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Abstract

In this paper, we consider the generalized Lorentz space of periodic functions of
several variables and the Nikol’skii—-Besov space of functions. The article estab-
lishes a sufficient condition for a function to belong from one generalized Lorentz
space to another space in terms of the difference of the partial sums of the Fourier
series of a given function. Exact in order estimates of the best approximation by
trigonometric polynomials of functions of the Nikol’skii—-Besov class are obtained.

Keywords Lorentz space - Besov class - Best approximation - Logarithmic
smoothness
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1 Introduction
Let R" be a m — dimensional Euclidean space of points X = (x1, .. .,X,,) with real
coordinates; I" = {x e R";0<x;<1; j=1,...,m} — m — dimensional cube.

Definition 1.1 (see [21, Chapter 2, Sect. 2]). Two nonnegative Lebesgue
measurable functions f, g are called equimeasurable if
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wWxel": fx) > =u{xel": g(x)> 1}, A>0,
where pe — Lebesgue measure of the set e C I".

Let X be a Banach space of Lebesgue measurable functions on I'" of functions f
with the norm ||f||. The space X is called symmetric

() if [f(x)|<|g(X)| almost everywhere on I" and g € X, then f € X and
IFllx < llgllxs

(2) iff e Xandlfl, gl are equimeasurable, then g € X and |/f ||y = ||g|lx (see [21,
Chapter 2, Sect. 4]).

The norm ||y, ||y of the characteristic function y, () of the measurable set e C I" is
called is the fundamental function of space X and is denoted by ¢(ue) = ||i.lx-
Further, the symmetric space X with the fundamental function ¢ will be denoted by
X(¢).

It is known that the fundamental function of the symmetric space X is the
function ¢(t) = |[x0,llx defined on the interval [0, 1]. She is a concave, non-
decreasing, continuous function on [0, 1], and ¢(0) =0 (see [21, p. 70, 137,
164]). Such functions are called @ - functions.

. . . (2 T (2 .
For this function ¢(z), ¢t € [0, 1], put a, = lim,_,, ’(’p((t’))’ B, = lim,_o /:/f(lt)). It is
known that for any symmetric space X(¢) we have inequalities 1 < o, < By <2 (see
[26]).
One example of a symmetric space is L,(T") — Lebesgue space 2n periodic for
each variable of the function f with norm (see [24, Chapter 1, Sect. 1.1])

7l = (/ lf(ZM)quX>1/q, 1<g<oc.
i

Here and in after, T" = [0, 2x]".

The space C(T™) consists of continuous functions f with the norm
Flloe = max £ (2mx)].

Let the function ¥ be continuous, non-decreasing, concave by [0, 1], ¥(0) =0
and 0 <t <oo. A generalized Lorentz space Ly .(T™) is the set of measurable on
T” = [0,2xn]" having 27-period for each variable xj,j =1,...,m, of functions
FX) =f(x1,...,%n), for which (see [27])

Il = ( / Fovo?) <
0

where f* denotes the nonincreasing rearrangement of the function |f(27X)|, X € I"
(see e.g. [21, 27]). It is known that under the conditions 1 <oy, ﬁw <2, the space
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Ly (T") will be a symmetric space with the fundamental function y and the
functional ||f{|, . will be equivalent to the norm

wn:;,,f:(/(/f ) ’dt>/

spaces Ly -(T™) [27, Lemma 3.1].

Note that for (¢) = ¢'/9 the space Ly .(T™) coincides with the Lorentz space
denoted by L, .(T™), 1 <q,1<00 (see [32, p. 228]).

For a given positive integer M, consider the set Ay = {k = (ky, ..., k,) € Z™ :
|kj| <M, j=1,...,m}. We will consider the multiple Dirichlet kernel

Dy, (27x) = Z ei<E’2"}>, xel”

kedy

and the convolution of a function f € Ly .(T")
os(f,2nx) = | f(2ny)(D4, (27X — 27y) — Dy, , (27X — 27y))dy,
r ’

where s € No = NU {0}, N is the set of natural numbers.
Let En(f)y . = En,.m(f)y . = 1nf |If — Tl . is the best approximation of the

,,,,,

function f € Ly .(T™) by the set F An of trigonometric polynomials of order at most
M—1 in each variable. For a given class F C Ly.(T") we put

Em(F)y . =supEy(f), .-
feF
Let 0<f<oo and a number r > 0. We consider the space of all functions
f € Ly -(T™) for which

o0

Sr 0
> 2" las ()l <00

s=0

for 0<0< oo and

sup 2" |a (£l . <00

s€Ny

for 0 = co
This space is denoted by the symbol B, , and is called the Nikol’skii-Besov
space. In this space, we consider a unit ball

BrTG_{feBl//‘EG I

B(’p 0<1}7

where
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1
00 )
- 0
il , = Iy + {} 3 f’|as<f>||¢,f} ,

s=0

for 0<0<oo and

Wl

0

= Iflly - + sup 2"{[os(F)lly -
s€Np

for 0 = oo.

In the case /() = 1'/? and 1 = p, the space B/, g is defined in [7, 24] and is
denoted by B, .

Note that the generalized Nikol’skii—-Besov space in the Lebesgue space is
defined and investigated in [8, 15, 16].

One of the generalizations of the Nikol’skii—-Besov space is the Nikol’skii-Besov
space with logarithmic smoothness, defined as a subset of LP(T’") (see [9-11, 13]).
Dominguez O., Tikhonov S. [13] established characterizations and embeddings of
Besov functional spaces with logarithmic smoothness.

In the space of continuous functions C(T!) S.B.Kashin and V.N.Temlyakov [18]
defined the following class:

LGr:{fEC(Tl): los(ll < (s+1)7",s=0,1,...}, r>0.

Now we define a similar Nikol’skii-Besov space with logarithmic smoothness in the
generalized Lorentz space.

Let 0<f<oo and a number o > 0. Consider the space of all functions f €
Ly (T™) for which

o0

> s+ 1) os(F)lly.. <oc,

s=0

for 0<0< oo and

sup(s + 1)"[lo ()l - <oo,

s€Ny

for 6 = oc.
This space is denoted by B%.iﬂ and is called the Nikol’skii-Besov space of

logarithmic smoothness in the generalized Lorentz space.
In this space, we consider a unit ball

0, _ 0, .
BY: )= {f € By + fllpe, <10

where
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1
0

il = Wl + {fj(w 1>“"||os<f>|i,f} ,

s=0

for 0<0< oo and

Fllgex = IWflly < + sup(s + 1)*las(F)lly -
W.t,00 SENO

In the case (f) = ¢'/7 and t = p, the space B&i,e = Bg:f; is defined in [30, 31].
Other generalizations ofthe Nikol’skii—-Besov space are given in [8, 15, 16].

In the case of 7y = p, 75 = ¢ for the Nikol’skii—-Besov class, B;.,H in order exact
estimates of the best approximation in the space L,(7™) received A.S. Romanyuk
[25]. In the case T = p, estimates of the approximative characteristics of the class

0,0
BPJ,O

functions of the class B%,.o in the Lorentz space Ly, (T") in the case of

got S.A. Stasyuk [30, 31]. In [4], estimates of the best approximations of

W(t) = t'/7. A survey of results on the theory of approximation of functions of many
classes of Sobolev, Nikol’skii and Besov is given in [14], also see the bibliography
in [34, 35].

It is known that Ly ., (T™) C Ly ., (T™) for 0 <1, <7; <00 and the fundamental
functions of these spaces are equivalent to the function .

In [5], the following statement was proved.

Lemma 1.1 Let 1 <t,<7 <00 and the functions |, , satisfy the conditions
O(,/,l = 0611,2, ﬁ‘/’l = ﬁ‘/’z and

t
Co = sup 410, <00.

re(0.1) Wa (1)
Then L‘//2~,T2 (Tm) - L‘//|~,Tl (Tm) and Hf”l//],‘[l < CH}C”{//Z,Q'

Therefore, the main goal of this article is to find the exact order

0,00
Eym (Blllyly,ﬂ:())%«fz

in various relations between the parameters p, 7y, 72, 0.
The article consists of three sections. In the Sect. 2, several statements are proved
necessary to prove the main results. In the Sect. 3, estimates for the value

EM(B(/’I‘TI -9)11/2,12'
In the Sect. 4, we establish estimates of EM(B%?.T].O)WZ.Tz . The main result of this

section is Theorems 4.1, 4.2.

For theorems, lemmas, formulas, double numbering is used. Further, a, =
max{a, 0} and the record A(y) < B(y) means that there are positive numbers C; C,
independent of y such that C;A(y) < B(y) < C,A(y). For brevity, in the case of the
inequalities B > C1A or B < C,A, we often write B > > A or B< <A, respectively.

For a function g defined on [0, 1], the notation g T (respectively g |) means that
the function g is non-decreasing (respectively non-increasing) by [0, 1].
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2 Auxiliary results

Theorem 2.1 (see [23]). Let 1<p<oo. Then for any function f € L,(T™) the
following relation holds

1= (o P),

Theorem 2.2 Let 1 <t <00 and give ®— function Y, 1 <ay, B, <2. Then for any
function f € Ly -(T™) the relation

oo = (e 00) ],

Proof Let f € Ly .(T"). We consider the operator P:
1
P(f,2nx) (Z |os(f, 27x)| )27 xelI™

P is known to be a sublinear operator. By Theorem 2.1, this operator acts boundedly
in the space L,(T"), 1 <p < oco. Therefore, by the Janson interpolation theorem [17],
this operator is bounded in the space Ly .(T") i.e. [|[P(f)|l, . < C2(p, 7)|If ||, . for any
function f € Ly .(T™).

The converse inequality follows from the duality principle. Let f € Ly .(T"),
g€L; (T"), 1<t<oo, 1+ % = 1. Here and in the sequel /(1) = t/y(r) for 1 €
(0, 1] and /(0) = 0. Then, due to the orthogonality of the functions o (f, 27x), we
have

/f(2nx) (2mx)dx Zas(f 27x%)0,(g, 2nx)dx.
4 =

Further, applying the Holder inequalities for the sum and the integral, we obtain
00 1 S 1
| [ remisemiad <|| (S lenf) ], | (3 lnP)
s=0 t s=0
o

for any function g € Ly /(T™"). Therefore, taking into account the well-known
relation (see [27])

23

IFlly = sup
[l i <1

/f 2nx)g 2nx)dx‘ (2.1)

and the boundedness of the operator P, we have
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o=

e < <[ (L 1007)

v
0

Lemma 2.1 Let ®— function Y satisfy the condition 1 <oy, B, <2 and 1<1<2.
Then for an arbitrary system of functions {(pj};’:1 C Ly .(T™) the inequality hold

n 1 n 1

2\2 T

[ tel) ], <c(Xlali) -
j=1 ’ j=1

where the constant C is independent of ¢; and n.

Proof 1t is known that (#*)" = (|f|”)* for the number 0 > 0. Therefore,

1
1 T

1| (o) / >ef)") v o]

7= 0

-/ ((ﬁ;w;ﬁf)"uwwof
o /=

Now, using Jensen’s inequality (see [24, Lemma 3.3.3]) and taking into account that
the function f* is non-increasing from (2.2), we obtain

1< O/IZW, w0 < /[/ Z%) du]wo

(2.3)
Applying the formula (see [21, p.89])
1
/f*(u)du = sup / If (x)|dx, (2.4)
J EC"jE=t )

where pE is the Lebesgue measure of the set E and the properties of the integral we
have

W Birkhiuser
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[ o) wai= / >l

ECI" uE=t

~ ap Z/|¢j(f)|fdf sup /Im,

ECI" uE=t =1 ECI" uE=t

_ 2_1:/0 (|¢j|f)*(u)du.

(2.5)
Now it follows from inequalities (2.3) and (2.5) that
i, . :
=/ [21 / (|<p,|f)*<u>du]wf(t>‘f
o L=t (2.6)

-1 /[/ (1) @]
10

j=

Al

Changing the order of integration, we have

/ [ (o) @i - / (1) @ [ oY @)
0 0

We will consider the function ¢(f) =t'/*. By the assumption of the lemma,
By <27 je. o, =2"" > B,. Therefore, by [22, Lemma 4] there exists a ®—
function g(r) such that ¢(r)/y/(r) < g(t) and o, > 1. Therefore, the [28, Lemma 3]
holds the estimate

1 1 . 1 . “(u
[wos= [T [ )T =t

Now, according to this estimate, from equality (2.7) we obtain

0/1[1/010‘”-/") (u )d”} d7 CO/I Iw, (u) ”)du. (2.8)

It follows from inequalities (2.6) and (2.8) that

& Birkhauser
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(|(Pj ) W(u) du

u

~
VAN
3
o\_

| /=1

1
(o00) ] (S ).

:1

\..

|
=
o\
-

O

Lemma 2.2 Let 2 <t<oo and give a @— function  and 1 <aoy, B, <212, Then for
an arbitrary system of functions {q)]} "y C Ly (T™) the inequality hold

n 1 n 1

22 2 2

[ 1e) ], <c(Xleili)
=1 : =1

where the constant C is independent of ¢; and n.

Proof By the property of nonincreasing rearrangment of the function, we have (see

(2.2))

1= (S er)

j=1

: | t n . /2 T
7 - / E /0 (Z|(pj|2) (u)du] n/ﬂ(z)% . (29
0 J=1

We will consider the function ¢(r) =t"/2, +€ (0,1] and ¢(0) = 0. By the
assumption of the lemma, f, <2!'/?i.e. o, = 22 > B, Therefore, by [22, Lemma
4] there exists a ¢— function g(¢) such that ¢(r)/y(r) < g(r) and oy > 1. Therefore,

V() = (%)rﬂ (l//(t)tl/2>r/2 _ (ﬁ)rﬂ <1p(t)tl/2)r/2,

The functions (¢) and ¢(t) = ¢'/> are concave, so their product is a concave
function. Therefore, Ly, ./»(T") is a generalized Lorentz space and, moreover,

7/2 > 1. Now, taking into account that ) decreasing on (0, 1] and applying the

triangle inequality, we obtain
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e . o2 !
LG won] vt
0 j=1

1

[ t, n i /2 :
%/0 (j_ZIIW) (u)du] (5)1/201/2%0)1/2%]
_1 t, . n N 1 /2 » 1
o L

2
1 T
n R T 5 dt
<C = ( » —du|  (Py(0) =
< Zi/LA”)“Qw”]( i)
=110
Since, by the assumption of the lemma, f3,, <2172 then

i, 20w (20

lim,_,
1m;—o tl/le(t)

Therefore, according to Hardy’s inequality in the generalized Lorentz space , we

have
.n [/1[%At(|¢]|2)*(u)ﬁdu]f/z(tl/%p(t))rﬂ%}
0

]T/zal/zlﬁ(t))f/z g:|

<C

S—_ _

(2.10)

1/2

= 21/2ﬂl// <2.

2y 1/2
T

t

=
1
o
\H
L —
—_
3
¥}
SN—
—
-~
SN—
oo
==
—

" l/ {(‘Pf(f))zﬁ} T/z(t”zt//(t))f/z%lr (2.11)
0

Kﬁmf%ﬁﬁ%”wm“gr

t

1/2 .
~c{Soii.}
Jj=1

Now, inequalities (2.9)—(2.11) imply the assertion of Lemma 2.2. O

Al

IN
)
=
=)
\’_
~
3,
—
-~
S—
~——
a
<
N
—~
~
SN~—
~e
| I
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Remark 2.1 These lemmas in the one-dimensional case in the Lorentz weighted
space were proved by Kokilashvili and Yildirir [20].

Lemma 2.3 Let Y a given @ be a function. If 1 <oy, f, <2V and 1<t<2 or
I<ay, By, <272 and 2 <t <00, then for any function f € Ly .(T™) the inequality
hold

o< < (2 I )15)

where t9 = min{t,2}.

Proof Let f € Ly .(T™). Then by Theorem 2.2 we have

e, < <I(S )

From this inequality, according to the Lemma 2.1 and the Lemma 2.2, we obtain

Héffﬁ)Hw,f <(Xlalnl.)". v e 212)

l//,‘E'

It is known that the Fourier series of the function f € L -(T™) converges to it in the
norm of the space Ly .(T™). Therefore, in inequality (2.12), passing to the limit for
n — 0o, we obtain the assertion of Lemma. O

Lemma 2.4 Let & - the function y satisfy the condition 1<ay,f, <22 and
2<t<oo. Then for an arbitrary system of functions {q)j}j';l C Ly(T™) the
inequality hold

(St ) < <[(S o)

v

Proof It is known that (f*)’ = (|f|")" for the number 0 > 0. Therefore,

1
1 1

H(Zn;%lz)%Hw = /((ikf)ﬂz)*)%(z‘)d/r(t)dtt ) (2.13)
J= ’ 0 j=

We consider the function ¢(¢) = ¢'/2, t € [0,1]. This function is increasing, con-
tinuous, concave, and o, = ﬁq, =212,

By the assumption of Lemma 2.4, 8, <22 je. Oy = 212 > By- Therefore, by
[22, Lemma 4] there exists a —function g(r) equivalent to the function ¢ /¢ and
% >1 (also see the proof of Lemma 2.2). Then (f) = %t'/z = g('—t>t'/2.
Therefore,

W Birkhiuser
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v = (52" (o)™ = ()" (vor)™

The functions (¢) and ¢(f) = ¢'/> are concave, so their product is a concave
function. Therefore, Ly, 2 is a generalized Lorentz space and, moreover, 7/2 > 1.
Take into account these considerations, we have

1

T

/(Zw, Yown?
= | [((G1or) Yoo () " (v )

1
>Co/ ZI(/), t)(ﬁ)r/z(w(t)tlﬂ)f/z%

1
T

(2.14)

al—

|

el oy o) ey

Now in the space LWA%(T’") applying Hardy’s inequality (see [27]) from (2.14) we
get

Al

1

[(Zrer) Yowos
o ) % (2.15)
> [ [+ Gy (3 tor) ] (wor)™

0

Now, taking into account that the function ﬁ decreasing from the inequalities
(2.13) and (2.15) we get
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n 1
|31y

I
t 3 T

0/ _/<% (ikﬂ, ) (!//(t)tl/z)z/z%

%/ Z: o) (ﬁ)%ﬂ(f)t'/z)f/z% (2.16)

v
)

=
Al

%
a
c\_

-z

%/ Do) | () (vn) 5

Al

vV
)
o\_

(ST
a

1

—cif / (Zm,) wau| yi() e

0

Further, using equality (2.5), Jensen’s inequality (since % <1) (see [24, Lemma
3.3.3]) from (2.16) we get

T

1
1 t 2 T

H(}Xj;l%lz)é Lz A_nl%/(|</’j|2)*(u)du v

o L’ 0

1 ' 3 :
"1 * dr
> - 2 T —
cf [So]) [ (o) ] v
0 0
1 i

ey /((Pf(t))%wf(t)? Zcé;“(p"”@ﬂ)a
0 =

O

Lemma 2.5 Let ®-the function  satisfy the condition 2'/? <oy, B, <2 and
1 <t <2. Then for the function f € Ly (T") the inequality hold

HgaMHWSC(g Jo.l;.) s neN.

Proof Let f € L, .(T"), g€ Lj (™), 1<t<o00, %+% = 1. Then, taking into
account the orthogonality of the function a,(f, X), we have

W Birkhiuser
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/Z /Zo X)o,(g, X)dx. (2.17)

Il)l s : m

Here and in the sequel /(1) = t/y(t) for ¢ € (0, 1] and ¥(0) = 0. Further, applying
the Holder inequalities for the sum and the integral, we obtain

[ S s < 3 lol ool

o 5=0 s=0
I (2.18)

< (X Iotollie) (2 It )’

for any function g € Ly » (T™). Now, taking into account the relation (2.1) from the
inequalities (2.17), (2.18) we have

a0, = (Clewli) (Siewi.) . @)

Since 2'/2<ozl/,,ﬁl/,<2 and 1<7<2, then f; <212 and 2 <1’ <o0. Therefore, by

applying Lemma 2.4, from the inequality (2.19) we obtain the assertion of
Lemma 2.5. 0

Lemma 2.6 Let the @ - function Y satisfy the condition 21/2<a¢,ﬁw <2 and
1 <1 <2. Then for the function f € Ly .(T™) the inequality hold

(1m0 <30

Proof To prove this lemma, we use the method applied by V.N. Temlyakov (see
[34, p.28-29] and [35, p.98]) . From the formulas (2.17), (2.1) we get

Hg"m‘w— sup /Z;O's(f,f)o'x(&f)df (2.20)

llell, <1
Consider the set

Gy () = {8 € Ly (T"): llos(@)llge S s € No

where %4—% = 1 and the number sequence {¢,} satisfies the condition

(32) <t

s=0

The set of such sequences {&} is denoted by /.

& Birkhauser
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Since 2!/2 <oy, By <2 and 1<t<2, then 1 <ocl/;,,Bl/;<21/2 and 2<1 <oo.
Therefore, according to Lemma 2.2, we have

IIgIIWS(ZHaS G ) Sc(i_oo:af)%gc

Therefore, from the inequality (2.20) we obtain

o
s=0

As in the article by V.N. Temlyakov (see [34, p.28-29] and [35, p.98]) we can prove
that

3

n

>C sup Y sup /as(f,f)as(g,f)df- (2.21)

54 {e,}edr s—0 gEG ( )I”’

sup /os(f,f)os(g,f)df: alos(F) . s EN.

geG(//‘( () i

Therefore, from the inequality (2.21) and taking into account the properties of the
norm in the space I, we obtain

1

|> 0], =€ su 3 slenlf) ||Wc{2|m ||W}-
5s=0 i

{“‘A}EAZ s=0

Theorem 2.3 Let @ - functions |, Y, be given such that

¥, (1)
0<t<1‘p2( )

1 <oy, = oy, gﬁ% = :sz <2V and 1<1,<2. If ;<7 and the function f €
Ly, -, (T™) satisfies the condition

<00,

1 -7

5] G T,

—y
§ (s+1)™"

then f € Ly, -,(T™) and the inequality hold

lozc(X] | (:Zfﬁg)’r"?“ﬂ o)

s=0 -
(2+1)

W Birkhiuser
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Proof Let the function f € Ly, . (T™") and the conditions of the theorem be
satisfied. Then using the inequality different for trigonometric polynomials (see [5,
Theorem 1]) we have

)

1 T
Yo (H)\7os de ] 0
CNEDS [(/) (S| e

—m

Therefore, taking into account that 1 <1, <2, by Lemma 2.3 we obtain the asser-
tions of the theorem. |

Definition 2.1 (see [29, 33]). We denote by SVL the set of all non-negative
functions on [0, 1] of y(z) for which (log 2/1)"Y(t) 1 +oo and (log 2/1) “Y(r) | 0
for ¢ | 0.

Here and below, the notation log x means the logarithm with base 2 of the number
x> 0.

Corollary 2.1 Let @ - functions Yy, \, satisfy the conditions of Theorem 2.3 and
i—f € SVL. If 1, <7y and the function f € Ly, . (T™) satisfies the condition

= N
> (e 6+

then f € Ly, .,(T™) and the inequality hold

Wl (3 () s et

s=0

|O-5(f)||.[|[/21,r| <0,

el )

Proof By condition, the function i—? €SVL. Let0<ty <y <lie.1/5y > 1/t > 0.
Consequently

(oe) 0 = (o2) 2

for the number & > 0. Put ; = [[(n; + 1)~" and £, = ¢. Then
j=1
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1

v 5
[ G

ﬁ(n,+l)
j=1
lﬁz(l:[l(”ﬂrl)*l) m
< | L toe2 [y + 1)
%(Hl(nﬂ' H™) j=1
=
2y
< lee)) TR
[T+

[y )

m

ﬁ(”/‘*’l)il l_[(n,»-%—l)’1

J=1 J=1

= —2{(10};2 1og2H

Therefore, for ¢ = 3 (- T—ll) from inequality (2.22) we obtain

—s
—
3
+
—_
~—
|

N>

1 1 i

<
Il
=

v = h
ARl by

s

—

3
+
—_

[Tew+1!

J=1

~.
Il

o

L)
R v}

log2 [J(m + 1)
j=1

&

1

T

(2.22)

<2 1og2H (nj + 1)),

Jj=1

Now, using this inequality and Theorem 2.3 we obtain the corollary.

Theorem 2.4 Let ®—functions \y,\, satisfy the conditions 1<y, <, <oy, <
By, <2 and 1<ty,12 <oo. If function f € Ly, ., (T") and

> (5=) Il <o

then f € Ly, .,(T™) and the inequality

Va2 v
|V”¢27T2<C{;<lﬁ?( )) Haf(f)“l//] n} :

(2.23)
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Proof Using the formula (2.4) and [3, Lemma 5], we can prove that

1 " —nm
;/ {ZW 2—sm) H% T +ZHG Hl/h Tl}’ AR R

0

Further, using this inequality due to the boundedness of the Hardy operator in the
generalized Lorentz space Ly, .,(T") we can verify that the statement of the the-
orem is true. [J

Corollary 2.2  Let the functions \,, s, satisfies the conditions of the Theorem 2.4. If
function f € Ly, -, (T") and

Wit

n=1

— m

) E ()5, <oc, (2.24)

then f € Ly, .,(T™).

Proof We consider the Fourier sum

Saa(f,27%) = > ()™, xe 1,
kEAy
where az(f) as usual denote the Fourier coefficients of the function f with respect to

the system {¢®2™)}_ Then, by the property of the norm and the best approximation
of the function, the following inequalities hold:

losy, - < IIf = SAzsl(fllwl,nHV St (Flly,

(2.25)
< CEZ“‘*‘ (f)llllﬂl S CZ HO'I(]C)H%J] :
I=s

Further, from the properties of the functions y,,/,, the best approximation of the
function, and [2, Lemma 2] it follows that

> () B0 << () e O
<< (P5) (e l,.)” 226)

<CY (15 Il

Now it follows from inequalities (2.25) and (2.26) that conditions (2.23) and (2.24)
are equivalent. Therefore, the assertion of Corollary 2.2 follows from Theorem 2.4.
O

—sm

m
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Remark 2.2 1In case Y, (1) = t'/7 4, (1) = /% for 1 <1 = p<15 = g Corollary 2.2
is proved in [12, Theorem 2.3], and for 1 <7 = p<g<oo and 0 <1, <00 in [1,
Theorem 1].

3 On orders of approximation of functions of Nikol’skii-Besov
classes

In this section, we prove estimates of the best approximations of a function from the
class By, _ .

Theorem 3.1 Let @ - the function \ satisfy the conditions 1<y, <f, <2 and
1<1<00, 0<O<cc. Then for the number r > 0 the relation hold

E, (B;,’T_VG)W =n"",neN.

Proof Letf € By, _, and a positive integer [ such that 2/~! <n<2'. Then by the
property of best approximation and norm we have

E"(f)[//,r SEZFI(fl//I—“f ZGS ||l//r<<Z||o-S(f ||l//1: (31)

s=0

If 1 <0 < o0, then applying the Holder s inequality (% + é = 1) from (3.1) we obtain
oo 1 oo 1
Sr 0 0 —ST "\ o
Ef)ye = (22" lohly) (D2 )
s=l s=[

—Ir o sr 0 %
<< (2ol )

s=0

If 0<0< 1, then applying Jensen’s inequality (see [24, Lemma 3.3.3]) from (3.1)
we obtain

= (S In0lh.) <2 (32 Il ).

s=l

Thus, E,(f), . < Cn™" for any function f € B}, ), 0<0<oc. The upper bound is

proved.
Let us prove the lower bound for E,(By, ), .. Let a natural number / be such

that 2! <n<?2!. We will consider the function

2—lm .
f0(27'cf) = zilVW Z e’<k’2”’?>, X e Im, nec N().
lp k7€A21+| \Az[

According to the estimate of the norm of the Dirichlet kernel in the generalized
Lorentz space, we have (see [3, p.67])

W Birkhiuser
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P>

kedys\ Ay

X 23771 2*5}’”
e lﬁ( )7 (32)
for I <t<oo, I<ay < ﬁw < 2. Therefore,

e8] 1
ST 0 4 r
(-2l o)l =2" ool

s=0

Zflm .
__nlra—Ir i(k,2mx)
=l Y e
kEAzl\Azl—l

< Cp.
2

Therefore, the function Fy = C;'fy € Bfwﬁ. Now, by the best approximation
property and relation (3.2), we have

En(Fo)y . > Ey(Fo)y . = Gy llos(fo)lly . > C27" > Cn ™"
Consequently E,(By, . ), . >Cn"",n € N. O

Remark 3.1 In the case y(f) =7 and t=p, 1<0<oc , Theorem 3.1 was
proved in [25, Theorem 1].

Theorem 3.2 Let @ - functions Y, \, satisfy the conditions of Theorem 2.3 and
:/;—T € SVL, 0<< 0. If 1 <15 <1 <00, r > 0, then the relation hold

E"( r'//wfl«,@)l//zvfz =n lng;n; ( (n * 1))%_%”1 €N. (3'3)

Proof Let f €B o If T, <0, then put q:% > 1,611—|—ql= 1. Applying the

Hoélder’s inequality, we obtain

VTN o
(XZQ(lp?(zfs)) (s+ 1) lm(f)ll,m) B
00 Sr 5/ . ‘// (27‘?) g ol Q# .
g(gz o)1, (;2 (B g et
Since the function i—f € SVL, then
lpZ( 7s) < lrb (1) (logZ) (10g2s+1)£ (35)

¥i(27%) 7 (1)
fore >0, s =0,1,2,.... Therefore,
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/

i 5-sred ('/’2(2%))”" (5 4+ 1)=&

s=0 llll(z_x)
lpz(l) TZ’iI 0 / (+1 1) ! (36)
—SrT) & YL T2q
S(W1(1)> ;2 “(s+1) <o0.

Therefore, it follows from (3.4) that the series

S () 6+ 0 el

s=0

converges for any function f € B), _ , for 7, <0. Therefore, according to Corol-
lary 2.1, the inclusion B’l//l_ﬂﬁ C LWTZ(T’”) for 7, <0. If 0<rt,, then applying
Jensen’s inequality (see [24, Lemma 3.3.3]) and taking into account (3.5) we obtain

S e )

[\

s=0
= (2 s é
(§<wf ) + 1" Do), . )
< kglg (log 2)*3 (; 2sr0||O-S(f)||3/]71—1275r0(S + 1)<€+z]7_;)0)
_ ()

< B (2 Il )

Therefore, it follows from 3.4 that

S (L) 4 )l <
s=0 !

Therefore, again according to Corollary 2.1, we can state that

By 0 C Ly, (T")

for 0 <1,.
Now we prove relation (3.3). Let us prove an upper bound for the quantity
E,( rr/mrlﬁ)%,rz' Let a natural number / be such that 2/~! <n<2'. For the function

f €By, . ¢ by Corollary 2.1 we have

-1
En(f)yye, S Eai(fy, o, <IIf = Z:) s (Fllyyer
= (3.7)

<< (LG 0 P15

If 1y <6 < oo, then put g = £ > 1

,é—k 1 = 1. Applying the Holder’s inequality and

W Birkhiuser
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taking into account the condition i—f € SVL (see the proof of (3.6) from (3.7) we

obtain

- ) 275\ T2 o , #
En(f)y,m < (; 9—srug (iTEZY;) q (54 1) (- z,)q> L
l//2(271) (log 21+l)7£

- sr 0 ‘l’
x (;z s, ﬂ) << "

00 1
(Sl ) R (el ) 69
§=

1
Yo (27 )(10g21+1) Ir(lJrl o (Zzsr()”(ﬂ(f ||‘/’l 11)

<<

¥i(279)
lp2(271) —lr P ST %
= U (2 )

for any function f € B’l/,]_rl_o in the case of 7, <0 <oo.
If 0 = co, then from inequalities (3.5) and (3.7) we obtain

Ey(f)y, ., << Sup 2"\los(N)lly, -, (Z (5?82;)72 (s + 1)T2(%_%))6
s=I

Wz( ) —Ir o
pen (Y

for any function f € B/, 100"
If 0 <1, then applying Jensen’s inequality (see [24, Lemma 3.3.3]) and taking

<<

into account the condition '/’ 52 = SVL from (3.7) we get

By = (L (5 4 0Nl )
s=I
l//2(271)( 21+1 (ZzerHUY(f Hlj/ 112 er( 1)( 23 T‘])())n

= e

%Tl;(logz”‘) (4 1) (Zz”e”‘ff(f ”w')%

l// (2 l) 2*7’ rl T E ST 1
l//T(— 271) l(l+1)(2 ])<s 02 0” Y(f)”wl Tl)

for any function f € B’l/,l .0 in the case of 0 <1,. Now it follows from inequalities

(3.8) and (3.9) that
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n~"(log(n + 1))%_%

En(Brljzl,rl,(?)x//z,rg < ‘//1 (nfl)

The upper bound is proved.
Let us prove the lower bound for the quantity E, (BI/,l 00 )%JZ. Let a natural

number [ be such that 27! <n<?2!. We will consider the function

m oI+ _q

L 197y, COoS (2nk1x1)
2nx) =27 (14 1) | | %2 ,
fil2ns) = 11 Z (ki =2+ )0, (1/ (b — 27+ 1))

for x € I, [ € Ny.
Since | T1, e??™| = 1, x; € [0,1], j =2, .., m, then
2= cos (27kyx;)

2 (kr =20+ Dy (1/(ky — 2"+ 1))"

K =2!

Ifi(2n5)| =27 (1 4+ 1)

Therefore, non-increasing rearrangement of these functions are equal. Hence,

I, = 5
1 Vi - 2lr

By the norm property and taking into account the boundedness of the conjugate
function operator in the space Ly, -, (T") we have

2! cos (2mkyx1)

‘k,z/ (ky — 204+ D), (1/ (ky — 2! + 1))Hw.,n'

(3.10)

2= cos (2mkyx; )

H k;, (ki — 20+ Dy, (1 (ks — 21 + 1))H¢1_T1

2 cos ((v+2!—1)2mx;)
B ‘; VJlrpl(l/V) le,fl

B ‘ 2 cos (v2mxy) : sin (v27mxy) .

cos ((2! — 1)2mx;) 722: in ((2' - 1)27”1)H

&) 2w () b
< 2_sin (2mxy) . ;
<| VZT(W) sin (2 — 1)2nxl)HWI
HZ“JZ oh I HZCL’J aon
(3.11)

In the article [6] it was proved that
HZCOS (v2mxy)
v (1/v)

Therefore, from the estimate (3.11) it follows that

< C(log(2' + 1))V,

281
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2+l_q

cos (27kyx;) .
<cr/m, 3.12
H kz;’ k] -2l 4 1 lﬁl(l/(kl -2l 4+ 1))H1//],rl - ( )

Therefore, from equality (3.10) we obtain Hfl Hw <C27' 1=1,2,... Then
1571

(ZZWOHUc(fl ||w1 n) — li+D)r ||az+1(f1)”¢,] o 2(l+1)r|[fl||n//. o <Ci.

Therefore, the function F| = Cl’lfl S B;],n,w In the article [6] it was proved that
HZCOS (v2mxy)
v (1/v)
12

on condition 7€ SVL. Using this inequality, we can verify that

¥,(27) NS
%12 = Clﬂ1(24) (log 27

21 _q

cos (27kyx; ) (27 /o2
H s Ty ey B o L

(3.13)

Now, by the property of the best approximation of the function and inequality
(3.13), we obtain

E”(Fl)ljlz,rz ZE2[(F1)¢2,12 = ||F1||1p2,1:2 = C171Hf1||1/,2‘12
=27"(1 + 1)‘%’ N~ cos (2mkyx;)
o =204 Dy (1 (ke =2+ 1) lyo o
V(27 () o
>c2" Moot > o r P2 (10g(n 4 1))/
¥ (27 Yy (1)
Hence,
Yo(n™")

y =)
En(B¢1111,9)¢2,12 Z C[pl(nfl) (log(n —|— 1)) 1

O

4 Estimates of the best approximations of logarithmic smoothness
functions in a generalized Lorentz space

In this section, we prove estimates of the best approximations of functions from the
0,0
class B, o

Theorem 4.1 Let @ - functions Y, \, satisfy the conditions of Theorem 2.3 and
%E SVL, 0<0<o0. If 1<, <2, 10<11 <00 and o > (:—2—#) + (;—2—%)+ then
the relation hold
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Yo (1/n)

E,(B)” << 1 1) DG e N
( 1/11,1-1,0)1#2,1:2 l//l(l/n) ( Og(l’l + )) b 2 ynelN,

where a; = min{0,a}. In the case of 0 <1y, this estimate is sharp in order.
In case 1<1,<0<o0, if 21/2<oc,/,2,[5¢2 <2and 1<ty §20r1<oc,/,2,ﬁ¢2 <
212 and 2 <Tp <00, then

1 T N A
En(B(l/);l“n G)l//z o> = IZZE];YL; (log(n + 1)) Gt ,n €N,

where y = max{2,1,}.

+4 = 1) applying the Hélder’s

Proof LethBl// e If 1, <0, thenforq:%,é .

inequality we get

(ZS T ('//2 iz;) os(f) ;zml)i

< (Z(s +1)"

s=I

- (io: (g?gji)fzq (s+ 1)7(“*(5*;))T2q )L

s=I

aq(f)le ) (4.1)

Since the function i—? € SVL, then

V2] < ) g2 og (42

fore >0,s=101+1,l+2,.... Therefore,

N (Yo 27\ e s —(a—(E—H)) g
2 () 6+
(

< (lfzéﬁﬁ) o Z 1) O (g gy
1

for 1=0,1,2, ...
Since 72 <0 , then o > (& — ) + ( — ¢). Therefore, you can choose a number ¢
such that 0<e <o+ (- — 1) — (I — ). Then the series

S !
Z(SJrl) (2= (—)md (s + 1)

s=1

converges and
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(Z(s +1) 6 ed (s+ 1)”2‘1,)?/
= (4.4)

<<+ 1) T,

Now it follows from inequalities (4.3) and (4.4) that

(S5 "o )

s=I
¥.(27") CTE N S 4.5
<<¢1(2 )(1+1) +1)” (4.5)
Yy (27 ) %+%——)+g—5
=Cpan Y

for [ =0,1,2,.... From inequalities (4.1) and (4.5) we obtain

(S 05 (25) T l])"

s=l

< <(2(s+ 1" Us(f)Hj’wf')”llZ?EZ 1; (I+1) ()L

in the case of 1, <0< oo, for [ =0,1,2,....
If 0 = oo, then

(s () I

as(f)

()

1
T2 )5
Y

(st (25 ) swpto e 7]
<<l swplo 1 )],

for any function f € Bgil o
If 0 <15, then applying Jensen’s inequality (see [24, Lemma 3.3.3]) we have

(Si (250) G+
: @@fii‘?if@ﬂﬁ-*w\omuz,,f,)b -
(N TN ke
_(2 H (2 )(+1) )

1283 l// (275)
Since o4 — 1 >0 and 5—: € SVL, then using inequality (4.2) for & = o+ — 1
from the formula (4.7) we get
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o0 — 1
279\ ™2 11 2\
(25 e )’
s=1 lrbl (273) 2%

S@‘ D y<f>\\w)l'%ga+1> -

in the case 0 <1, for [ =0,1,2,....
In particular, for / = 0 it follows from estimates (4.6), (4.8) that

> () e

s=0

O'Y(f)

<0
Vi

for any function f € Bz’“r - Therefore, according to Corollary 2.1, the inclusion
0,
B," 5 C Ly, (T") is true.
Now we estimate the value E"(Bgfnﬁ)wz‘rz' Let a natural number / be such that

2!=1 <n<?2'. Using the properties of the best approximation function and Corol-
lary 2.1, we have

E"(f)llfz T < Ey- l(f Uyt = ‘V Zas H%m

<(S(5) e elee]) )"

s=l

Further, using inequalities (4.6), (4.8) and the properties of the functions ¥/, {,, we
obtain

¥ (27) (=) +E—)
En <C [ T o 0+
(f)lh,rz — lpl(Z’l) ( + ) b 2

x (i(s 1)

s=0

1_1

0 1 -1
a(f) Hw )0 =C %(Z, ) (log(n + 1))~ =+ G-
151

for any function f € B(l/)/‘f_n_e. Thus,

0.2 ¥,(1/n) (a-D+E-h),
E"(Bwl,nﬁ)l//zﬂz<<¢1(1/ )(log(n+ )~ e

This proves the upper bound.
Now we prove the lower bounds. We will consider the function

m M1 _q
- cos (anlxl)
2nx | | 225 E
fZ( ) = ~ kl T (1/(k1 — 2+ 1))

for x € I", 1 € No. By continuity, the function f; € Ly, -, (T™). Using estimate
(3.12) we have
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e, =[], <<+ 0™
Vi 283

as(fz)Hl// = 0. Therefore,

171

Ifs;él—&-l,then‘

o) 0 1
e+ e, ) =2 |onm] <o
s=0 84 /341

Therefore, the function F, = C;5 'f, € B(J,,“ 1,0

Further, taking into account the definition of the best approximation and using
inequality (3.12), we have
2~! gL

T1on

> >

2% Y (270

‘//2( D) n (a+—2)
> ) ol 1))

in the case 0 < 1,. Hence,

@@WMZQWWMZWSM

o o) )
En(Blllz,‘tz,())llll,rl 2 C‘//l (l’lil) (10g(n -+ l)) 1

in the case 0 < 1,.
Let 75 <0< o00. We will consider the function

2n m
f3(27'[.f) :(n + 1)7% Z (S + 1)7(“+%> ]i[eiZTUCjZS’1
s=n+l j=2
- cos k; 2mx;

(k= 2571+ 1)‘#1(;{1,?%1“)

where x € I, n € Ny. Then

“%ww —(n+ 1) (s + 1))
1:T1

2 —1
cos ki 2mx;

i27mx; 287! H
”H zv N (m) ¥

2'—1

‘ Z cos ki 2mx; H
(k=271 + I)Wl(m) Vi

=m+n#@+n*“$

=(n+1) (s + 1)
(4.9)

for 1<p,71 <00, s € No. By continuity, the function f3 € Ly ., (T™) and using
relations (3.12) and (4.9) we obtain

& Birkhauser



Estimates of the best approximations of the functions... Page 29 of 36 15

1
O's(fS)Hl/I ))S Cs.
1,71

0 \} 2n
@), ) = (3
1>t s

=n+1

00
(S
s=0

Hence, the function F3 = Cy f3 GBW .0
approximation of the function, we have

Further, by definition of the best

_ _1
Ex(F3)y, ., =C; 1|lf3|\¢2 n=(+1)7

H Z (s+1 (ot zji cos ky2mx,
s=n+1 k=251 (kl -2l 4 1)¢1(T+1) WZJZ.
(4.10)
If 212 <oy, By <2 and 1<t <2, then using Lemma 2.6 we get
1l = (Z o)1) = Clnt 1)t
s=n+1
2n —1 1
cos k1 27mx; 2 2
X ( (s+1) (ot H )
s:nZJrl ki 2v 1 (kl — 2571 4 l)l// (m) 72952
2 3
AN (a2 (Y2(1/2Y) /o) 2
>C(n+1)7 s+ 1)70% (2 log 2° 2) :
(n+1) S:Zn;( ) v/ )( )
Further, taking into account that i—? € SVL we get
1/2" w4l 1
|V3||¢2,12 > CM(H + 1) ( +T11 rz)+2 0 (4'11)

i (1/27)
Now, from equality (4.10) and inequality (4.11) it follows that
¥, (1/2") (-4
Exn(F3), ., >2C——"—<(n+1 EEREE
a2y aam D
in the case 2'/2 <ay,, B, <2 and 1<, <2.

If 1<ay,, By, <2'/2 and 2 <1, <00, then using Lemma 2.4 and after similar
reasoning we get

¥y (1/2") (g Ay
Er(F3)yun 2 C gy (no+ 1) I

Hence,

o Yo (1/1 att—L)lL
E(B)” . o)y, >C x//TE 1?1; (log( + 1)) =)+,

in the case 21/2<0ﬁ//z,ﬁ¢,2 <2 and 1<1, <2 and
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1/1) — B NS Y B §
E BO,oc > C‘//z( 1 I1+1 (oA=—) =3
I( ‘//|7TI~9)1//2-,T2 — l//l(l/l) ( Og( + )) 1 2

12 and 2 <15 <00, 6< 0.

If 6 = oo, then we will consider the function

in the case 1<ay,, B, <2

f4(27[f)
= N (s + 1)*(9”%) ﬁeizmzﬁ — cos k1 2mx;
=1 =2 WS (k=271 DY ()

where x € I"". Then taking into account (3.12) we get

sup (s + ])1||O-S(ﬁ)“¢1,71 <Cy.

s€Np

Hence, the function Fy = C;'f; € BY~

Yy,11,00°

If 1<oy,, By, <22 and 2 <1, <00, then using Lemma 2.4 and in the case
212 <qy, B, <2 and 1<1, <2, using Lemma 2.6 we get

2n 1
y 7 Yo (1/2 (gl L)4L
Ex(Fy > > (0 10l > > G e ) 0ot
s=n+1

where y = max{t,,2}. Hence,

EiBy o)y > > Z?g;g (log(l + 1)) )+

in the case 0 = oco. t

Theorem 4.2 Let 1<oy < B, <2 and 1<t<2 or 1<oy < B, <2'?, 2<1<00,
1<0<00, 19 = min{t,2}. If o0 > (T‘—U—é)Jr, then

Ey (BO’“

0% )ye = (log(M + 1)) G0,

where a, = max{a,0}.

Proof Let f € Bg’iﬁ and a positive integer n such that 2"~! <M <2". It follows
from Lemma 2.1 and Lemma 2.4 that

Il < (X lerl)™ (@.12)
s=0

Now applying this inequality to the function f — 3" o,(f) € Ly (T™) we will have
s=0
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En(F)y SEx(f)y I - Zm iy < (an B)* @)

If 0 < 19, then applying Jensen’s inequality (see [24, Lemma 3.3.3]) from (4.13) we
obtain

Eu(f),, <<(Z||os i)' < <(n 1) < (log(M + 1))

for any function f € B(xz)/’j—.e in the case 0 < ty. Hence,

En(B” ), < <(log(M + 1)),

in the case 0 <1y.
Let 79 <0. Then applying the Holder’s inequality (B =2 > 1,1 s ', =1) and

taking into account the inequality o > -- — 3 L from (4.13) we have
o0 1 00 , ;/
En(f)yo<< (D s+ l)“0||as(f)||3w)0(2(s 1) )

<(n+ 1) < (log(M + 1)) ",
Therefore,
Ew(BY* ), . < <(log(M + 1)1,

in the case 19 <0.
If 6 = o, then taking into account the inequality o > % from (4.13) we have

o0

1
En(F)y< < (D (s 1) 000) " sup(s + 17 llas(£)]l.
s=n s€No
< <(n+1) "0 sup(s + 1)*|os(F)lly.. < < (log(M + 1)) "%,

s€Ng

This proves the upper bound.
Let us prove the lower bounds. Let 7o <0. We will consider the function

2n _
1 2—sm .
IR SR = B DR
s=n+1 lp( ) EEAzX\Az,P]

for x € I'"", n € Ny.
By the estimate of the norm of the Dirichlet kernel in the generalized Lorentz
space (3.2), we have
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{f:<s+1>“"||os<fs>||3,‘f}={fj( ) eI }

s=0 s=n-+1
. 2n %
<<+ 1)”{ > 1} <Cs.
s=n+1

Thus, the function F5 = C5'fs € BS::’H for 1 <p,t<o00, 1<0<o00.

Let 1 <oy <, <2, 1<1<2,ie. 19 = 7. We select the number g > (log, ow,)f1
ie 211< oy Then, using Theorem 2.3 and the method of proving Lemma 2.6, we
can prove that

- :
{Z(zm ) le)l; } <Clflly.e (4.14)
s=0
for f € Ly (T™), 1<t<o00.

Now we apply this inequality to the function F5 = C5'fs € Bl/, 0" Then, given

the estimate of the norm of the Dirichlet kernel (see relation (3.2)), we obtain

1

Ey (Fs) . =C5 ' |fslly.. > > { Z @527 o ()l }

s=n+1
2 1
> > (n+1)%{ 3 (s+1)°”} >C(n+ 1)1,
s=n+1

Thus, Exi(Fs), . > > (n+1)" 70 for I <oy < By, <2, 1 <t<oo. Hence,

PV B §
(Bgiﬁ)w > Ep(Fs)y . > Ex(Fs)y . > > (n+1)""7

for 1 <ay <, <2, 1 <t<oo. This inequality shows the exactness of the estimate
in Theorem 4.2 for 1 <t <2, 19 = min{7,2} <0, 1 <oy < f, <2.
If 60 = oo, then we will consider the function

o0 Zfsm

fs@mx) = (s+ 1) SR Yook gerr
s=1 lp( )1‘764‘2A \A% 1

for 1 <oy §ﬁ¢<2, 1<t<2.
Using relation (3.2) and inequality (4.12), it is easy to verify that fs € Ly .(T")
and
sup (s + 1)*[|os(fo)[l.. < Co.

s€Ny

Hence, the function Fg = Cg e € B

P,T,00°

Further, using inequality (4.14), we can verify that
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1

o0

Ey(Fg)y. =Cg ' felly - > > { Y @) o)l }
s=n+1

2n T
> > (n+ 1)71’{ Z (s+ 1)”} > > (n4 1),

s=n+1

Hence,
BY* >Ey(F > Exn(F logM ey
( 1,//1:6)1//,1 = M( 6)1//.1 = 2”( 6)x//,z > > ( og )

for 1 <oy §ﬁl/,<2, 1<t<2.
Now we prove lower bounds for f3,, <212 2<7<00 and 2 = 1< 0. We will
consider the function

2n m
AR =+ 1703 (s+ 1) "2 # [ R,
s=n+1 j=1
21
where Ri(x;)) = > &e™*®™ is the Rudin-Shapiro polynomial and & = =+1. It is
f=25—1

known that ||R,|| < <22 (see [19, p. 146]). Therefore,

m

H s(0)ly <

j=1

—m

o (f)lly.. =(n+ 1) (s +1)"
<(n+1) 7 (s+1)" *%H IR, ()| < (n+ 1) o (s + 1)7%

Hence,

o0 % 2n %
o6 0 o6 0
{Z(S+ 1) IIGs(f7)||¢,,T} = { o (s+1) |O-S(f7)||w.r} <G
s=0 s=n+1

i.e. the function F; = C;'f; € BWH Since f, <22, 2<1<o0, then Ly .(T™) C
Ly(T™) and [[f|, <C|fll, ., for f € Ly -(T™). Therefore, according to Parseval’s
equality, we obtain

Ex(F1)y. = C7 ' filly. > > IIfill

1

2 (4.15)

> > (n+ 1)‘1’{ > s+ 1)2“} >C(n+ 1)1

s=n+1

for B, < 21/2 Hence,
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0, il
(Bl[/o::(?)l//‘r>EM(F7)ﬁ >E2n(F7) >C(I’l+1) ]
in the case f,, <212 2<1<00 and 2 = 19 < 6.

Now we prove the lower bound for 6 <1;. We will consider the function

—nm .
f@m) =+ )7 g ) e xel el
kEA2n+| \Azn
Then, taking into account relation (3.2), we have

1

{Z<s+1)“f’||as<fg>|$,f}=%H S e

k_€A2n+l \AZ”

< Cs.
/%3

Therefore, the function Fg = Cg I € B%* . Now using relation (3.2) will have

p,7,0°
Ex(Fg),. = IG5 'Klly. > > (n+1)""
Hence,
(Bgio)wf >EM(F3) . >E2»1(Fg)w’1_ >>(n+1)"

in the case 0 < Ty, for 1 <ay §[3¢ <2 l<t<oo0.
If 0 = oo, then we will consider the function

o0 Z*Sm

h@mn) =3 (s+ D)oo Y e,
s=1 l//( )k_EAw\Azs 1

for x € I".

By the property of the Rudin-Shapiro polynomial, we obtain supcy, (s +
1)*(los(fo)ll,. <Co. Hence, the function Fy = Cy'fy € BY*
proof of (4.15), one can verify that

Ex(Fo)y. =Co'Ifolly. > > Ifoll;

> > { i (s + 1)2‘"‘}7 > > (n+ 1)

s=n+1

Further, as in the

V,T,00°

Hence,
Ey(By% )y, > > (n+ 1) > > (logM)
for ﬁw<21/2,2§r<oo. O

Remark 4.1 1In the case () =t'/? and 1<7 =p<oo, 1 <0< min{2,p} from
Theorem 4.2 we obtain [30, Theorem, item (i)]. For the function y(¢) = /7 and
l1<t,p<oo, 1 <O <oo Theorem 4.2 is proved in [4, Theorem 2.1].
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In the case /() = Y, (t) = ¢'/7, ¢t € [0, 1], 1 <p < oo Theorem 4.1 was proved in
[4, Theorem 3.4].

Remark 4.2 1In the case, 1<y, §ﬁ¢2<oc¢,] Sﬁl/,l <2 and 1<7,73 <00 using

Theorem 2.4, we can study the estimate of the quantity EM(B(/,I,;],@) In

297N
particular, for W, (¢) = t'/7, y,(t) =19 and 1, =p, 1, =¢q, 1<p,qg<oo this
problem was investigated by A. S. Romanyuk [25, Theorem 1].

Remark 4.3 We note that the results of this paper can be applied to estimate the best

M— term approximations, trigonometric widths, linear widths of classes By, . , and

B%larl o in the Lorentz space Ly, .,(T™) (see special cases for example in [3]).

Remark 4.4 Let 1 <1, <71 <00, 1 <0, = ﬁ% <2 and

1 T
P\ dt
/ (%( )) s,
0 \Y(1) t
then Ly . (T") C Ly,.,(T™") (see [29, p. 916]). Therefore, we can consider an
analogue of Theorem 2.2, Theorem 3.2, Theorem 4.1, and Theorem 4.2 in this case.
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