseval frames forH.Let f = { fi }i∈N
be a frame for H with frame operator Sf and ω = {ωi }i∈N be the weak R-dual of f
with respect to e and h. Define ω∗

i for each i ∈ N by

ω∗
i =

∞∑

j=1

〈
S−1
f f j , ei

〉
h j .

Then
{S−1

ω ωi }i∈N = M(e)†{ω∗
i }i∈N. (40)

Proof Since T ∗
f S

−1
f and T ∗

f are bounded operators with closed range and e is Parseval
frame forH, we have

span{T ∗
f S

−1
f ei }i∈N = range(T ∗

f S
−1
f ) = range(T ∗

f ) = span{T ∗
f ei }i∈N

by Lemma 10. It follows that

span{T ∗
f S

−1
f ei }i∈N = span{T ∗

f ei }i∈N,

and thus
span{ThT ∗

f S
−1
f ei }i∈N = span{ThT ∗

f ei }i∈N
by Lemma 11. Also observing that

ω∗
i = ThT ∗

f S
−1
f ei and ωi = ThT ∗

f ei

leads to
span{ω∗

i }i∈N = span{ωi }i∈N. (41)

By Lemma 2, M({S−1
f f j } j∈N, e) ∈ B(l2(N)). So its transpose operator M({S−1

f f j }
j∈N, e)t ∈ B(l2(N)). For c ∈ l0(N), it is easy to check that

∞∑

i=1

ciω
∗
i = ThM({S−1

f f j } j∈N, e)tc.

It follows that
∥∥∥∥∥

∞∑

i=1

ciω
∗
i

∥∥∥∥∥ ≤ ‖Th‖
∥∥∥M({S−1

f f j } j∈N, e)tc
∥∥∥

≤ ‖Th‖
∥∥∥M({S−1

f f j } j∈N, e)t
∥∥∥ ‖c‖
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for c ∈ l0(N). This implies that {ω∗
i }i∈N is a Bessel sequence in span{ωi }i∈N by (41).

By Lemma 9, M(e) is a bounded operator with closed range which shows that M(e)†

is well defined and bounded. Therefore, M(e)†{ω∗
i }i∈N in (40) is well defined. Next

we prove (40) to finish the proof. By Theorem 2, ω is a frame sequence inH. And by
Lemma 13,

M(e) = M(ω, ω∗).

It follows that
M(e)a = M(ω, ω∗)a.

for a ∈ l2(N). This is in turn equivalent to

M(e)a = {〈ω∗
i , ϕ

〉}i∈N (42)

with ϕ = ∑∞
j=1 a jω j and a ∈ l2(N) by a standard computation. In other words, (42)

tells us that, for ϕ ∈ span{ωi }i∈N, a is a solution to the equation

ϕ =
∞∑

j=1

a jω j (43)

in l2(N) if and only if it is a solution to (42) in l2(N). This leads to the fact that (42)
and (43) share the same unique l2(N)-solution with the minimal norm. Also observe

that (42) implies that this solution is a = M(e)†{〈ω∗
i , ϕ

〉}i∈N, and that (43) implies
that this solution is a = {〈ϕ, S−1

ω ωi
〉}i∈N. Therefore, we have

{〈
ϕ, S−1

ω ωi

〉}

i∈N = M(e)†{〈ω∗
i , ϕ

〉}i∈N for ϕ ∈ span{ωi }i∈N. (44)

Let M(e)† = (bi j )i, j∈N. Then, from (44), we have

{〈
ϕ, S−1

ω ωi

〉}

i∈N =
⎧
⎨

⎩

∞∑

j=1

bi j
〈
ϕ, ω∗

j

〉
⎫
⎬

⎭
i∈N

=
⎧
⎨

⎩

〈
ϕ,

∞∑

j=1

bi jω
∗
j

〉⎫
⎬

⎭
i∈N

for ϕ ∈ span{ωi }i∈N. This leads to (40) by the arbitrariness of ϕ.

Remark 4 In particular, if e is an orthonormal basis for H (even if h is not) in Theo-
rem 5, then M(e) = I , and thus {S−1

ω ωi }i∈N = {ω∗
i }i∈N. So Theorem 5 is a genuine

generalization of Proposition 14 in [1].
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