1 Introduction

Let \({\mathbf {R}}^{m}\) be a m – dimensional Euclidean space of points \({\overline{x}} = (x_{1}, \dots , x_{m})\) with real coordinates; \({\mathbf {I}}^{m} = \{{\overline{x}}\in {\mathbf {R}}^{m}; 0 \le x_{j}\le 1;\ j=1,\ldots ,m\}\)m – dimensional cube.

Definition 1.1

(see [21, Chapter 2, Sect. 2]). Two nonnegative Lebesgue measurable functions fg are called equimeasurable if

$$\begin{aligned} \mu \{{\overline{x}}\in {\mathbf {I}}^{m}:f({\overline{x}})> \lambda \} = \mu \{{\overline{x}}\in {\mathbf {I}}^{m}:g({\overline{x}})> \lambda \},\quad \lambda > 0, \end{aligned}$$

where \(\mu e\) — Lebesgue measure of the set \(e \subset {\mathbf {I}}^{m}\).

Let X be a Banach space of Lebesgue measurable functions on \({\mathbf {I}}^{m}\) of functions f with the norm \(\Vert f\Vert _{X}\). The space X is called symmetric

  1. (1)

    if \(|f({\overline{x}})| \le |g({\overline{x}})|\) almost everywhere on \({\mathbf {I}}^{m}\) and \(g \in X\), then \(f \in X\) and \(\Vert f\Vert _{X}\le \Vert g\Vert _{X}\);

  2. (2)

    if \(f \in X\) and |f| , |g| are equimeasurable, then \(g \in X\) and \(\Vert f\Vert _{X} = \Vert g\Vert _{X} \) (see [21, Chapter 2, Sect. 4]).

The norm \(\Vert \chi _{e}\Vert _{X}\) of the characteristic function \(\chi _{e}(t)\) of the measurable set \( e \subset {\mathbf {I}}^{m}\) is called is the fundamental function of space X and is denoted by \(\varphi (\mu e) = \Vert \chi _{e}\Vert _{X}\). Further, the symmetric space X with the fundamental function \(\varphi \) will be denoted by \(X(\varphi )\).

It is known that the fundamental function of the symmetric space X is the function \(\varphi (t) = \Vert \chi _{[0, t]}\Vert _{X}\) defined on the interval [0, 1]. She is a concave, non-decreasing, continuous function on [0, 1], and \(\varphi (0) = 0 \) (see [21, p. 70,  137,  164]). Such functions are called \(\varPhi \) - functions.

For this function \(\varphi (t),\) \(t \in [0,1]\), put \( \alpha _{\varphi }={{{\underline{\lim }}}}_{t\rightarrow 0}\frac{\varphi (2t)}{\varphi (t)},\quad \beta _{\varphi }={\overline{\lim }}_{t\rightarrow 0}\frac{\varphi (2t)}{\varphi (t)}. \) It is known that for any symmetric space \(X(\varphi )\) we have inequalities \(1 \le \alpha _{\varphi } \le \beta _{\varphi } \le 2\) (see [26]).

One example of a symmetric space is \(L_{q}({\mathbf {T}}^{m})\) — Lebesgue space \(2\pi \) periodic for each variable of the function f with norm (see [24, Chapter 1, Sect. 1.1])

$$\begin{aligned} \Vert f\Vert _{q}=\biggl (\,\int \limits _{{\mathbf {I}}^{m}}|f(2\pi {\overline{x}})|^{q}\text {d}\overline{ x}\,\biggr )^{1/q},\quad 1\le q < \infty . \end{aligned}$$

Here and in after, \({\mathbf {T}}^{m} = [0, 2 \pi ]^{m}\).

The space \(C({\mathbf {T}}^{m})\) consists of continuous functions f with the norm \(\Vert f\Vert _{\infty }=\max \limits _{{\overline{x}} \in {\mathbf {I}}^{m}}|f(2\pi {\overline{x}})|\).

Let the function \(\psi \) be continuous, non-decreasing, concave by [0, 1], \(\psi (0) = 0\) and \(0< \tau <\infty \). A generalized Lorentz space \(L_{\psi , \tau }({\mathbf {T}}^{m})\) is the set of measurable on \({\mathbf {T}}^{m} = [0,2\pi ]^{m}\) having \(2\pi \)-period for each variable \( x_j, j = 1, \dots , m, \) of functions \(f({\overline{x}}) = f (x_1, \dots , x_m)\), for which (see [27])

$$\begin{aligned} \Vert f\Vert _{\psi ,\tau }=\bigg (\int \limits _{0}^{1} f^{*^\tau }(t) \psi ^{\tau }(t) \frac{\text {d}t}{t}\bigg )^{1/\tau } <\infty , \end{aligned}$$

where \(f^{*}\) denotes the nonincreasing rearrangement of the function \(|f(2\pi {\overline{x}})|\), \({\overline{x}}\in {\mathbf {I}}^{m}\) (see e.g. [21, 27]). It is known that under the conditions \( 1<\alpha _{\psi }, \beta _{\psi } <2\), the space \(L_{\psi , \tau }({\mathbf {T}}^{m})\) will be a symmetric space with the fundamental function \(\psi \) and the functional \(\Vert f\Vert _{\psi , \tau }\) will be equivalent to the norm

$$\begin{aligned} \Vert f\Vert _{\psi ,\tau }^{*}=\bigg (\int \limits _{0}^{1} \bigg (\frac{1}{t}\int \limits _{0}^{t}f^{*}(y)\text {d}y\bigg )^\tau \psi ^{\tau }(t)\frac{\text {d}t}{t}\bigg )^{1/\tau } \end{aligned}$$

spaces \(L_{\psi , \tau }({\mathbf {T}}^{m})\) [27, Lemma 3.1].

Note that for \(\psi (t) = t^{1/q} \) the space \(L_{\psi , \tau }({\mathbf {T}}^{m})\) coincides with the Lorentz space denoted by \( L_{q, \tau }({\mathbf {T}}^{m}) \), \( 1<q, \tau <\infty \) (see [32, p. 228]).

For a given positive integer M, consider the set \( \varDelta _{M} = \{{\overline{k}} = (k_{1},\dots ,k_{m}) \in {\mathbf {Z}}^{m} \,\, : |k_{j}| < M, \,\, j=1,\dots , m\}. \) We will consider the multiple Dirichlet kernel

$$\begin{aligned} D_{\varDelta _{M}}(2\pi {\overline{x}}) = \sum \limits _{{\overline{k}} \in \varDelta _{M}}e^{i\langle {\overline{k}}, 2\pi {\overline{x}}\rangle }, \,\, {\overline{x}}\in {\mathbf {I}}^{m} \end{aligned}$$

and the convolution of a function \(f \in L_{\psi,\tau }({\mathbf {T}}^{m})\)

$$\begin{aligned} \sigma _{s}(f, 2\pi {\overline{x}}) = \int _{{\mathbf {I}}^{m}}f(2\pi {\overline{y}}) (D_{\varDelta _{2^{s}}}(2\pi {\overline{x}} - 2\pi {\overline{y}}) - D_{\varDelta _{2^{s-1}}}(2\pi {\overline{x}} - 2\pi {\overline{y}}))\text {d}{\overline{y}} , \end{aligned}$$

where \(s\in {\mathbf {N}}_{0} = {\mathbf {N}} \cup \{0\}, {\mathbf {N}}\) is the set of natural numbers.

Let \(E_{M}(f)_{\psi ,\tau } \equiv E_{M,\dots , M}(f)_{\psi ,\tau } = \inf \limits _{T\in \varGamma _{\varDelta _{M}}}||f-T||_{\psi,\tau }\) is the best approximation of the function \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\) by the set \(\varGamma _{\varDelta _{M}}\) of trigonometric polynomials of order at most \(M-1\) in each variable. For a given class \(F \subset L_{\psi ,\tau }({\mathbf {T}}^{m})\) we put \(E_{M}(F)_{\psi ,\tau } = \sup \limits _{f\in F}E_{M}(f)_{\psi ,\tau }\).

Let \(0 < \theta \le \infty \) and a number \( r> 0. \) We consider the space of all functions \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\) for which

$$\begin{aligned} \sum \limits _{s=0}^{\infty } 2^{sr\theta }||\sigma _{s}(f)||_{\psi , \tau }^{\theta } < \infty \end{aligned}$$

for \(0< \theta <\infty \) and

$$\begin{aligned} \sup \limits _{s\in {\mathbf {N}}_{0}}2^{sr}||\sigma _{s}(f)||_{\psi , \tau } <\infty \end{aligned}$$

for \(\theta = \infty \).

This space is denoted by the symbol \(B_{\psi , \tau , \theta }^{r}\) and is called the Nikol’skii–Besov space. In this space, we consider a unit ball

$$\begin{aligned} {\mathbf {B}}_{\psi , \tau , \theta }^{r} = \{f \in B_{\psi , \tau , \theta }^{r}\,\, : ||f||_{B_{\psi , \tau , \theta }^{r}} \le 1 \}, \end{aligned}$$

where

$$\begin{aligned} ||f||_{B_{\psi , \tau , \theta }^{r}} = \Vert f\Vert _{\psi ,\tau } + \left\{ \sum \limits _{s=0}^{\infty } 2^{sr\theta }||\sigma _{s}(f)||_{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }}, \end{aligned}$$

for \(0< \theta <\infty \) and

$$\begin{aligned} ||f||_{B_{\psi , \tau , \theta }^{r}} = \Vert f\Vert _{\psi ,\tau }+\sup \limits _{s\in {\mathbf {N}}_{0}}2^{sr}||\sigma _{s}(f)||_{\psi , \tau } \end{aligned}$$

for \(\theta = \infty \).

In the case \(\psi (t)=t^{1/p}\) and \(\tau = p\), the space \(B_{\psi , \tau , \theta }^{r}\) is defined in [7, 24] and is denoted by \(B_{p, \theta }^{r}\).

Note that the generalized Nikol’skii–Besov space in the Lebesgue space is defined and investigated in [8, 15, 16].

One of the generalizations of the Nikol’skii–Besov space is the Nikol’skii–Besov space with logarithmic smoothness, defined as a subset of \(L_{p}({\mathbf {T}}^{m})\) (see [9,10,11, 13]). Dominguez O., Tikhonov S. [13] established characterizations and embeddings of Besov functional spaces with logarithmic smoothness.

In the space of continuous functions \(C({\mathbf {T}}^{1})\) S.B.Kashin and V.N.Temlyakov [18] defined the following class:

$$\begin{aligned} LG^{r} = \left\{ f\in C({\mathbf {T}}^{1}): \;\; \Vert \sigma _{s}(f)\Vert _{\infty }\le (s+1)^{-r}, s=0,1,\dots \right\} , \;\; r>0. \end{aligned}$$

Now we define a similar Nikol’skii–Besov space with logarithmic smoothness in the generalized Lorentz space.

Let \(0< \theta \le \infty \) and a number \(\alpha > 0.\) Consider the space of all functions \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\) for which

$$\begin{aligned} \sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{\theta } < \infty , \end{aligned}$$

for \(0< \theta < \infty \) and

$$\begin{aligned} \sup \limits _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Vert \sigma _{s}(f)\Vert _{\psi , \tau }< \infty , \end{aligned}$$

for \(\theta = \infty \).

This space is denoted by \(B_{\psi , \tau , \theta }^{0, \alpha }\) and is called the Nikol’skii–Besov space of logarithmic smoothness in the generalized Lorentz space.

In this space, we consider a unit ball

$$\begin{aligned} {\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha } = \{f \in B_{\psi , \tau , \theta }^{0, \alpha }\,\, : \Vert f\Vert _{B_{\psi , \tau , \theta }^{0, \alpha }} \le 1 \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{B_{\psi , \tau , \theta }^{0, \alpha }} = \Vert f\Vert _{\psi ,\tau } + \left\{ \sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }}, \end{aligned}$$

for \(0< \theta < \infty \) and

$$\begin{aligned} \Vert f\Vert _{B_{\psi , \tau , \infty }^{0, \alpha }} = \Vert f\Vert _{\psi ,\tau } + \sup \limits _{s\in \mathbf {N_{0}}}(s+1)^{\alpha }\Vert \sigma _{s}(f)\Vert _{\psi , \tau }. \end{aligned}$$

In the case \(\psi (t)=t^{1/p}\) and \(\tau = p\), the space \(B_{\psi , \tau , \theta }^{0, \alpha }=B_{p, \theta }^{0, \alpha }\) is defined in [30, 31]. Other generalizations ofthe Nikol’skii–Besov space are given in [8, 15, 16].

In the case of \(\tau _{1} = p\), \(\tau _{2} = q\) for the Nikol’skii–Besov class, \({\mathbf {B}}_{p, \theta }^{r}\) in order exact estimates of the best approximation in the space \(L_{q}(T^{m})\) received A.S. Romanyuk [25]. In the case \(\tau = p\), estimates of the approximative characteristics of the class \({\mathbf {B}}_{p, \tau , \theta }^{0, \alpha }\) got S.A. Stasyuk [30, 31]. In [4], estimates of the best approximations of functions of the class \({\mathbf {B}}_{\psi , \tau _{1}, \theta }^{0, \alpha }\) in the Lorentz space \(L_{\psi , \tau _{ 2}}({\mathbf {T}}^{m})\) in the case of \(\psi (t) = t^{1/p}\). A survey of results on the theory of approximation of functions of many classes of Sobolev, Nikol’skii and Besov is given in [14], also see the bibliography in [34, 35].

It is known that \(L_{\psi , \tau _{2}}({\mathbf {T}}^{m}) \subset L_{\psi , \tau _{1}}({\mathbf {T}}^{m})\) for \( 0<\tau _{2}<\tau _{1} <\infty \) and the fundamental functions of these spaces are equivalent to the function \(\psi \).

In [5], the following statement was proved.

Lemma 1.1

Let \(1< \tau _{2}< \tau _{1} < \infty \) and the functions \(\psi _{1}, \psi _{2}\) satisfy the conditions \(\alpha _{\psi _{1}}=\alpha _{\psi _{2}}\), \(\beta _{\psi _{1}}=\beta _{\psi _{2}}\) and

$$\begin{aligned} C_{0} = \sup _{t\in (0, 1]}\frac{\psi _{1}(t)}{\psi _{2}(t)} < \infty . \end{aligned}$$

Then \(L_{\psi _{2}, \tau _{2}}({\mathbf {T}}^{m}) \subset L_{\psi _{1}, \tau _{1}}({\mathbf {T}}^{m})\) and \(\Vert f\Vert _{\psi _{1}, \tau _{1}} \le C\Vert f\Vert _{\psi _{2}, \tau _{2}}\).

Therefore, the main goal of this article is to find the exact order

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}} \end{aligned}$$

in various relations between the parameters \(p, \tau _{1}, \tau _{2}, \theta \).

The article consists of three sections. In the Sect. 2, several statements are proved necessary to prove the main results. In the Sect. 3, estimates for the value \(E_{M}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}}\).

In the Sect. 4, we establish estimates of \(E_{M}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}}\) . The main result of this section is Theorems 4.1, 4.2.

For theorems, lemmas, formulas, double numbering is used. Further, \(a_{+} = \max \{a, 0 \}\) and the record \(A(y) \asymp B(y)\) means that there are positive numbers \(C_{1} \, \, C_{2}\) independent of y such that \(C_{1} A(y) \le B(y)\le C_{2} A(y)\). For brevity, in the case of the inequalities \( B \ge C_{1} A\) or \(B \le C_{2}A\), we often write \(B>> A\) or \(B<< A \), respectively.

For a function g defined on [0, 1], the notation \(g \uparrow \) (respectively \( g \downarrow \)) means that the function g is non-decreasing (respectively non-increasing) by [0, 1].

2 Auxiliary results

Theorem 2.1

(see [23]). Let \( 1<p <\infty \). Then for any function \( f \in L_{p}({\mathbf {T}}^{m})\) the following relation holds

$$\begin{aligned} \Vert f\Vert _{p}\asymp \Bigl \Vert \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(f)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{p}. \end{aligned}$$

Theorem 2.2

Let \( 1<\tau <\infty \) and give \(\varPhi - \) function \(\psi \), \( 1<\alpha _{\psi }, \beta _{\psi } <2\). Then for any function \( f \in L_{\psi , \tau }({\mathbf {T}}^{m})\) the relation

$$\begin{aligned} \Vert f\Vert _{\psi , \tau }\asymp \Bigl \Vert \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(f)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau }. \end{aligned}$$

Proof

Let \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\). We consider the operator P:

$$\begin{aligned} P(f, 2\pi \bar{x}) = \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(f, 2\pi \bar{x})|^{2}\Bigr )^{\frac{1}{2}}, \,\, \bar{x}\in {\mathbf {I}}^{m}. \end{aligned}$$

P is known to be a sublinear operator. By Theorem 2.1, this operator acts boundedly in the space \(L_{p}({\mathbf {T}}^{m})\), \( 1<p <\infty \). Therefore, by the Janson interpolation theorem [17], this operator is bounded in the space \(L_{\psi , \tau }({\mathbf {T}}^{m})\) i.e. \(\Vert P(f)\Vert _{\psi , \tau } \le C_{2}(p, \tau )\Vert f\Vert _{\psi , \tau }\) for any function \(f \in L_{\psi , \tau }({\mathbf {T}}^{m})\).

The converse inequality follows from the duality principle. Let \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\), \(g \in L_{\bar{\psi }, \tau ^{'}}({\mathbf {T}}^{m})\), \(1< \tau <\infty \), \(\frac{1}{\tau } + \frac{1}{\tau ^{'}} = 1\). Here and in the sequel \(\bar{\psi }(t)=t/\psi (t)\) for \(t\in (0, 1]\) and \(\bar{\psi }(0)=0\). Then, due to the orthogonality of the functions \(\sigma _{s}(f, 2\pi \bar{x}) \), we have

$$\begin{aligned} \int \limits _{{\mathbf {I}}^{m}}f(2\pi \bar{x})g(2\pi \bar{x})\text {d}{\bar{x}} = \int \limits _{{\mathbf {I}}^{m}} \sum \limits _{s=0}^{\infty }\sigma _{s}(f, 2\pi \bar{x})\sigma _{s}(g, 2\pi \bar{x})\text {d}\bar{x}. \end{aligned}$$

Further, applying the Hölder inequalities for the sum and the integral, we obtain

$$\begin{aligned} \Bigl |\int \limits _{{\mathbf {I}}^{m}}f(2\pi \bar{x})g(2\pi \bar{x})\text {d}\bar{x}\Bigr | \le \Bigl \Vert \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(f)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau }\Bigl \Vert \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(g)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{{\bar{\psi }}, \tau ^{'}} \end{aligned}$$

for any function \(g \in L_{{\bar{\psi }}, \tau ^{'}}({\mathbf {T}}^{m})\). Therefore, taking into account the well-known relation (see [27])

$$\begin{aligned} \Vert f\Vert _{\psi , \tau } \asymp \sup \limits _{\Vert g\Vert _{\bar{\psi }, \tau ^{'}} \le 1}\Bigl |\int \limits _{{\mathbf {I}}^{m}}f(2\pi \bar{x})g(2\pi \bar{x})\text {d}{\bar{x}}\Bigr | \end{aligned}$$
(2.1)

and the boundedness of the operator P, we have

$$\begin{aligned} \Vert f\Vert _{\psi , \tau }<<\Bigl \Vert \Bigl (\sum \limits _{s=0}^{\infty }|\sigma _{s}(f)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau }. \end{aligned}$$

\(\square \)

Lemma 2.1

Let \(\varPhi - \) function \(\psi \) satisfy the condition \(1< \alpha _{\psi }, \beta _{\psi } < 2^{1/\tau }\) and \(1 < \tau \le 2\). Then for an arbitrary system of functions \(\{\varphi _{j}\}_{j=1}^{n} \subset L_{\psi ,\tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } \le C \Bigl (\sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}, \end{aligned}$$

where the constant C is independent of \(\varphi _{j}\) and n.

Proof

It is known that \((f^{*})^{\theta } = (|f|^{\theta })^{*}\) for the number \(\theta > 0 \). Therefore,

$$\begin{aligned} I= & {} \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } = \left[ \int \limits _{0}^{1} \Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{1/2}\Bigr )^{*^{\tau }}(t) \psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \nonumber \\= & {} \left[ \int \limits _{0}^{1} \Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{\tau }{2}}\Bigr )^{*}(t) \psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.2)

Now, using Jensen’s inequality (see [24, Lemma 3.3.3]) and taking into account that the function \(f^{*}\) is non-increasing from (2.2), we obtain

$$\begin{aligned} I \le \left[ \int \limits _{0}^{1}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{\tau }\Bigr )^{*}(t) \psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \le \left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t} \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u\right] \psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.3)

Applying the formula (see [21, p.89])

$$\begin{aligned} \int \limits _{0}^{t} f^{*}(u)\text {d}u = \sup \limits _{E\subset {\mathbf {I}}^{m}, \mu E = t}\int \limits _{E} |f({\bar{x}})|\text {d}{\bar{x}}, \end{aligned}$$
(2.4)

where \(\mu E\) is the Lebesgue measure of the set E and the properties of the integral we have

$$\begin{aligned} \int _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u= & {} \sup \limits _{E\subset {\mathbf {I}}^{m}, \mu E = t}\int \limits _{E} \sum \limits _{j=1}^{n}|\varphi _{j}({\bar{x}})|^{\tau }\text {d}{\bar{x}} \nonumber \\= & {} \sup \limits _{E\subset {\mathbf {I}}^{m}, \mu E = t}\sum \limits _{j=1}^{n} \int \limits _{E}|\varphi _{j}({\bar{x}})|^{\tau }\text {d}{\bar{x}} = \sum \limits _{j=1}^{n} \sup \limits _{E\subset {\mathbf {I}}^{m}, \mu E = t}\int \limits _{E}|\varphi _{j}|^{\tau } ({\bar{x}})\text {d}{\bar{x}} \nonumber \\= & {} \sum \limits _{j=1}^{n}\int _{0}^{t} \Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u. \end{aligned}$$
(2.5)

Now it follows from inequalities (2.3) and (2.5) that

$$\begin{aligned} I\le & {} \left[ \int \limits _{0}^{1}\left[ \sum \limits _{j=1}^{n}\frac{1}{t} \int _{0}^{t}\Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u\right] \psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}\nonumber \\= & {} \left[ \sum \limits _{j=1}^{n}\int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t} \Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u\right] \psi ^{\tau }(t) \frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.6)

Changing the order of integration, we have

$$\begin{aligned} \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t} \Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u\right] \psi ^{\tau }(t)\frac{\text {d}t}{t} = \int \limits _{0}^{1}\Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\int _{u}^{1}\psi ^{\tau }(t)\frac{\text {d}t}{t^{2}}\text {d}u. \end{aligned}$$
(2.7)

We will consider the function \(\varphi (t) = t^{1/\tau }\). By the assumption of the lemma, \(\beta _{\psi } <2^{1/\tau } \) i.e. \(\alpha _{\varphi } = 2^{1/\tau } > \beta _{\psi }\). Therefore, by [22, Lemma 4] there exists a \(\varPhi - \) function g(t) such that \(\varphi (t)/\psi (t) \asymp g(t)\) and \(\alpha _{g}> 1\). Therefore, the [28, Lemma 3] holds the estimate

$$\begin{aligned} \int _{u}^{1}\psi ^{\tau }(t)\frac{\text {d}t}{t^{2}} = \int _{u}^{1}\Bigl (\frac{\psi (t)}{t^{1/\tau }}\Bigr )^{\tau }\frac{\text {d}t}{t} = \int _{u}^{1}\Bigl (\frac{1}{g(t)}\Bigr )^{\tau }\frac{\text {d}t}{t} \le C\frac{\psi ^{\tau }(u)}{u}. \end{aligned}$$

Now, according to this estimate, from equality (2.7) we obtain

$$\begin{aligned} \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\text {d}u\right] \psi ^{\tau }(t)\frac{\text {d}t}{t} \le C\int \limits _{0}^{1}\Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\frac{\psi ^{\tau }(u)}{u}\text {d}u. \end{aligned}$$
(2.8)

It follows from inequalities (2.6) and (2.8) that

$$\begin{aligned} I\le & {} \left[ \sum \limits _{j=1}^{n}\int \limits _{0}^{1}\Bigl (|\varphi _{j}|^{\tau }\Bigr )^{*}(u)\frac{\psi ^{\tau }(u)}{u}\text {d}u \right] ^{\frac{1}{\tau }}\nonumber \\= & {} \left[ \sum \limits _{j=1}^{n}\int \limits _{0}^{1}\Bigl (\varphi _{j}^{*}(u)\Bigr )^{\tau }\frac{\psi ^{\tau }(u)}{u}\text {d}u \right] ^{\frac{1}{\tau }} \le C \Bigl (\sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}.\nonumber \\ \end{aligned}$$

\(\square \)

Lemma 2.2

Let \(2<\tau <\infty \) and give a \(\varPhi - \) function \(\psi \) and \(1< \alpha _{\psi }, \beta _{\psi } < 2^{1/2}\). Then for an arbitrary system of functions \(\{\varphi _{j} \}_{j = 1}^{n} \subset L_{\psi , \tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } \le C \Bigl (\sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{2}\Bigr )^{\frac{1}{2}}, \end{aligned}$$

where the constant C is independent of \(\varphi _{j}\) and n.

Proof

By the property of nonincreasing rearrangment of the function, we have (see (2.2))

$$\begin{aligned} I = \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } \le \left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\tau /2}\psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.9)

We will consider the function \(\varphi (t) = t^{1/2}\), \(t\in (0, 1]\) and \(\varphi (0)=0\). By the assumption of the lemma, \(\beta _{\psi } <2^{1/2} \) i.e. \(\alpha _{\varphi } = 2^{1/2} > \beta _{\psi }\). Therefore, by [22, Lemma 4] there exists a \(\varPhi - \) function g(t) such that \(\varphi (t)/\psi (t) \asymp g(t) \) and \(\alpha _{g }> 1\). Therefore,

$$\begin{aligned} \psi ^{\tau }(t) =\Bigl (\frac{\psi (t)}{t^{1/2}}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2} \asymp \Bigl (\frac{1}{g(t)}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}. \end{aligned}$$

The functions \(\psi (t)\) and \(\varphi (t) = t^{1/2}\) are concave, so their product is a concave function. Therefore, \(L_{\psi \varphi , \tau /2}({\mathbf {T}}^{m})\) is a generalized Lorentz space and, moreover, \(\tau /2> 1 \). Now, taking into account that \(\frac{1}{g(t)}\) decreasing on (0, 1] and applying the triangle inequality, we obtain

$$\begin{aligned}&\left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\tau /2}\psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \nonumber \\&\quad \le C\left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\tau /2}(\frac{1}{g(t)})^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \nonumber \\&\quad \le C\left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\frac{1}{g(u)}\text {d}u\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \nonumber \\&\quad \le C\left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (|\varphi _{j}|^{2}\Bigr )^{*}(u)\frac{1}{g(u)}\text {d}u\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2}. \end{aligned}$$
(2.10)

Since, by the assumption of the lemma, \(\beta _{\psi } <2 ^ {1/2} \), then

$$\begin{aligned} {\overline{\lim }}_{t\rightarrow 0}\frac{(2t)^{1/2}\psi (2t)}{t^{1/2}\psi (t)} = 2^{1/2}\beta _{\psi } < 2. \end{aligned}$$

Therefore, according to Hardy’s inequality in the generalized Lorentz space , we have

$$\begin{aligned}&\left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\left[ \frac{1}{t}\int _{0}^{t}\Bigl (|\varphi _{j}|^{2}\Bigr )^{*}(u)\frac{1}{g(u)}\text {d}u\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2} \nonumber \\&\quad \le \left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\left[ \Bigl (|\varphi _{j}|^{2}\Bigr )^{*}(t)\frac{1}{g(t)}\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2} \nonumber \\&\quad = \left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\left[ \Bigl (\varphi _{j}^{*}(t)\Bigr )^{2}\frac{1}{g(t)}\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2} \nonumber \\&\quad \le C\left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\left[ \Bigl (\varphi _{j}^{*}(t)\Bigr )^{2}\frac{\psi (t)}{t^{1/2}}\right] ^{\tau /2}(t^{1/2}\psi (t))^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2} \nonumber \\&\quad \le C\left\{ \sum \limits _{j=1}^{n}\left[ \int \limits _{0}^{1}\Bigl (\varphi _{j}^{*}(t)\Bigr )^{\tau }\psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{2}{\tau }}\right\} ^{1/2} = C\left\{ \sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{2} \right\} ^{1/2}. \end{aligned}$$
(2.11)

Now, inequalities (2.9)–(2.11) imply the assertion of Lemma 2.2. \(\square \)

Remark 2.1

These lemmas in the one-dimensional case in the Lorentz weighted space were proved by Kokilashvili and Yildirir [20].

Lemma 2.3

Let \(\psi \) a given \(\varPhi \) be a function. If \( 1<\alpha _{\psi }, \beta _{\psi } < 2^{1/\tau }\) and \(1<\tau \le 2\) or \(1< \alpha _{\psi }, \beta _{\psi } < 2^{1/2}\) and \(2 \le \tau < \infty \), then for any function \( f \in L_{\psi , \tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Vert f\Vert _{\psi , \tau }<< \Bigl (\sum \limits _{s=0}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\tau _{0}} \Bigr )^{\frac{1}{\tau _{0}}}, \end{aligned}$$

where \(\tau _{0} = \min \{\tau , 2\}\).

Proof

Let \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\). Then by Theorem 2.2 we have

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f)\Bigr \Vert _{\psi , \tau }<< \Bigl \Vert \Bigl (\sum \limits _{s=0}^{n}|\sigma _{s}(f)|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau }. \end{aligned}$$

From this inequality, according to the Lemma 2.1 and the Lemma 2.2, we obtain

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f)\Bigr \Vert _{\psi , \tau }<< \Bigl (\sum \limits _{s=0}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{\tau _{0}}\Bigr )^{\frac{1}{\tau _{0}}}, \,\, \forall n \in {\mathbf {N}}. \end{aligned}$$
(2.12)

It is known that the Fourier series of the function \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\) converges to it in the norm of the space \(L_{\psi ,\tau }({\mathbf {T}}^{m})\). Therefore, in inequality (2.12), passing to the limit for \(n \rightarrow \infty \), we obtain the assertion of Lemma. \(\square \)

Lemma 2.4

Let \(\varPhi \) - the function \(\psi \) satisfy the condition \(1< \alpha _{\psi }, \beta _{\psi } < 2^{1/2}\) and \(2 \le \tau < \infty \). Then for an arbitrary system of functions \(\{\varphi _{j}\}_{j=1}^{n} \subset L_{\psi ,\tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Bigl (\sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}<< \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau }. \end{aligned}$$

Proof

It is known that \((f^{*})^{\theta } = (|f|^{\theta })^{*}\) for the number \(\theta > 0 \). Therefore,

$$\begin{aligned} \Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } = \left[ \int \limits _{0}^{1}\Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}\Bigr )^{\frac{\tau }{2}}(t)\psi ^{\tau }(t)\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.13)

We consider the function \(\varphi (t) = t^{1/2}\), \(t\in [0, 1]\). This function is increasing, continuous, concave, and \(\alpha _{\varphi } = \beta _{\varphi } = 2^{1/2}\).

By the assumption of Lemma 2.4, \(\beta _{\psi } < 2^{1/2}\) i.e. \(\alpha _{\varphi } = 2^{1/2} > \beta _{\psi }\). Therefore, by [22, Lemma 4] there exists a \(\varPhi \)–function g(t) equivalent to the function \(\varphi /\psi \) and \(\alpha _{g}> 1\) (also see the proof of Lemma 2.2). Then \(\psi (t) = \frac{\psi (t)}{t^{1/2}}t^{1/2} \asymp \frac{1}{g(t)}t^{1/2}\). Therefore,

$$\begin{aligned} \psi ^{\tau }(t) = \Bigl (\frac{\psi (t)}{t^{1/2}}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2} \asymp \Bigl (\frac{1}{g(t)}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}. \end{aligned}$$

The functions \(\psi (t)\) and \(\varphi (t) = t^{1/2}\) are concave, so their product is a concave function. Therefore, \(L_{\psi \varphi , \tau /2}\) is a generalized Lorentz space and, moreover, \(\tau /2> 1\). Take into account these considerations, we have

$$\begin{aligned}&\left[ \int \limits _{0}^{1}\Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}\Bigr )^{\frac{\tau }{2}}(t)\psi ^{\tau }(t)\frac{\text {d}t}{t}\right] ^{\frac{1}{\tau }} \nonumber \\&\quad =\left[ \int \limits _{0}^{1}\Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}\Bigr )^{\frac{\tau }{2}}(t)\Bigl (\frac{\psi (t)}{t^{1/2}}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right] ^{\frac{1}{\tau }}\nonumber \\&\quad \ge C\left[ \int \limits _{0}^{1}\Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(t)\Bigr )^{\frac{\tau }{2}}\Bigl (\frac{1}{g(t)}\Bigr )^{\tau /2}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t} \right] ^{\frac{1}{\tau }} \nonumber \\&\quad = C\left[ \int \limits _{0}^{1}\Bigl (\frac{1}{g(t)}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(t)\Bigr )^{\frac{\tau }{2}}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right] ^{\frac{1}{\tau }}. \end{aligned}$$
(2.14)

Now in the space \(L_{\varphi \psi , \frac{\tau }{2}}({\mathbf {T}}^{m})\) applying Hardy’s inequality (see [27]) from (2.14) we get

$$\begin{aligned}&\left[ \int \limits _{0}^{1}\Bigl (\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}\Bigr )^{\frac{\tau }{2}}(t)\psi ^{\tau }(t)\frac{\text {d}t}{t}\right] ^{\frac{1}{\tau }} \nonumber \\&\quad \ge C\left\{ \int \limits _{0}^{1}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\frac{1}{g(u)}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)du\right] ^{\frac{\tau }{2}}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }}. \end{aligned}$$
(2.15)

Now, taking into account that the function \(\frac{1}{g(u)}\) decreasing from the inequalities (2.13) and (2.15) we get

$$\begin{aligned}&\Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } \nonumber \\&\quad \ge C\left\{ \int \limits _{0}^{1}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\frac{1}{g(u)}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\frac{\tau }{2}}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \nonumber \\&\quad \ge C\left\{ \int \limits _{0}^{1}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\frac{\tau }{2}}\Bigl (\frac{1}{g(t)}\Bigr )^{\frac{\tau }{2}}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \nonumber \\&\quad \ge C\left\{ \int \limits _{0}^{1}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\frac{\tau }{2}}\Bigl (\frac{\psi (t)}{t^{1/2}}\Bigr )^{\frac{\tau }{2}}\Bigl (\psi (t)t^{1/2}\Bigr )^{\tau /2}\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \nonumber \\&\quad = C\left\{ \int \limits _{0}^{1}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\frac{\tau }{2}}\psi ^{\tau }(t)\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }}. \end{aligned}$$
(2.16)

Further, using equality (2.5), Jensen’s inequality (since \(\frac{2}{\tau } \le 1 \)) (see [24, Lemma 3.3.3]) from (2.16) we get

$$\begin{aligned}&\Bigl \Vert \Bigl (\sum \limits _{j=1}^{n}|\varphi _{j}|^{2}\Bigr )^{\frac{1}{2}} \Bigr \Vert _{\psi , \tau } \ge C\left\{ \int \limits _{0}^{1}\left[ \sum \limits _{j=1}^{n}\frac{1}{t}\int \limits _{0}^{t}\Bigl (|\varphi _{j}|^{2}\Bigr )^{*}(u)\text {d}u\right] ^{\frac{\tau }{2}}\psi ^{\tau }(t)\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \nonumber \\&\quad \ge C\left\{ \int \limits _{0}^{1}\sum \limits _{j=1}^{n}\left[ \frac{1}{t}\int \limits _{0}^{t}\Bigl (\varphi _{j}^{2}(u)\Bigr )^{*}\text {d}u\right] ^{\frac{\tau }{2}}\psi ^{\tau }(t)\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \nonumber \\&\quad \ge C\left\{ \sum \limits _{j=1}^{n}\int \limits _{0}^{1}\Bigl (\varphi _{j}^{*}(t)\Bigr )^{2\frac{\tau }{2}}\psi ^{\tau }(t)\frac{\text {d}t}{t}\right\} ^{\frac{1}{\tau }} \ge C\Bigl (\sum \limits _{j=1}^{n}\Vert \varphi _{j}\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}. \end{aligned}$$

\(\square \)

Lemma 2.5

Let \(\varPhi \)-the function \(\psi \) satisfy the condition \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau \le 2\). Then for the function \(f \in L_{\psi , \tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f) \Bigr \Vert _{\psi , \tau }\le C\Bigl (\sum \limits _{j=1}^{n}\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}, \,\, n\in {\mathbf {N}}. \end{aligned}$$

Proof

Let \(f \in L_{\psi ,\tau }({\mathbf {T}}^{m})\), \(g \in L_{{\bar{\psi }}, \tau ^{'}}({\mathbf {T}}^{m})\), \(1< \tau <\infty \), \(\frac{1}{\tau } + \frac{1}{\tau ^{'}} = 1\). Then, taking into account the orthogonality of the function \(\sigma _{s}(f, {\bar{x}})\), we have

$$\begin{aligned} \int \limits _{{\mathbf {I}}^{m}}\sum \limits _{s=0}^{n}\sigma _{s}(f, {\bar{x}})g({\bar{x}})\text {d}{\bar{x}} = \int \limits _{{\mathbf {I}}^{m}} \sum \limits _{s=0}^{n}\sigma _{s}(f, {\bar{x}})\sigma _{s}(g, {\bar{x}})\text {d}{\bar{x}}. \end{aligned}$$
(2.17)

Here and in the sequel \({\bar{\psi }}(t)=t/\psi (t)\) for \(t\in (0, 1]\) and \({\bar{\psi }}(0)=0\). Further, applying the Hölder inequalities for the sum and the integral, we obtain

$$\begin{aligned} \Bigl |\int \limits _{{\mathbf {I}}^{m}}\sum \limits _{s=0}^{n}\sigma _{s}(f, {\bar{x}})g({\bar{x}})\text {d}{\bar{x}}\Bigr |\le & {} \sum \limits _{s=0}^{n} \Vert \sigma _{s}(f)\Vert _{\psi , \tau } \Vert \sigma _{s}(g)\Vert _{{\bar{\psi }}, \tau ^{'}} \nonumber \\\le & {} \Bigl (\sum \limits _{s=0}^{n} \Vert \sigma _{s}(g)\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}\Bigl (\sum \limits _{s=0}^{n} \Vert \sigma _{s}(g)\Vert _{{\bar{\psi }}, \tau ^{'}}^{\tau ^{'}}\Bigr )^{\frac{1}{\tau ^{'}}} \end{aligned}$$
(2.18)

for any function \(g \in L_{{\bar{\psi }}, \tau ^{'}}({\mathbf {T}}^{m})\). Now, taking into account the relation (2.1) from the inequalities (2.17), (2.18) we have

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f)\Bigr \Vert _{\psi , \tau }\le \Bigl (\sum \limits _{s=0}^{n} \Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{\tau }\Bigr )^{\frac{1}{\tau }}\Bigl (\sum \limits _{s=0}^{n} \Vert \sigma _{s}(g)\Vert _{{\bar{\psi }}, \tau ^{'}}^{\tau ^{'}}\Bigr )^{\frac{1}{\tau ^{'}}}. \end{aligned}$$
(2.19)

Since \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau \le 2\), then \(\beta _{{{\bar{\psi }}}} < 2^{1/2}\) and \(2< \tau ^{'} < \infty \). Therefore, by applying Lemma 2.4, from the inequality (2.19) we obtain the assertion of Lemma 2.5.\(\square \)

Lemma 2.6

Let the \(\varPhi \) - function \(\psi \) satisfy the condition \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau \le 2\). Then for the function \(f\in L_{\psi ,\tau }({\mathbf {T}}^{m})\) the inequality hold

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{n}\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{2}\Bigr )^{\frac{1}{2}} \le \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f) \Bigr \Vert _{\psi , \tau }, \,\, n\in {\mathbf {N}}. \end{aligned}$$

Proof

To prove this lemma, we use the method applied by V.N. Temlyakov (see [34, p.28-29] and [35, p.98]) . From the formulas (2.17), (2.1) we get

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f) \Bigr \Vert _{\psi , \tau } \ge C\sup \limits _{\Vert g\Vert _{{\bar{\psi }}, \tau ^{'}} \le 1}\int \limits _{{\mathbf {I}}^{m}} \sum \limits _{s=0}^{n}\sigma _{s}(f, {\bar{x}})\sigma _{s}(g, {\bar{x}})\text {d}{\bar{x}} \end{aligned}$$
(2.20)

Consider the set

$$\begin{aligned} G_{{\bar{\psi }}, \tau ^{'}}(\varepsilon ) = \left\{ g \in L_{{\bar{\psi }}, \tau ^{'}}({\mathbf {T}}^{m}) : \Vert \sigma _{s}(g)\Vert _{{\bar{\psi }}, \tau ^{'}} \le \varepsilon _{s}, \,\, s \in {\mathbf {N}}_{0}\right\} , \end{aligned}$$

where \(\frac{1}{\tau }+\frac{1}{\tau ^{'}}=1\) and the number sequence \(\{\varepsilon _{s}\}\) satisfies the condition

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{\infty }\varepsilon _{s}^{2}\Bigr )^{\frac{1}{2}} \le 1. \end{aligned}$$

The set of such sequences \(\{\varepsilon _{s}\}\) is denoted by \(\varLambda _{2}\).

Since \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau \le 2\), then \(1< \alpha _{{{\bar{\psi }}}}, \beta _{{{\bar{\psi }}}} < 2^{1/2}\) and \(2 \le \tau ^{'} < \infty \). Therefore, according to Lemma 2.2, we have

$$\begin{aligned} \Vert g\Vert _{{\bar{\psi }}, \tau ^{'}} \le \Bigl (\sum \limits _{s=1}^{n}\Vert \sigma _{s}(g)\Vert _{{{\bar{\psi }}}, \tau ^{'}}^{2}\Bigr )^{\frac{1}{2}} \le C\Bigl (\sum \limits _{s=0}^{\infty }\varepsilon _{s}^{2}\Bigr )^{\frac{1}{2}} \le C. \end{aligned}$$

Therefore, from the inequality (2.20) we obtain

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f) \Bigr \Vert _{\psi , \tau } \ge C\sup \limits _{\{\varepsilon _{s}\}\in \varLambda _{2}} \sum \limits _{s=0}^{n}\sup \limits _{g \in G_{{\bar{\psi }}, \tau ^{'}}(\varepsilon )}\int \limits _{{\mathbf {I}}^{m}} \sigma _{s}(f, {\bar{x}})\sigma _{s}(g, {\bar{x}})\text {d}{\bar{x}}. \end{aligned}$$
(2.21)

As in the article by V.N. Temlyakov (see [34, p.28-29] and [35, p.98]) we can prove that

$$\begin{aligned} \sup \limits _{g \in G_{{\bar{\psi }}, \tau ^{'}}(\varepsilon )}\int \limits _{{\mathbf {I}}^{m}} \sigma _{s}(f, {\bar{x}})\sigma _{s}(g, {\bar{x}})\text {d}{\bar{x}} = \varepsilon _{s}\Vert \sigma _{s}(f)\Vert _{\psi , \tau }, \,\, s\in {\mathbf {N}}. \end{aligned}$$

Therefore, from the inequality (2.21) and taking into account the properties of the norm in the space \(l_{2}\), we obtain

$$\begin{aligned} \Bigl \Vert \sum \limits _{s=0}^{n}\sigma _{s}(f) \Bigr \Vert _{\psi , \tau } \ge C\sup \limits _{\{\varepsilon _{s}\}\in \varLambda _{2}} \sum \limits _{s=0}^{n}\varepsilon _{s}\Vert \sigma _{s}(f)\Vert _{\psi , \tau } = C\left\{ \sum \limits _{s=0}^{n}\Vert \sigma _{s}(f)\Vert _{\psi , \tau }^{2}\right\} ^{\frac{1}{2}}. \end{aligned}$$

\(\square \)

Theorem 2.3

Let \(\varPhi \) - functions \(\psi _{1}, \psi _{2}\) be given such that

$$\begin{aligned} \sup _{0<t\le 1}\frac{\psi _{1}(t)}{\psi _{2}(t)}<\infty , \end{aligned}$$

\(1< \alpha _{\psi _{1}} = \alpha _{\psi _{2}} \le \beta _{\psi _{1}} = \beta _{\psi _{2}} < 2^{1/\tau _{2}}\) and \(1<\tau _{2} \le 2\). If \(\tau _{2} <\tau _{1}\) and the function \(f \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) satisfies the condition

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\bigg [\,\int \limits _{(2^{s} + 1)^{-m} }^{1} \Big (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Big )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}\frac{\text {d}t}{t}\bigg ]^{\frac{\tau _{1}-\tau _{2}}{\tau _{1}}}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}} < \infty , \end{aligned}$$

then \(f \in L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) and the inequality hold

$$\begin{aligned} \Vert f\Vert _{\psi _{2}, \tau _{2}} \le C\Bigl (\sum \limits _{s=0}^{\infty }\bigg [\,\int \limits _{(2^{s} + 1)^{-m} }^{1} \Big (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Big )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}\frac{\text {d}t}{t}\bigg ]^{\frac{\tau _{1}-\tau _{2}}{\tau _{1}}}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{1/\tau _{2}}. \end{aligned}$$

Proof

Let the function \(f \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) and the conditions of the theorem be satisfied. Then using the inequality different for trigonometric polynomials (see [5, Theorem 1]) we have

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi _{2},\tau _{2}}^{\tau _{2}} \le \sum \limits _{s=0}^{\infty }\bigg [\,\int \limits _{(2^{s} + 1)^{-m} }^{1} \Big (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Big )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}\frac{\text {d}t}{t}\bigg ]^{\frac{\tau _{1}-\tau _{2}}{\tau _{1}}}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}. \end{aligned}$$

Therefore, taking into account that \(1<\tau _{2} \le 2\), by Lemma 2.3 we obtain the assertions of the theorem. \(\square \)

Definition 2.1

(see [29, 33]). We denote by SVL the set of all non-negative functions on [0, 1] of \(\psi (t)\) for which \((\log \, 2/t)^{\varepsilon }\psi (t) \uparrow + \infty \) and \((\log \,2/t)^{- \varepsilon } \psi (t) \downarrow 0 \) for \(t\downarrow 0\).

Here and below, the notation \(\log x\) means the logarithm with base 2 of the number \(x>0\).

Corollary 2.1

Let \(\varPhi \) - functions \(\psi _{1}, \psi _{2}\) satisfy the conditions of Theorem 2.3and \(\frac{\psi _{2}}{\psi _{1}} \in SVL\). If \(\tau _{2} <\tau _{1}\) and the function \(f \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) satisfies the condition

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}} < \infty , \end{aligned}$$

then \(f \in L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) and the inequality hold

$$\begin{aligned} \Vert f\Vert _{\psi _{2}, \tau _{2}} \le C\Bigl (\sum \limits _{s=0}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{1/\tau _{2}}. \end{aligned}$$

Proof

By condition, the function \(\frac{\psi _{2}}{\psi _{1}} \in SVL\). Let \(0<t_{1} < t_{2} \le 1\) i.e. \(1/t_{1}> 1/t_{2} >0\). Consequently

$$\begin{aligned} \Bigl (\log \frac{2}{t_{1}}\Bigr )^{\varepsilon }\frac{\psi _{2}(t_{1})}{\psi _{1}(t_{1})} > \Bigl (\log \frac{2}{t_{2}}\Bigr )^{\varepsilon }\frac{\psi _{2}(t_{2})}{\psi _{1}(t_{2})} \end{aligned}$$

for the number \(\varepsilon > 0\). Put \(t_{1} = \prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}\) and \(t_{2} = t\). Then

$$\begin{aligned}&\int \limits _{\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}}^{1} \Big (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Big )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}\frac{\text {d}t}{t} \nonumber \\&\quad \le \left (\frac{\psi _{2}(\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1})}{\psi _{1}(\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1})}(\log 2\prod \limits _{j=1}^{m}(n_{j} + 1))^{\varepsilon } \right )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}} \nonumber \\&\qquad \times \int \limits _{\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}}^{1}\Bigl (\log \frac{2}{t} \Bigr )^{-\varepsilon \frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}}\frac{\text {d}t}{t}. \end{aligned}$$
(2.22)

Put \(\varepsilon = \frac{1}{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\). Then

$$\begin{aligned} \int \limits _{\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}}^{1}\Bigl (\log \frac{2}{t} \Bigr )^{-\varepsilon \frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}}\frac{\text {d}t}{t}=\, & {} - \int \limits _{\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}}^{1} \Bigl (\log \frac{2}{t} \Bigr )^{-1/2}d(\log \frac{2}{t}) \nonumber \\= \,& {} -2\left[ (\log 2)^{1/2} - (\log 2\prod \limits _{j=1}^{m}(n_{j} + 1))^{1/2}\right] \le 2(\log 2\prod \limits _{j=1}^{m}(n_{j} + 1))^{1/2}. \end{aligned}$$

Therefore, for \(\varepsilon = \frac{1}{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\) from inequality (2.22) we obtain

$$\begin{aligned} \int \limits _{\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1}}^{1} \Big (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Big )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}}\frac{dt}{t} \le 2\left (\frac{\psi _{2}(\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1})}{\psi _{1}(\prod \limits _{j=1}^{m}(n_{j} + 1)^{-1})}\right )^\frac{\tau _{1}\tau _{2}}{\tau _{1} - \tau _{2}} \log 2\prod \limits _{j=1}^{m}(n_{j} + 1) \end{aligned}$$

Now, using this inequality and Theorem 2.3 we obtain the corollary. \(\square \)

Theorem 2.4

Let \(\varPhi \)functions \(\psi _{1}, \psi _{2}\) satisfy the conditions \(1< \alpha _{\psi _{2}} \le \beta _{\psi _{2}}< \alpha _{\psi _{1}} \le \beta _{\psi _{1}} < 2\) and \(1< \tau _{1}, \tau _{2} < \infty \). If function \(f \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) and

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-sm})}{\psi _{1}(2^{-sm})}\Bigr )^{\tau _{2}}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}} < \infty , \end{aligned}$$
(2.23)

then \(f \in L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) and the inequality

$$\begin{aligned} \Vert f\Vert _{\psi _{2}, \tau _{2}}\le C\left\{ \sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-sm})}{\psi _{1}(2^{-sm})} \Bigr )^{\tau _{2}}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\right\} ^{1/\tau _{2}}. \end{aligned}$$

Proof

Using the formula (2.4) and [3, Lemma 5], we can prove that

$$\begin{aligned} \frac{1}{t}\int \limits _{0}^{t} f^{*}(u)\text {d}u \le C\left\{ \sum \limits _{s=0}^{n} \frac{1}{\psi _{1}(2^{-sm})}\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}} + \sum \limits _{s=n}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}} \right\} \end{aligned}, {2^{{-(n+1)}^m} < {t} \leq 2^{-nm}}.$$

Further, using this inequality due to the boundedness of the Hardy operator in the generalized Lorentz space \(L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) we can verify that the statement of the theorem is true. \(\square \)

Corollary 2.2

Let the functions \(\psi _{1}, \psi _{2}\) satisfies the conditions of the Theorem 2.4. If function \(f \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) and

$$\begin{aligned} \sum \limits _{n=1}^{\infty }\frac{1}{n}\Bigl (\frac{\psi _{2}(n^{-m})}{\psi _{1}(n^{-m})}\Bigr )^{\tau _{2}}E_{n}(f)_{\psi _{1}, \tau _{1}}^{\tau _{2}} < \infty , \end{aligned}$$
(2.24)

then \(f \in L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\).

Proof

We consider the Fourier sum

$$\begin{aligned} S_{\varDelta _{M}}(f, 2\pi {\overline{x}}) = \sum \limits _{{\overline{k}} \in \varDelta _{M}}a_{{\overline{k}}}(f)e^{i\langle {\overline{k}}, 2\pi {\overline{x}}\rangle }, \,\, {\overline{x}}\in {\mathbf {I}}^{m}, \end{aligned}$$

where \(a_{{\overline{k}}}(f)\) as usual denote the Fourier coefficients of the function f with respect to the system \(\{e^{i\langle {\overline{k}}, 2\pi {\overline{x}}\rangle }\}\). Then, by the property of the norm and the best approximation of the function, the following inequalities hold:

$$\begin{aligned} \Vert \sigma _{s}(f)\Vert _{\psi _{1}, \tau _{1}}\le & {} \Vert f - S_{\varDelta _{2^{s-1}}} (f\Vert _{\psi _{1}, \tau _{1}} + \Vert f - S_{\varDelta _{2^{s}}}(f\Vert _{\psi _{1}, \tau _{1}} \nonumber \\\le & {} CE_{2^{s-1}}(f)_{\psi _{1}, \tau _{1}} \le C\sum \limits _{l=s}^{\infty }\Vert \sigma _{l}(f)\Vert _{\psi _{1}, \tau _{1}}. \end{aligned}$$
(2.25)

Further, from the properties of the functions \(\psi _{1}, \psi _{2}\), the best approximation of the function, and [2, Lemma 2] it follows that

$$\begin{aligned} \sum \limits _{n=1}^{\infty }\frac{1}{n} \Bigl (\frac{\psi _{2}(n^{-m})}{\psi _{1}(n^{-m})}\Bigr )^{\tau _{2}}E_{n} (f)_{\psi _{1}, \tau _{1}}^{\tau _{2}}<<&\sum \limits _{s=1}^{\infty } \Bigl (\frac{\psi _{2}(2^{-sm})}{\psi _{1}(2^{-sm})}\Bigr )^{\tau _{2}}E_{2^{s-1}} (f)_{\psi _{1}, \tau _{1}}^{\tau _{2}} \nonumber \\<<&\sum \limits _{s=1}^{\infty } \Bigl (\frac{\psi _{2}(2^{-sm})}{\psi _{1}(2^{-sm})}\Bigr )^{\tau _{2}} \Bigl (\sum \limits _{l=s}^{\infty }\Vert \sigma _{l}(f)\Vert _{\psi _{1}, \tau _{1}}\Bigr )^{\tau _{2}} \nonumber \\ \le&C\sum \limits _{s=1}^{\infty }\Bigl (\frac{\psi _{2}(2^{-sm})}{\psi _{1}(2^{-sm})}\Bigr )^{\tau _{2}}\Vert \sigma _{l}(f)\Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}. \end{aligned}$$
(2.26)

Now it follows from inequalities (2.25) and (2.26) that conditions (2.23) and (2.24) are equivalent. Therefore, the assertion of Corollary 2.2 follows from Theorem 2.4. \(\square \)

Remark 2.2

In case \(\psi _{1}(t)=t^{1/p},\) \(\psi _{2}(t)=t^{1/q}\) for \(1< \tau _{1}=p < \tau _{2}=q\) Corollary 2.2 is proved in [12, Theorem 2.3], and for \(1< \tau _{1}=p< q<\infty \) and \(0< \tau _{2} < \infty \) in [1, Theorem 1].

3 On orders of approximation of functions of Nikol’skii–Besov classes

In this section, we prove estimates of the best approximations of a function from the class \({\mathbf {B}}_{\psi , \tau , \theta }^{r}\).

Theorem 3.1

Let \(\varPhi \) - the function \(\psi \) satisfy the conditions \(1< \alpha _{\psi } \le \beta _{\psi } < 2\) and \(1\le \tau < \infty \), \(0< \theta < \infty \). Then for the number \(r> 0\) the relation hold

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi , \tau , \theta }^{r})_{\psi ,\tau } \asymp n^{-r}, n\in {\mathbf {N}}. \end{aligned}$$

Proof

Let \(f \in {\mathbf {B}}_{\psi , \tau , \theta }^{r}\) and a positive integer l such that \(2^{l-1} \le n < 2^{l}\). Then by the property of best approximation and norm we have

$$\begin{aligned} E_{n}(f)_{\psi , \tau } \le E_{2^{l-1}}(f)_{\psi ,\tau } \le \Vert f - \sum \limits _{s=0}^{l-1}\sigma _{s}(f)\Vert _{\psi ,\tau }<<\sum \limits _{s=l}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }. \end{aligned}$$
(3.1)

If \(1<\theta <\infty \), then applying the Hölder‘s inequality (\(\frac{1}{\theta } + \frac{1}{\theta ^{'}} = 1\)) from (3.1) we obtain

$$\begin{aligned} E_{n}(f)_{\psi , \tau } \le&\Bigl (\sum \limits _{s=l}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\theta } \Bigr )^{\frac{1}{\theta }}\Bigl (\sum \limits _{s=l}^{\infty }2^{-sr\theta ^{'}} \Bigr )^{\frac{1}{\theta ^{'}}} \nonumber \\<<&2^{-lr}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\theta }\Bigr )^{\frac{1}{\theta }}. \end{aligned}$$

If \( 0 <\theta \le 1\), then applying Jensen’s inequality (see [24, Lemma 3.3.3]) from (3.1) we obtain

$$\begin{aligned} E_{n}(f)_{\psi , \tau } \le \Bigl (\sum \limits _{s=l}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\theta } \Bigr )^{\frac{1}{\theta }} \le 2^{-lr}\Bigl (\sum \limits _{s=l}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\theta } \Bigr )^{\frac{1}{\theta }} . \end{aligned}$$

Thus, \(E_{n}(f)_{\psi , \tau } \le Cn^{-r}\) for any function \(f \in {\mathbf {B}}_{\psi , \tau , \theta }^{r}\), \(0< \theta < \infty \). The upper bound is proved.

Let us prove the lower bound for \(E_{n}({\mathbf {B}}_{\psi , \tau , \theta }^{r})_{\psi ,\tau }\). Let a natural number l be such that \(2^{l-1} \le n < 2^{l}\). We will consider the function

$$\begin{aligned} f_{0}(2\pi {\bar{x}}) = 2^{-lr}\frac{2^{-lm}}{\psi (2^{-lm})}\sum \limits _{{\bar{k}} \in \varDelta _{2^{l+1}}\setminus \varDelta _{2^{l}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }, \,\, {\bar{x}} \in {\mathbf {I}}^{m}, \,\, n \in {\mathbf {N}}_{0}. \end{aligned}$$

According to the estimate of the norm of the Dirichlet kernel in the generalized Lorentz space, we have (see [3, p.67])

$$\begin{aligned} \Bigl \Vert \sum \limits _{{\bar{k}} \in \varDelta _{2^{s}}\setminus \varDelta _{2^{s-1}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }\Bigr \Vert _{\psi ,\tau }&\asymp 2^{sm}\psi (2^{-sm}), \end{aligned}$$
(3.2)

for \(1< \tau< \infty ,\,\, 1<\alpha _{\psi }\le \beta _{\psi }< 2\). Therefore,

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s} (f_{0})\Vert _{\psi ,\tau }^{\theta } \Bigr )^{\frac{1}{\theta }}= & {} 2^{lr}\Vert \sigma _{l}(f_{0})\Vert _{\psi ,\tau } \\= & {} 2^{lr}2^{-lr}\frac{2^{-lm}}{\psi (2^{-lm})} \Bigl \Vert \sum \limits _{{\bar{k}} \in \varDelta _{2^{l}}\setminus \varDelta _{2^{l-1}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }\Bigr \Vert _{\psi ,\tau } \le C_{0}. \end{aligned}$$

Therefore, the function \(F_{0} = C_{0}^{-1}f_{0}\in {\mathbf {B}}_{\psi , \tau , \theta }^{r}\). Now, by the best approximation property and relation (3.2), we have

$$\begin{aligned} E_{n}(F_{0})_{\psi , \tau } \ge E_{2^{l}}(F_{0})_{\psi , \tau } = C_{0}^{-1}\Vert \sigma _{s}(f_{0})\Vert _{\psi ,\tau } \ge C2^{-lr} \ge Cn^{-r}. \end{aligned}$$

Consequently \( E_{n}({\mathbf {B}}_{\psi , \tau , \theta }^{r})_{\psi ,\tau } \ge Cn^{-r}, n\in {\mathbf {N}}. \) \(\square \)

Remark 3.1

In the case \(\psi (t) = t^{1/p}\) and \(\tau =p, \,\, 1\le \theta < \infty \) , Theorem 3.1 was proved in [25, Theorem 1].

Theorem 3.2

Let \(\varPhi \) - functions \(\psi _{1}, \psi _{2}\) satisfy the conditions of Theorem 2.3and \(\frac{\psi _{2}}{\psi _{1}} \in SVL\), \(0 < \theta \le \infty \). If \(1<\tau _{2}<\tau _{1}< \infty \), \( r> 0 \), then the relation hold

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}} \asymp n^{-r}\frac{\psi _{2}(1/n)}{\psi _{1}(1/n)}(\log (n+1))^{\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}}, n\in {\mathbf {N}}. \end{aligned}$$
(3.3)

Proof

Let \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\). If \(\tau _{2} <\theta \), then put \(q = \frac{\theta }{\tau _{2}} > 1, \frac{1}{q} + \frac{1}{q^{'}} = 1\). Applying the Hölder’s inequality, we obtain

$$\begin{aligned}&\Bigl (\sum \limits _{s=0}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2} (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\tau _{2}} \Bigr )^{\frac{1}{\tau _{2}}} \nonumber \\&\quad \le \Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }}\Bigl (\sum \limits _{s=0}^{\infty }2^{-sr\tau _{2}q^{'}} \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})q^{'}} \Bigr )^{\frac{1}{\tau _{2}q^{'}}}. \end{aligned}$$
(3.4)

Since the function \(\frac{\psi _{2}}{\psi _{1}} \in SVL\), then

$$\begin{aligned} \frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})} \le \frac{\psi _{2}(1)}{\psi _{1}(1)}(\log 2)^{-\varepsilon }(\log 2^{s+1})^{\varepsilon } \end{aligned}$$
(3.5)

for \(\varepsilon > 0\), \(s=0,1,2,...\). Therefore,

$$\begin{aligned}&\sum \limits _{s=0}^{\infty }2^{-sr\tau _{2}q^{'}} \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})q^{'}} \nonumber \\&\quad \le \Bigl (\frac{\psi _{2}(1)}{\psi _{1}(1)}\Bigr )^{\tau _{2}q^{'}}\sum \limits _{s=0}^{\infty }2^{-sr\tau _{2}q^{'}}(s+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}q^{'}} < \infty . \end{aligned}$$
(3.6)

Therefore, it follows from (3.4) that the series

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\tau _{2}} \end{aligned}$$

converges for any function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\) for \(\tau _{2} < \theta \). Therefore, according to Corollary 2.1, the inclusion \({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r} \subset L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) for \(\tau _{2} < \theta \). If \(\theta \le \tau _{2}\), then applying Jensen’s inequality (see [24, Lemma 3.3.3]) and taking into account (3.5) we obtain

$$\begin{aligned}&\Bigl (\sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\tau _{2}} \Bigr )^{\frac{1}{\tau _{2}}} \\&\quad \le \Bigl (\sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\theta }(s+1)^{\theta (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \\&\quad \le \frac{\psi _{2}(1)}{\psi _{1}(1)}(\log 2)^{-\varepsilon } \Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta }2^{-sr\theta }(s+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\theta } \Bigr )^{\frac{1}{\theta }} \\&\quad \le \frac{\psi _{2}(1)}{\psi _{1}(1)} \Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }}. \end{aligned}$$

Therefore, it follows from 3.4 that

$$\begin{aligned} \sum \limits _{s=0}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\tau _{2}} <\infty . \end{aligned}$$

Therefore, again according to Corollary 2.1, we can state that

$$\begin{aligned} {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r} \subset L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m}) \end{aligned}$$

for \(\theta \le \tau _{2}\).

Now we prove relation (3.3). Let us prove an upper bound for the quantity \(E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}}\). Let a natural number l be such that \(2^{l-1} \le n <2^{l}\). For the function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\) by Corollary 2.1 we have

$$\begin{aligned}&E_{n}(f)_{\psi _{2}, \tau _{2}} \le E_{2^{l-1}}(f)_{\psi _{2},\tau _{2}} \le \Vert f - \sum \limits _{s=0}^{l-1}\sigma _{s}(f)\Vert _{\psi _{2},\tau _{2}} \nonumber \\&\quad<< \Bigl (\sum \limits _{s=l}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\tau _{2}} \Bigr )^{\frac{1}{\tau _{2}}}. \end{aligned}$$
(3.7)

If \(\tau _{2}< \theta < \infty \), then put \(q = \frac{\theta }{\tau _{2}} > 1, \frac{1}{q} + \frac{1}{q^{'}} = 1\). Applying the Hölder’s inequality and taking into account the condition \(\frac{\psi _{2}}{\psi _{1}} \in SVL\) (see the proof of (3.6) from (3.7) we obtain

$$\begin{aligned} E_{n}(f)_{\psi _{2}, \tau _{2}} \le&\Bigl (\sum \limits _{s=l}^{\infty }2^{-sr\tau _{2}q^{'}} \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})q^{'}} \Bigr )^{\frac{1}{\tau _{2}q^{'}}} \nonumber \\&\times \Bigl (\sum \limits _{s=l}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }}<< \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l+1})^{-\varepsilon } \nonumber \\&\times \Bigl (\sum \limits _{s=l}^{\infty }2^{-sr\tau _{2}q^{'}}(s+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}q^{'}}\Bigr )^{\frac{1}{\tau _{2}q^{'}}}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \nonumber \\<<&\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l+1})^{-\varepsilon }2^{-lr}(l+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \nonumber \\ =&C\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}2^{-lr}(l+1)^{\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \end{aligned}$$
(3.8)

for any function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\) in the case of \(\tau _{2}<\theta <\infty \).

If \(\theta = \infty \), then from inequalities (3.5) and (3.7) we obtain

$$\begin{aligned} E_{n}(f)_{\psi _{2}, \tau _{2}}<<&\sup _{s\in {\mathbf {N}}_{0}}2^{sr}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}\Bigl (\sum \limits _{s=l}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{\tau _{2}(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Bigr )^{\frac{1}{\tau _{2}}} \\<<&\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}2^{-lr}(l+1)^{\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}} \end{aligned}$$

for any function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \infty }^{r}\).

If \(\theta \le \tau _{2}\), then applying Jensen’s inequality (see [24, Lemma 3.3.3]) and taking into account the condition \(\frac{\psi _{2}}{\psi _{1}} \in SVL\) from (3.7) we get

$$\begin{aligned} E_{n}(f)_{\psi _{2}, \tau _{2}}\le & {} \Bigl (\sum \limits _{s=l}^{\infty }\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\theta }(s+1)^{\theta (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \nonumber \\\le & {} \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l+1})^{-\varepsilon } \Bigl (\sum \limits _{s=l}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f) \Vert _{\psi _{1},\tau _{1}}^{\theta }2^{-sr\theta }(s+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\theta } \Bigr )^{\frac{1}{\theta }} \nonumber \\\le & {} \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l+1})^{-\varepsilon }2^{-lr}(l+1)^{(\varepsilon + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \nonumber \\= & {} \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}2^{-lr}(l+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}\Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f)\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} \end{aligned}$$
(3.9)

for any function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\) in the case of \(\theta \le \tau _{2}\). Now it follows from inequalities (3.8) and (3.9) that

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}} \le \frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}n^{-r}(\log (n+1))^{\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}}. \end{aligned}$$

The upper bound is proved.

Let us prove the lower bound for the quantity \(E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}}\). Let a natural number l be such that \(2^{l-1} \le n < 2^{l}\). We will consider the function

$$\begin{aligned} f_{1}(2\pi {\bar{x}}) = 2^{-lr}(l+1)^{-\frac{1}{\tau _{1}}} \prod _{j=2}^{m} e^{i2^{l}2\pi x_{j}}\sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}, \end{aligned}$$

for \({\bar{x}} \in {\mathbf {I}}^{m}, \,\, l \in {\mathbf {N}}_{0}\).

Since \(|\prod _{j=2}^{m} e^{i2^{l}2\pi x_{j}}| = 1\), \(x_{j}\in [0, 1], \,\, j=2,...,m\), then

$$\begin{aligned} |f_{1}(2\pi {\bar{x}})| = 2^{-lr}(l+1)^{-\frac{1}{\tau _{1}}}\Bigl |\sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr |. \end{aligned}$$

Therefore, non-increasing rearrangement of these functions are equal. Hence,

$$\begin{aligned} \Bigl \Vert f_{1}\Bigr \Vert _{\psi _{1}, \tau _{1}} = \frac{(l+1)^{-\frac{1}{\tau _{1}}}}{2^{lr}}\Bigl \Vert \sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr \Vert _{\psi _{1}, \tau _{1}}. \end{aligned}$$
(3.10)

By the norm property and taking into account the boundedness of the conjugate function operator in the space \(L_{\psi _{1}, \tau _{1}}({\mathbf {T}}^{m})\) we have

$$\begin{aligned}&\Bigl \Vert \sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1) \psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\&\quad = \Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {((\nu + 2^{l} - 1)2\pi x_{1})}}{\nu \psi _{1}(1/\nu )}\Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\&\quad = \Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \cos {((2^{l} - 1)2\pi x_{1})} - \sum _{\nu =1}^{2^{l}} \frac{\sin {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )}\sin {((2^{l} - 1)2\pi x_{1})} \Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\&\quad \le \Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\sin {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \sin {((2^{l} - 1)2\pi x_{1})} \Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\&\qquad +\Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \Bigr \Vert _{\psi _{1}, \tau _{1}} \le C\Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \Bigr \Vert _{\psi _{1}, \tau _{1}}. \end{aligned}$$
(3.11)

In the article [6] it was proved that

$$\begin{aligned} \Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \Bigr \Vert _{\psi _{1}, \tau _{1}} \le C (\log (2^{l} + 1))^{1/\tau _{1}}. \end{aligned}$$

Therefore, from the estimate (3.11) it follows that

$$\begin{aligned} \Bigl \Vert \sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr \Vert _{\psi _{1}, \tau _{1}} \le C l^{1/\tau _{1}}. \end{aligned}$$
(3.12)

Therefore, from equality (3.10) we obtain \( \Bigl \Vert f_{1}\Bigr \Vert _{\psi _{1}, \tau _{1}} \le C2^{-lr}, \,\, l=1,2,... \) Then

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{\infty }2^{sr\theta }\Vert \sigma _{s}(f_{1})\Vert _{\psi _{1},\tau _{1}}^{\theta } \Bigr )^{\frac{1}{\theta }} = 2^{(l+1)r}\Vert \sigma _{l+1}(f_{1})\Vert _{\psi _{1},\tau _{1}} = 2^{(l+1)r}\Vert f_{1}\Vert _{\psi _{1},\tau _{1}} \le C_{1}. \end{aligned}$$

Therefore, the function \(F_{1} = C_{1}^{-1}f_{1} \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\). In the article [6] it was proved that

$$\begin{aligned} \Bigl \Vert \sum _{\nu =1}^{2^{l}} \frac{\cos {(\nu 2\pi x_{1})}}{\nu \psi _{1}(1/\nu )} \Bigr \Vert _{\psi _{2}, \tau _{2}} \ge C \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l})^{1/\tau _{2}}. \end{aligned}$$

on condition \(\frac{\psi _{2}}{\psi _{1}} \in SVL\). Using this inequality, we can verify that

$$\begin{aligned} \Bigl \Vert \sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr \Vert _{\psi _{1}, \tau _{1}} \ge C \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}l^{1/\tau _{2}}. \end{aligned}$$
(3.13)

Now, by the property of the best approximation of the function and inequality (3.13), we obtain

$$\begin{aligned} E_{n}(F_{1})_{\psi _{2}, \tau _{2}}\ge & {} E_{2^{l}}(F_{1})_{\psi _{2}, \tau _{2}} = \Vert F_{1}\Vert _{\psi _{2}, \tau _{2}} = C_{1}^{-1}\Vert f_{1}\Vert _{\psi _{2}, \tau _{2}} \\= & {} 2^{-lr}(l+1)^{-\frac{1}{\tau _{1}}}\Bigl \Vert \sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}\Bigr \Vert _{\psi _{2}, \tau _{2}} \\\ge & {} C2^{-lr}\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}l^{1/\tau _{2} - 1/\tau _{1}} \ge Cn^{-r}\frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}(\log (n+1))^{1/\tau _{2} - 1/\tau _{1}}. \end{aligned}$$

Hence,

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2},\tau _{2}} \ge C \frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}n^{-r}(\log (n+1))^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})}. \end{aligned}$$

\(\square \)

4 Estimates of the best approximations of logarithmic smoothness functions in a generalized Lorentz space

In this section, we prove estimates of the best approximations of functions from the class \({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha }\).

Theorem 4.1

Let \(\varPhi \) - functions \(\psi _{1}, \psi _{2}\) satisfy the conditions of Theorem 2.3and \(\frac{\psi _{2}}{\psi _{1}} \in SVL\), \(0 < \theta \le \infty \). If \(1 < \tau _{2} \le 2, \tau _{2} < \tau _{1} < \infty\) and \(\alpha > (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })_{+}\), then the relation hold

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}} << \frac{\psi _{2}(1/n)}{\psi _{1}(1/n)}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })_{+}}, n\in {\mathbf {N}}, \end{aligned}$$

where \(a_{+} = \min \{0, a\}\). In the case of \(\theta \leq \tau _{2}\), this estimate is sharp in order.

In case \(1 < \tau _{2}< \theta \leq \infty\), if \(2^{1/2} < {\alpha}_{\psi{_2}}, {\beta}_{\psi{_2}} < 2 \; and \; 1 < \tau _{2} \leq 2\, or \,1 < {\alpha}_{\psi{_2}}, {\beta}_{\psi{_2}} < 2^{1/2} \; and \; 2 < \tau _{2} < \infty\), then

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}} >> \frac{\psi _{2}(1/n)}{\psi _{1}(1/n)}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + \frac{1}{\gamma} - \frac{1}{\theta }}, n\in {\mathbf {N}}, \end{aligned}$$

where \({\gamma} = \max \{2, \tau _2\}\).

Proof

Let \(f \in {\mathbf {B}}_{\psi_{1}, \tau _{1}, \theta }^{0, \alpha }\). If \(\tau _{2} <\theta \), then for \(q = \frac{\theta }{\tau _{2}}, \frac{1}{q} + \frac{1}{q^{'}} = 1)\) applying the Hölder’s inequality we get

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } s^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}}\nonumber \\&\quad \le \Bigl (\sum \limits _{s=l}^{\infty } (s + 1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} \nonumber \\&\qquad \times \Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) )\tau _{2}q^{'}} \Bigr )^{\frac{1}{\tau _{2}q^{'}}}. \end{aligned}$$
(4.1)

Since the function \(\frac{\psi _{2}}{\psi _{1}} \in SVL\), then

$$\begin{aligned} \frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})} \le \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(\log 2^{l+1})^{-\varepsilon }(\log 2^{s+1})^{\varepsilon } \end{aligned}$$
(4.2)

for \(\varepsilon > 0\), \(s=l, l+1, l+2,...\). Therefore,

$$\begin{aligned}&\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) )\tau _{2}q^{'}} \nonumber \\&\quad \le \Bigl (\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}\Bigr )^{\tau _{2}q^{'}} (l+1)^{-\varepsilon \tau _{2}q^{'}}\sum \limits _{s=l}^{\infty } (s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) ) \tau _{2}q^{'}}(s+1)^{\varepsilon \tau _{2}q^{'}} \end{aligned}$$
(4.3)

for \(l=0, 1, 2,...\).

Since \(\tau _{2} < \theta \) , then \(\alpha > (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })\). Therefore, you can choose a number \(\varepsilon \) such that \(0< \varepsilon < \alpha + (\frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) - (\frac{1}{\tau _{2}} - \frac{1}{\theta })\). Then the series

$$\begin{aligned} \sum \limits _{s=1}^{\infty }(s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) )\tau _{2}q^{'}}(s+1)^{\varepsilon \tau _{2}q^{'}} \end{aligned}$$

converges and

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty }(s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) )\tau _{2}q^{'}}(s+1)^{\varepsilon \tau _{2}q^{'}}\Bigr )^{\frac{1}{\tau _{2}q^{'}}} \nonumber \\&\quad<< (l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}} - \varepsilon ) + \frac{1}{\tau _{2}} - \frac{1}{\theta }}. \end{aligned}$$
(4.4)

Now it follows from inequalities (4.3) and (4.4) that

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}q^{'}}(s+1)^{-(\alpha - (\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) )\tau _{2}q^{'}} \Bigr )^{\frac{1}{\tau _{2}q^{'}}} \nonumber \\&\quad<< \frac{\psi _{2}(2^{-l})}{\psi _{1} (2^{-l})}(l+1)^{-\varepsilon }(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}} - \varepsilon ) + \frac{1}{\tau _{2}} - \frac{1}{\theta }} \nonumber \\&\quad = C\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + \frac{1}{\tau _{2}} - \frac{1}{\theta }} . \end{aligned}$$
(4.5)

for \(l=0, 1, 2,...\). From inequalities (4.1) and (4.5) we obtain

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } (s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}}\nonumber \\&\quad<< \Bigl (\sum \limits _{s=0}^{\infty } (s + 1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }}\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + \frac{1}{\tau _{2}} - \frac{1}{\theta }} \end{aligned}$$
(4.6)

in the case of \(\tau _{2}< \theta <\infty \), for \(l=0, 1, 2,...\).

If \(\theta =\infty \), then

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } s^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}} \\&\Bigl (\sum \limits _{s=l}^{\infty } s^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}-\alpha )\tau _{2}}\Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}} \Bigr )^{\frac{1}{\tau _{2}}}\sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Bigl \Vert \sigma _{s}(f)\Bigr \Vert _{\psi _{1}, \tau _{1}}\\&\quad<< \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + \frac{1}{\tau _{2}}}\sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Bigl \Vert \sigma _{s}(f)\Bigr \Vert _{\psi _{1}, \tau _{1}} \end{aligned}$$

for any function \(f \in {\mathbf {B}}_{\psi , \tau _{1}, \infty }^{0, \alpha }\).

If \(\theta \le \tau _{2}\), then applying Jensen’s inequality (see [24, Lemma 3.3.3]) we have

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}} \nonumber \\&\quad \le \Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\theta }(s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\theta }\Bigl \Vert \sigma _{s}(f)\Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} \nonumber \\&\quad = \Bigl (\sum \limits _{s=l}^{\infty }(s+1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f)\Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\theta }(s+1)^{-(\alpha +\frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})\theta }\Bigr )^{\frac{1}{\theta }}. \end{aligned}$$
(4.7)

Since \(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}} > 0\) and \(\frac{\psi _{2}}{\psi _{1}} \in SVL\), then using inequality (4.2) for \(\varepsilon = \alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}\) from the formula (4.7) we get

$$\begin{aligned}&\Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}} \nonumber \\&\quad \le \Bigl (\sum \limits _{s=0}^{\infty } (s + 1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }}\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})} \end{aligned}$$
(4.8)

in the case \(\theta \le \tau _{2}\) for \(l=0,1,2,...\).

In particular, for \( l = 0 \) it follows from estimates (4.6), (4.8) that

$$\begin{aligned} \sum \limits _{s=0}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}} < \infty \end{aligned}$$

for any function \(f \in {\mathbf {B}}_{\psi_{1} , \tau _{1}, \theta }^{0, \alpha }\). Therefore, according to Corollary 2.1, the inclusion \({\mathbf {B}}_{\psi_{1} , \tau _{1}, \theta }^{0, \alpha } \subset L_{\psi _{2},\tau _{2}}({\mathbf {T}}^{m})\) is true.

Now we estimate the value \(E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}}\). Let a natural number l be such that \(2^{l-1} \le n < 2^{l}\). Using the properties of the best approximation function and Corollary 2.1, we have

$$\begin{aligned} E_{n}(f)_{\psi _{2},\tau _{2}}\le & {} E_{2^{l-1}}(f)_{\psi _{2},\tau _{2}} \le \Bigl \Vert f - \sum \limits _{s=0}^{l-1}\sigma _{s}(f)\Bigr \Vert _{\psi _{1}, \tau _{1}} \\\le & {} \Bigl (\sum \limits _{s=l}^{\infty } \Bigl (\frac{\psi _{2}(2^{-s})}{\psi _{1}(2^{-s})}\Bigr )^{\tau _{2}}(s+1)^{(\frac{1}{\tau _{2}} - \frac{1}{\tau _{1}})\tau _{2}}\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\tau _{2}}\Bigr )^{\frac{1}{\tau _{2}}}. \end{aligned}$$

Further, using inequalities (4.6), (4.8) and the properties of the functions \(\psi _{1}, \psi _{2}\), we obtain

$$\begin{aligned}&E_{n}(f)_{\psi _{2},\tau _{2}} \le C\frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })_{+}} \\&\qquad \times \Bigl (\sum \limits _{s=0}^{\infty } (s + 1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} \le C\frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })_{+}} \end{aligned}$$

for any function \(f \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha }\). Thus,

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}}<< \frac{\psi _{2}(1/n)}{\psi _{1}(1/n)}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{2}} - \frac{1}{\tau _{1}}) + (\frac{1}{\tau _{2}} - \frac{1}{\theta })_{+}}. \end{aligned}$$

This proves the upper bound.

Now we prove the lower bounds. We will consider the function

$$\begin{aligned} f_{2}(2\pi {\bar{x}}) = (l+1)^{-(\alpha + \frac{1}{\tau _{1}})} \prod _{j=2}^{m} e^{i2^{l}2\pi x_{j}}\sum _{k_{1}=2^{l}}^{2^{l+1}-1} \frac{\cos {(2\pi k_{1}x_{1})}}{(k_{1} - 2^{l} + 1)\psi _{1}(1/(k_{1} - 2^{l} + 1))}, \end{aligned}$$

for \( {\bar{x}} \in {\mathbf {I}}^{m}, \,\, l \in {\mathbf {N}}_{0}\). By continuity, the function \(f_{2} \in L_{\psi _{1}, \tau _{1}}({\mathbf {T}}^{m})\). Using estimate (3.12) we have

$$\begin{aligned} \Bigl \Vert \sigma _{l+1}(f_{2}) \Bigr \Vert _{\psi _{1}, \tau _{1}} = \Bigl \Vert f_{2}\Bigr \Vert _{\psi _{1}, \tau _{1}}<<(l+1)^{-\alpha }. \end{aligned}$$

If \(s \ne l+1\), then \( \Bigl \Vert \sigma _{s}(f_{2})\Bigr \Vert _{\psi _{1}, \tau _{1}} = 0\). Therefore,

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }\Bigl \Vert \sigma _{s}(f_{2}) \Bigr \Vert _{\psi , \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} = (l+2)^{\alpha }\Bigl \Vert \sigma _{l+1}(f_{2})\Bigr \Vert _{\psi _{1}, \tau _{1}} \le C_{2}. \end{aligned}$$

Therefore, the function \(F_{2}=C_{2}^{-1}f_{2} \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha }\).

Further, taking into account the definition of the best approximation and using inequality (3.12), we have

$$\begin{aligned} E_{n}(F_{2})_{\psi _{2},\tau _{2}} \ge&E_{2^{l}}(F_{2})_{\psi _{2},\tau _{2}} = \Bigl \Vert C_{2}^{-1}f_{2}\Bigr \Vert _{\psi _{2}, \tau _{2}}>> \frac{\psi _{2}(2^{-l})}{\psi _{1}(2^{-l})}(l+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})} \\>>&\frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})} \end{aligned}$$

in the case \(\theta \le \tau _{2}\). Hence,

$$\begin{aligned} E_{n}({\mathbf {B}}_{\psi _{2}, \tau _{2}, \theta }^{0, \alpha })_{\psi _{1},\tau _{1}} \ge C\frac{\psi _{2}(n^{-1})}{\psi _{1}(n^{-1})}(\log (n+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})} \end{aligned}$$

in the case \(\theta \le \tau _{2}\).

Let \(\tau _{2} < \theta < \infty\). We will consider the function

$$\begin{aligned} f_{3}(2\pi {\bar{x}})= & {} (n+1)^{-\frac{1}{\theta }}\sum \limits _{s=n+1}^{2n}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})}\prod \limits _{j=2}^{m}e^{i2\pi x_{j}2^{s-1}}\\&\times \sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1}\frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi_{1} (\frac{1}{k_{1} - 2^{s-1}+1})} \end{aligned}$$

where \({\bar{x}} \in {\mathbf {I}}^{m}, \,\, n \in {\mathbf {N}}_{0}\). Then

$$\begin{aligned} \Bigl \Vert \sigma _{s}(f_{3})\Bigr \Vert _{\psi _{1}, \tau _{1}}=&(n+1)^{-\frac{1}{\theta }}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})}\nonumber \\&\times \Bigl \Vert \prod \limits _{j=2}^{m}e^{i2\pi x_{j}2^{s-1}}\sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1}\frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi_{1} (\frac{1}{k_{1} - 2^{s-1}+1})} \Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\ =&(n+1)^{-\frac{1}{\theta }}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})}\Bigl \Vert \sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1} \frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi_{1} (\frac{1}{k_{1} - 2^{s-1}+1})}\Bigr \Vert _{\psi _{1}, \tau _{1}} \nonumber \\ \asymp&(n+1)^{-\frac{1}{\theta }}(s+1)^{-\alpha } \end{aligned}$$
(4.9)

for \(1<p, \tau _{1}<\infty \), \(s\in {\mathbf {N}}_{0}\). By continuity, the function \(f_{3} \in L_{\psi _{1},\tau _{1}}({\mathbf {T}}^{m})\) and using relations (3.12) and (4.9) we obtain

$$\begin{aligned} \Bigl (\sum \limits _{s=0}^{\infty } s^{\alpha \theta }\Bigl \Vert \sigma _{s}(f_{3}) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} = \Bigl (\sum \limits _{s=n+1}^{2n} s^{\alpha \theta }\Bigl \Vert \sigma _{s}(f_{3}) \Bigr \Vert _{\psi _{1}, \tau _{1}}^{\theta }\Bigr )^{\frac{1}{\theta }} \le C_{3}. \end{aligned}$$

Hence, the function \(F_{3}=C_{3}^{-1}f_{3} \in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha }\). Further, by definition of the best approximation of the function, we have

$$\begin{aligned} E_{2^{n}}(F_{3})_{\psi _{2},\tau _{2}}= & {} C_{3}^{-1}\Vert f_{3}\Vert _{\psi _{2}, \tau _{2}} = (n+1)^{-\frac{1}{\theta }} \nonumber \\&\times \Bigl \Vert \sum \limits _{s=n+1}^{2n}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})}\sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1}\frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi _{1}(\frac{1}{k_{1} - 2^{s-1}+1})}\Bigr \Vert _{\psi _{2}, \tau _{2}}. \end{aligned}$$
(4.10)

If \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau _{2} \le 2\), then using Lemma 2.6 we get

$$\begin{aligned} \Vert f_{3}\Vert _{\psi _{2}, \tau _{2}}\ge & {} C\Bigl (\sum \limits _{s=n+1}^{2n}\Vert \sigma _{s}(f_{3})\Vert _{\psi _{2}, \tau _{2}}^{2}\Bigr )^{\frac{1}{2}} = C(n+1)^{-\frac{1}{\theta }}\\&\times \Bigl (\sum \limits _{s=n+1}^{2n}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})2}\Bigl \Vert \sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1}\frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi _{1}(\frac{1}{k_{1} - 2^{s-1}+1})} \Bigr \Vert _{\psi _{2}, \tau _{2}}^{2}\Bigr )^{\frac{1}{2}} \\\ge & {} C(n+1)^{-\frac{1}{\theta }}\left[ \sum \limits _{s=n+1}^{2n}(s+1)^{-(\alpha + \frac{1}{\tau _{1}})2}\Bigl ( \frac{\psi _{2}(1/2^{s})}{\psi _{1}(1/2^{s})}(\log 2^{s})^{1/\tau _{2}}\Bigr )^{2}\right] ^{\frac{1}{2}}. \end{aligned}$$

Further, taking into account that \(\frac{\psi _{2}}{\psi _{1}} \in SVL\) we get

$$\begin{aligned} \Vert f_{3}\Vert _{\psi _{2}, \tau _{2}} \ge C\frac{\psi _{2}(1/2^{n})}{\psi _{1}(1/2^{n})}(n+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{2}-\frac{1}{\theta }}. \end{aligned}$$
(4.11)

Now, from equality (4.10) and inequality (4.11) it follows that

$$\begin{aligned} E_{2^{n}}(F_{3})_{\psi _{2},\tau _{2}} \ge C\frac{\psi _{2}(1/2^{n})}{\psi _{1}(1/2^{n})}(n+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{2}-\frac{1}{\theta }}. \end{aligned}$$

in the case \(2^{1/2}< \alpha _{\psi _{2}}, \beta _{\psi _{2}} < 2\) and \(1< \tau _{2} \le 2\).

If \(1< \alpha _{\psi _{2}}, \beta _{\psi _{2}} < 2^{1/2}\) and \(2\le \tau _{2} < \infty \), then using Lemma 2.4 and after similar reasoning we get

$$\begin{aligned} E_{2^{n}}(F_{3})_{\psi _{2},\tau _{2}} \ge C\frac{\psi _{2}(1/2^{n})}{\psi _{1}(1/2^{n})}(n+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{\tau _{2}}-\frac{1}{\theta }}. \end{aligned}$$

Hence,

$$\begin{aligned} E_{l}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}} \ge C\frac{\psi _{2}(1/l)}{\psi _{1}(1/l)}(\log (l+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{2}-\frac{1}{\theta }}. \end{aligned}$$

in the case \(2^{1/2}< \alpha _{\psi _{2}}, \beta _{\psi _{2}} < 2\) and \(1< \tau _{2} \le 2\) and

$$\begin{aligned} E_{l}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}} \ge C\frac{\psi _{2}(1/l)}{\psi _{1}(1/l)}(\log (l+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{\tau _{2}}-\frac{1}{\theta }} \end{aligned}$$

in the case \(1< \alpha _{\psi _{2}}, \beta _{\psi _{2}} < 2^{1/2}\) and \(2< \tau _{2} < \infty \), \(\theta < \infty \).

If \(\theta = \infty \), then we will consider the function

$$\begin{aligned}&f_{4}(2\pi {\bar{x}}) \\&\quad = \sum \limits _{s=1}^{\infty }(s+1)^{-(\alpha + \frac{1}{\tau _{1}})}\prod \limits _{j=2}^{m}e^{i2\pi x_{j}2^{s-1}}\sum \limits _{k_{1}=2^{s-1}}^{2^{s}-1}\frac{\cos k_{1}2\pi x_{1}}{(k_{1} - 2^{s-1}+1)\psi _{1}(\frac{1}{k_{1} - 2^{s-1}+1})}, \end{aligned}$$

where \({\bar{x}} \in {\mathbf {I}}^{m}\). Then taking into account (3.12) we get

$$\begin{aligned} \sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Vert \sigma _{s}(f_{4})\Vert _{\psi _{1}, \tau _{1}}\le C_{4}. \end{aligned}$$

Hence, the function \(F_{4}=C_{4}^{-1}f_{4}\in {\mathbf {B}}_{\psi _{1}, \tau _{1}, \infty }^{0, \alpha }\).

If \(1< \alpha _{\psi _{2}}, \beta _{\psi _{2}} < 2^{1/2}\) and \(2\le \tau _{2} < \infty \), then using Lemma 2.4 and in the case \(2^{1/2}< \alpha _{\psi }, \beta _{\psi } < 2\) and \(1< \tau _{2} \le 2\), using Lemma 2.6 we get

$$\begin{aligned} E_{2^{n}}(F_{4})_{\psi _{2},\tau _{2}}>>\Bigl (\sum \limits _{s=n+1}^{2n}\Vert \sigma _{s}(f_{4})\Vert _{\psi _{2}, \tau _{2}}^{\gamma }\Bigr )^{\frac{1}{\gamma }}>>\frac{\psi _{2}(1/2^{n})}{\psi _{1}(1/2^{n})}(n+1)^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{\gamma }}, \end{aligned}$$

where \(\gamma =\max \{\tau _{2}, 2\}\). Hence,

$$\begin{aligned} E_{l}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha })_{\psi _{2},\tau _{2}}>>\frac{\psi _{2}(1/l)}{\psi _{1}(1/l)}(\log (l+1))^{-(\alpha + \frac{1}{\tau _{1}} - \frac{1}{\tau _{2}})+\frac{1}{\gamma }} \end{aligned}$$

in the case \(\theta = \infty \). \(\square \)

Theorem 4.2

Let \(1< \alpha _{\psi }\le \beta _{\psi } < 2\) and \(1<\tau \le 2\) or \(1< \alpha _{\psi }\le \beta _{\psi } < 2^{1/2}\), \(2 \le \tau < \infty \), \(1 \le \theta \le \infty \), \(\tau _{0} = \min \{\tau , 2\}\). If \(\alpha > (\frac{1}{\tau _{0}} - \frac{1}{\theta })_{+}\), then

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi ,\tau } \asymp (\log (M+1))^{-\alpha + (\frac{1}{\tau _{0}} - \frac{1}{\theta })_{+}}, \end{aligned}$$

where \(a_{+} = \max \{a, 0\}\).

Proof

Let \(f \in {\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha }\) and a positive integer n such that \(2^{n-1} \le M <2^{n}\). It follows from Lemma 2.1 and Lemma 2.4 that

$$\begin{aligned} \Vert f\Vert _{\psi ,\tau } \le C \Bigl (\sum \limits _{s=0}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\tau _{0}}\Bigr )^{1/\tau _{0}}. \end{aligned}$$
(4.12)

Now applying this inequality to the function \(f - \sum \limits _{s=0}^{n}\sigma _{s}(f)\in L_{\psi ,\tau }({\mathbf {T}}^{m})\) we will have

$$\begin{aligned} E_{M}(f)_{\psi ,\tau } \le E_{2^{n}}(f)_{\psi ,\tau } \le \Vert f - \sum \limits _{s=0}^{n}\sigma _{s}(f)\Vert _{\psi ,\tau } \le C \Bigl (\sum \limits _{s=n}^{\infty }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\tau _{0}} \Bigr )^{\frac{1}{\tau _{0}}}. \end{aligned}$$
(4.13)

If \(\theta \le \tau _{0}\), then applying Jensen’s inequality (see [24, Lemma 3.3.3]) from (4.13) we obtain

$$\begin{aligned} E_{M}(f)_{\psi ,\tau }<<\Bigl (\sum \limits _{s=n}^{\infty }\Vert \sigma _{s}(f) \Vert _{\psi ,\tau }^{\theta }\Bigr )^{\frac{1}{\theta }}<<(n+1)^{-\alpha } \asymp (\log (M+1))^{-\alpha } \end{aligned}$$

for any function \(f \in {\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha }\) in the case \(\theta \le \tau _{0}\). Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi ,\tau }<<(\log (M+1))^{-\alpha }, \end{aligned}$$

in the case \(\theta \le \tau _{0}\).

Let \(\tau _{0} < \theta \). Then applying the Hölder’s inequality \((\beta = \frac{\theta }{\tau _{0}} > 1, \frac{1}{\beta } + \frac{1}{\beta ^{'}} = 1)\) and taking into account the inequality \(\alpha > \frac{1}{\tau _{0}} - \frac{1}{\theta }\) from (4.13) we have

$$\begin{aligned} E_{M}(f)_{\psi ,\tau }<<&\Bigl (\sum \limits _{s=n}^{\infty }(s+1)^{\alpha \theta } \Vert \sigma _{s}(f)\Vert _{\psi ,\tau }^{\theta } \Bigr )^{\frac{1}{\theta }} \Bigl (\sum \limits _{s=n}^{\infty }(s+1)^{-\alpha \tau _{0}\beta ^{'}} \Bigr )^{\frac{1}{\tau _{0}\beta ^{'}}} \\<<&(n+1)^{-\alpha + \frac{1}{\tau _{0}} - \frac{1}{\theta }} \asymp (\log (M+1))^{-\alpha + \frac{1}{\tau _{0}} - \frac{1}{\theta }}. \end{aligned}$$

Therefore,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi ,\tau }<<(\log (M+1))^{-\alpha + \frac{1}{\tau _{0}} - \frac{1}{\theta }}, \end{aligned}$$

in the case \(\tau _{0} < \theta \).

If \(\theta =\infty \), then taking into account the inequality \(\alpha > \frac{1}{\tau _{0}}\) from (4.13) we have

$$\begin{aligned} E_{M}(f)_{\psi ,\tau }<<&\Bigl (\sum \limits _{s=n}^{\infty }(s+1)^-\\{\alpha \tau _{0}}\Bigr )^{\frac{1}{\tau _{0}}}\sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau } \\<<&(n+1)^{-\alpha + \frac{1}{\tau _{0}}}\sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }\Vert \sigma _{s}(f)\Vert _{\psi ,\tau }<<(\log (M+1))^{-\alpha + \frac{1}{\tau _{0}}}. \end{aligned}$$

This proves the upper bound.

Let us prove the lower bounds. Let \(\tau _{0} <\theta \). We will consider the function

$$\begin{aligned} f_{5}(2\pi {\bar{x}}) = (n+1)^{-\frac{1}{\theta }}\sum \limits _{s=n+1}^{2n}(s+1)^{-\alpha }\frac{2^{-sm}}{\psi (2^{-sm})}\sum \limits _{{\bar{k}} \in \varDelta _{2^{s}}\setminus \varDelta _{2^{s-1}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }, \end{aligned}$$

for \({\bar{x}} \in {\mathbf {I}}^{m}\), \(n \in {\mathbf {N}}_{0}\).

By the estimate of the norm of the Dirichlet kernel in the generalized Lorentz space (3.2), we have

$$\begin{aligned}&\left\{ \sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }||\sigma _{s}(f_{5})||_{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }} = \left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{\alpha \theta }||\sigma _{s}(f_{5})||_{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }} \\&\quad<< (n+1)^{-\frac{1}{\theta }}\left\{ \sum \limits _{s=n+1}^{2n} 1 \right\} ^{\frac{1}{\theta }}\le C_{5}. \end{aligned}$$

Thus, the function \(F_{5}=C_{5}^{-1}f_{5} \in {\mathbf {B}}_{p, \tau , \theta }^{0, \alpha }\) for \( 1<p, \tau <\infty \), \( 1 \le \theta <\infty \).

Let \(1< \alpha _{\psi }\le \beta _{\psi } < 2\), \(1 < \tau \le 2\), i.e. \(\tau _{0} = \tau \). We select the number \(q > (\log _{2}\alpha _{\psi })^{-1}\) i.e. \(2^{1/q} < \alpha _{\psi }\). Then, using Theorem 2.3 and the method of proving Lemma 2.6, we can prove that

$$\begin{aligned} \left\{ \sum \limits _{s=0}^{\infty }(2^{\frac{sm}{q}}\psi (2^{-nm}))^\tau \Vert \sigma _{s}(f)\Vert _{q}^{\tau } \right\} ^{\frac{1}{\tau }} \le C\Vert f\Vert _{\psi ,\tau }, \end{aligned}$$
(4.14)

for \(f\in L_{\psi , \tau }({\mathbf {T}}^{m}), \,\, 1< \tau < \infty \).

Now we apply this inequality to the function \(F_{5}=C_{5}^{-1}f_{5} \in {\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha }\). Then, given the estimate of the norm of the Dirichlet kernel (see relation (3.2)), we obtain

$$\begin{aligned} E_{2^{n}}(F_{5})_{\psi , \tau } =&C_{5}^{-1}\Vert f_{5}\Vert _{\psi , \tau }>>\left\{ \sum \limits _{s=n+1}^{2n}(2^{\frac{sm}{q}}\psi (2^{-sm}))^\tau \Vert \sigma _{s}(f_{5})\Vert _{q}^{\tau } \right\} ^{\frac{1}{\tau }} \\>>&(n+1)^{-\frac{1}{\theta }}\left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{-\alpha \tau }\right\} ^{\frac{1}{\tau }} \ge C(n+1)^{-\alpha + \frac{1}{\tau } -\frac{1}{\theta }}. \end{aligned}$$

Thus, \( E_{2^{n}}(F_{5})_{\psi ,\tau }>>(n+1)^{-\alpha + \frac{1}{\tau } -\frac{1}{\theta }} \) for \(1< \alpha _{\psi }\le \beta _{\psi } < 2\), \(1< \tau < \infty \). Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi ,\tau } \ge E_{M}(F_{5})_{\psi ,\tau } \ge E_{2^{n}}(F_{5})_{\psi ,\tau }>>(n+1)^{-\alpha + \frac{1}{\tau } -\frac{1}{\theta }} \end{aligned}$$

for \(1< \alpha _{\psi }\le \beta _{\psi } < 2\), \(1< \tau < \infty \). This inequality shows the exactness of the estimate in Theorem 4.2 for \(1 < \tau \le 2\) , \(\tau _{0}=\min \{\tau ,2\} < \theta \), \(1< \alpha _{\psi }\le \beta _{\psi } < 2\).

If \(\theta = \infty \), then we will consider the function

$$\begin{aligned} f_{6}(2\pi {\bar{x}}) = \sum \limits _{s=1}^{\infty }(s+1)^{-\alpha }\frac{2^{-sm}}{\psi (2^{-sm})}\sum \limits _{{\bar{k}} \in \varDelta _{2^{s}}\setminus \varDelta _{2^{s-1}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }, \,\, {\bar{x}} \in {\mathbf {I}}^{m} \end{aligned}$$

for \(1< \alpha _{\psi }\le \beta _{\psi } < 2\), \(1 < \tau \le 2\).

Using relation (3.2) and inequality (4.12), it is easy to verify that \(f_{6}\in L_{\psi , \tau }({\mathbf {T}}^{m})\) and

$$\begin{aligned} \sup _{s\in {\mathbf {N}}_{0}}(s+1)^{\alpha }||\sigma _{s}(f_{6})||_{\psi , \tau }\le C_{6}. \end{aligned}$$

Hence, the function \(F_{6}=C_{6}^{-1}f_{6} \in {\mathbf {B}}_{p, \tau , \infty }^{0, \alpha }\).

Further, using inequality (4.14), we can verify that

$$\begin{aligned} E_{2^{n}}(F_{6})_{\psi , \tau } =&C_{6}^{-1}\Vert f_{6}\Vert _{\psi , \tau }>>\left\{ \sum \limits _{s=n+1}^{\infty }(2^{\frac{sm}{q}}\psi (2^{-sm}))^\tau \Vert \sigma _{s}(f_{6})\Vert _{q}^{\tau } \right\} ^{\frac{1}{\tau }} \\>>&(n+1)^{-\frac{1}{\theta }}\left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{-\alpha \tau }\right\} ^{\frac{1}{\tau }}>>(n+1)^{-\alpha + \frac{1}{\tau } -\frac{1}{\theta }}. \end{aligned}$$

Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi ,\tau } \ge E_{M}(F_{6})_{\psi ,\tau } \ge E_{2^{n}}(F_{6})_{\psi ,\tau }>>(\log M)^{-\alpha + \frac{1}{\tau }} \end{aligned}$$

for \(1< \alpha _{\psi }\le \beta _{\psi } < 2\), \(1 < \tau \le 2\).

Now we prove lower bounds for \(\beta _{\psi } < 2^{1/2}\), \(2\le \tau < \infty \) and \(2=\tau _{0} < \theta \). We will consider the function

$$\begin{aligned} f_{7}(2\pi {\bar{x}}) = (n+1)^{-\frac{1}{\theta }}\sum \limits _{s=n+1}^{2n}(s+1)^{-\alpha }2^{-\frac{sm}{2}}\prod \limits _{j=1}^{m}R_{s}(x_{j}), \end{aligned}$$

where \(R_{s}(x_{j})=\sum \limits _{k=2^{s-1}}^{2^{s} - 1}\varepsilon _{k}e^{ik2\pi x_{j}}\) is the Rudin–Shapiro polynomial and \(\varepsilon _{k} = \pm 1\). It is known that \(\Vert R_{s}\Vert _{\infty }<<2^{s/2}\) (see [19, p. 146]). Therefore,

$$\begin{aligned} ||\sigma _{s}(f_{7})||_{\psi , \tau }= & {} (n+1)^{-\frac{1}{\theta }}(s+1)^{-\alpha }2^{-\frac{sm}{2}}||\prod \limits _{j=1}^{m}R_{s}(x_{j})||_{\psi , \tau } \\\le & {} (n+1)^{-\frac{1}{\theta }}(s+1)^{-\alpha }2^{-\frac{sm}{2}}\prod \limits _{j=1}^{m}\Vert R_{s}(x_{j})\Vert _{\infty } \le (n+1)^{-\frac{1}{\theta }}(s+1)^{-\alpha }. \end{aligned}$$

Hence,

$$\begin{aligned} \left\{ \sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }||\sigma _{s}(f_{7})||_{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }} = \left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{\alpha \theta }||\sigma _{s}(f_{7})||_{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }}\le C_{7} \end{aligned}$$

i.e. the function \(F_{7}=C_{7}^{-1}f_{7} \in {\mathbf {B}}_{\psi, \tau , \theta }^{0, \alpha }\). Since \(\beta _{\psi } < 2^{1/2}\), \(2\le \tau < \infty \), then \(L_{\psi , \tau }({\mathbf {T}}^{m}) \subset L_{2}({\mathbf {T}}^{m})\) and \(\Vert f\Vert _{2} \le C \Vert f\Vert _{\psi , \tau }\), for \(f \in L_{\psi , \tau }({\mathbf {T}}^{m})\). Therefore, according to Parseval’s equality, we obtain

$$\begin{aligned}&E_{2^{n}}(F_{7})_{\psi , \tau } = C_{7}^{-1}\Vert f_{7}\Vert _{\psi , \tau }>> \Vert f_{7}\Vert _{2}\nonumber \\&\quad>>(n+1)^{-\frac{1}{\theta }}\left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{-2\alpha }\right\} ^{\frac{1}{2}} \ge C(n+1)^{-\alpha + \frac{1}{2} -\frac{1}{\theta }} \end{aligned}$$
(4.15)

for \(\beta _{\psi } < 2^{1/2}\). Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi , \tau } \ge E_{M}(F_{7})_{\psi , \tau } \ge E_{2^{n}}(F_{7})_{\psi , \tau } \ge C(n+1)^{-\alpha + \frac{1}{2} -\frac{1}{\theta }} \end{aligned}$$

in the case \(\beta _{\psi } < 2^{1/2}\), \(2\le \tau < \infty \) and \(2=\tau _{0} < \theta \).

Now we prove the lower bound for \(\theta \le \tau _{0}\). We will consider the function

$$\begin{aligned} f_{8}(2\pi {\bar{x}}) = (n+1)^{-\alpha }\frac{2^{-nm}}{\psi (2^{-nm})}\sum \limits _{{\bar{k}} \in \varDelta _{2^{n+1}}\setminus \varDelta _{2^{n}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }, \,\, {\bar{x}} \in {\mathbf {I}}^{m}, \,\, n \in {\mathbf {N}}_{0}. \end{aligned}$$

Then, taking into account relation (3.2), we have

$$\begin{aligned} \left\{ \sum \limits _{s=0}^{\infty } (s+1)^{\alpha \theta }\Vert \sigma _{s}(f_{8})\Vert _{\psi , \tau }^{\theta } \right\} ^{\frac{1}{\theta }} = \frac{2^{-nm}}{\psi (2^{-nm})}\Bigl \Vert \sum \limits _{{\bar{k}} \in \varDelta _{2^{n+1}}\setminus \varDelta _{2^{n}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }\Bigr \Vert _{\psi , \tau } \le C_{8}. \end{aligned}$$

Therefore, the function \(F_{8}=C_{8}^{-1}f_{8} \in {\mathbf {B}}_{p, \tau , \theta }^{0, \alpha }\). Now using relation (3.2) will have

$$\begin{aligned} E_{2^{n}}(F_{8})_{\psi ,\tau } = \Vert C_{8}^{-1}f_{8}\Vert _{\psi ,\tau }>>(n+1)^{-\alpha } . \end{aligned}$$

Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \theta }^{0, \alpha })_{\psi , \tau } \ge E_{M}(F_{8})_{\psi ,\tau } \ge E_{2^{n}}(F_{8})_{\psi ,\tau }>>(n+1)^{-\alpha } \end{aligned}$$

in the case \(\theta \le \tau _{0}\), for \(1<\alpha _{\psi }\le \beta _{\psi } < 2\) \(1< \tau < \infty \).

If \(\theta = \infty \), then we will consider the function

$$\begin{aligned} f_{9}(2\pi {\bar{x}}) = \sum \limits _{s=1}^{\infty }(s+1)^{-\alpha }\frac{2^{-sm}}{\psi (2^{-sm})}\sum \limits _{{\bar{k}} \in \varDelta _{2^{s}}\setminus \varDelta _{2^{s-1}}}e^{i\langle {\bar{k}}, 2\pi {\bar{x}}\rangle }, \end{aligned}$$

for \({\bar{x}} \in {\mathbf {I}}^{m}\).

By the property of the Rudin-Shapiro polynomial, we obtain \( \sup _{s\in {\mathbf{N}}_{0}}(s+1)^{\alpha}\Vert \sigma _{s}(f_{9})\Vert _{\psi, \tau}\le C_{9}. \) Hence, the function \(F_{9}=C_{9}^{-1}f_{9}\in {\mathbf {B}}_{\psi , \tau, \infty }^{0, \alpha }\). Further, as in the proof of (4.15), one can verify that

$$\begin{aligned} E_{2^{n}}(F_{9})_{\psi , \tau } =&C_{9}^{-1}\Vert f_{9}\Vert _{\psi , \tau }>> \Vert f_{9}\Vert _{2}\\>>&\left\{ \sum \limits _{s=n+1}^{2n} (s+1)^{-2\alpha }\right\} ^{\frac{1}{2}}>>(n+1)^{-\alpha + \frac{1}{2}}. \end{aligned}$$

Hence,

$$\begin{aligned} E_{M}({\mathbf {B}}_{\psi , \tau , \infty }^{0, \alpha })_{\psi , \tau }>>(n+1)^{-\alpha + \frac{1}{2}}>>(\log M)^{-\alpha + \frac{1}{2}} \end{aligned}$$

for \(\beta _{\psi } < 2^{1/2}\), \(2\le \tau < \infty \). \(\square \)

Remark 4.1

In the case \(\psi (t) = t^{1/p}\) and \(1<\tau = p < \infty \), \(1\le \theta \le \min \{2, p\}\) from Theorem 4.2 we obtain [30, Theorem, item (i)]. For the function \(\psi (t) = t^{1/p}\) and \(1<\tau , p < \infty \), \(1\le \theta \le \infty \) Theorem 4.2 is proved in [4, Theorem 2.1].

In the case \(\psi _{1}(t) = \psi _{2}(t) = t^{1/p}\), \(t\in [0, 1]\), \(1< p < \infty \) Theorem 4.1 was proved in [4, Theorem 3.4].

Remark 4.2

In the case, \(1< \alpha _{\psi _{2}} \le \beta _{\psi _{2}}< \alpha _{\psi _{1}}\le \beta _{\psi _{1}}< 2\) and \(1< \tau _{1}, \tau _{2} < \infty \) using Theorem 2.4, we can study the estimate of the quantity \(E_{M}({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r})_{\psi _{2}, \tau _{2}}\). In particular, for \(\psi _{1}(t)=t^{1/p}\), \(\psi _{2}(t)=t^{1/q}\) and \(\tau _{1}=p,\) \(\tau _{2}=q\), \(1<p, q< \infty \) this problem was investigated by A. S. Romanyuk [25, Theorem 1].

Remark 4.3

We note that the results of this paper can be applied to estimate the best \(M-\) term approximations, trigonometric widths, linear widths of classes \({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{r}\) and \({\mathbf {B}}_{\psi _{1}, \tau _{1}, \theta }^{0, \alpha }\) in the Lorentz space \(L_{\psi _{2}, \tau _{2}}({\mathbf {T}}^{m})\) (see special cases for example in [3]).

Remark 4.4

Let \(1<\tau _{2}< \tau _{1}<\infty \), \(1< \alpha _{\psi _{1}}=\beta _{\psi _{2}}<2\) and

$$\begin{aligned} \int _{0}^{1}\Bigl (\frac{\psi _{2}(t)}{\psi _{1}(t)}\Bigr )^{\frac{\tau _{1}\tau _{2}}{\tau _{1}-\tau _{2}}}\frac{\text {d}t}{t} < \infty , \end{aligned}$$

then \(L_{\psi _{1}, \tau _{1}}({\mathbf {T}}^{m})\subset L_{\psi _{2}, \tau _{2}}({\mathbf {T}}^{m})\) (see [29, p. 916]). Therefore, we can consider an analogue of Theorem 2.2, Theorem 3.2, Theorem 4.1, and Theorem 4.2 in this case.