1 Introduction

A nonnegative function w on the complex plane \(\mathbb {C}\) is said to be a weight if it is locally integrable on \(\mathbb {C}\). For \(0<p,\alpha <\infty\) and a weight w, the weighted space \(L^p_{\alpha ,w}\) consists of measurable functions f on \(\mathbb {C}\), such that

$$\begin{aligned} \Vert f\Vert ^p_{L^p_{\alpha ,w}}:=\int _{\mathbb {C}}|f(z)|^pe^{-\frac{p\alpha }{2}|z|^2}w(z)\textrm{d}A(z)<\infty , \end{aligned}$$

where \(\textrm{d}A\) is the Lebesgue measure on \(\mathbb {C}\). Let \(\mathcal {H}(\mathbb {C})\) be the space of entire functions on \(\mathbb {C}\). Then, the weighted Fock space \(F^p_{\alpha ,w}\) is defined by

$$\begin{aligned} F^p_{\alpha ,w}:=L^p_{\alpha ,w}\cap \mathcal {H}(\mathbb {C}) \end{aligned}$$

with inherited (quasi-)norm. If \(w\equiv 1\), then we obtain the classical Fock spaces \(F^p_{\alpha }\) [21].

We now introduce the class of weights to work on. We always use Q to denote a square in \(\mathbb {C}\) with sides parallel to the coordinate axes, and write l(Q) for its side length. As usual, \(p'\) denotes the conjugate exponent of p, i.e., \(1/p+1/p'=1\), for \(1\le p\le \infty\). Given \(1<p<\infty\), we say a weight w belongs to the class \(A^{\textrm{restricted}}_p\) if \(w(z)>0\) a.e. on \(\mathbb {C}\) and for some fixed \(r>0\)

$$\begin{aligned} \mathcal {C}_{p,r}(w):=\sup _{Q,l(Q)=r}\left( \frac{1}{A(Q)}\int _{Q}w\textrm{d}A\right) \left( \frac{1}{A(Q)}\int _{Q}w^{-p'/p}\textrm{d}A\right) ^{p/p'}<\infty . \end{aligned}$$
(1.1)

The class \(A^{\textrm{restricted}}_p\) was introduced by Isralowitz [11], and it was shown that the condition (1.1) is independent of the choice of r: if \(\mathcal {C}_{p,r_0}(w)<\infty\) for some \(r_0>0\), then \(\mathcal {C}_{p,r}(w)<\infty\) for any \(r>0\). Isralowitz [11, Theorem 3.1] proved that for \(p>1\), the classical Fock projection \(P_{\alpha }\) defined by

$$\begin{aligned} P_{\alpha }(f)(z):=\frac{\alpha }{\pi }\int _{\mathbb {C}}f(u)e^{\alpha \bar{u}z}e^{-\alpha |u|^2}\textrm{d}A(u) \end{aligned}$$

is bounded on \(L^p_{\alpha ,w}\) if and only if \(w\in A^{\textrm{restricted}}_p\). Later on, Cascante, Fàbrega and Peláez [3] introduced the class \(A^{\textrm{restricted}}_1\), consisting of weights w, such that \(w(z)>0\) a.e. on \(\mathbb {C}\) and for some fixed \(r>0\)

$$\begin{aligned} \mathcal {C}_{1,r}(w):=\sup _{Q,l(Q)=r}\frac{\int _Qw\textrm{d}A}{A(Q)\textrm{ess}\inf _{u\in Q}w(u)}<\infty , \end{aligned}$$

and generalized Isralowitz’s result to the case \(p=1\). Similarly to the Muckenhoupt weights, we denote

$$\begin{aligned} A^{\textrm{restricted}}_{\infty }:=\bigcup _{1\le p<\infty }A^{\textrm{restricted}}_p. \end{aligned}$$

Cascante, Fàbrega, and Peláez [3] established some Littlewood–Paley-type formulas for the weighted Fock spaces \(F^p_{\alpha ,w}\) with \(w\in A^{\textrm{restricted}}_{\infty }\), and characterized the boundedness of embedding derivatives from \(F^p_{\alpha ,w}\) to the Lebesgue spaces \(L^q(\mathbb {C},\mu )\).

In this paper, we are interested in the composition operators acting on the weighted Fock spaces \(F^p_{\alpha ,w}\) with \(w\in A^{\textrm{restricted}}_{\infty }\). Given \(\varphi \in \mathcal {H}(\mathbb {C})\), the induced composition operator \(C_{\varphi }\) is defined by \(C_{\varphi }f=f\circ \varphi\), \(f\in \mathcal {H}(\mathbb {C})\). The properties of composition operators acting on weighted Fock spaces have been attracting many attentions (see, for instance, [2, 4, 6, 10, 17, 18, 20]).

We first concentrate on boundedness and compactness. The results are expressed in terms of the following Berezin type integral transform:

$$\begin{aligned} B_{\alpha }^{\beta ,q,v}(\varphi )(u):=\int _{\mathbb {C}}e^{q\alpha \Re (\bar{u}\varphi (z))- \frac{q\alpha }{2}|u|^2-\frac{q\beta }{2}|z|^2}v(z)\textrm{d}A(z),\quad u\in \mathbb {C}, \end{aligned}$$

where \(0<q,\alpha ,\beta <\infty\) and v is a weight. We use D(ur) to denote the Euclidean disk of center u and radius \(r>0\), and write \(v(E)=\int _Ev\textrm{d}A\) for Borel sets \(E\subset \mathbb {C}\). The boundedness and compactness of composition operators are characterized as follows.

Theorem 1.1

Suppose that \(0<p\le q<\infty\), \(\alpha ,\beta >0\), \(w\in A^{\textrm{restricted}}_{\infty }\), and v is a weight. Let \(\varphi \in \mathcal {H}(\mathbb {C})\). Then, the following assertions hold.

  1. (1)

    \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is bounded if and only if the function

    $$\begin{aligned} G(u):=\frac{B_{\alpha }^{\beta ,q,v}(\varphi )(u)}{w(D(u,1))^{q/p}} \end{aligned}$$

    is bounded on \(\mathbb {C}\). Moreover

    $$\begin{aligned} \Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}\asymp \sup _{u\in \mathbb {C}}G(u). \end{aligned}$$
  2. (2)

    \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is compact if and only if \(\lim _{|u|\rightarrow \infty }G(u)=0\).

Theorem 1.2

Suppose that \(0<q<p<\infty\), \(\alpha ,\beta >0\), \(w\in A^{\textrm{restricted}}_{\infty }\), and v is a weight. Let \(\varphi \in \mathcal {H}(\mathbb {C})\). Then, the following conditions are equivalent.

  1. (a)

    \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is bounded.

  2. (b)

    \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is compact.

  3. (c)

    The function

    $$\begin{aligned} H(u):=\frac{B_{\alpha }^{\beta ,q,v}(\varphi )(u)}{w(D(u,1))} \end{aligned}$$

    belongs to \(L^{\frac{p}{p-q}}(\mathbb {C},w)\).

Moreover, if one of these conditions holds, then

$$\begin{aligned} \Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}\asymp \Vert H\Vert _{L^{\frac{p}{p-q}}(\mathbb {C},w)}. \end{aligned}$$

These two theorems are proved in Sect. 2. The proof of Theorem 1.1 is mainly based on some pointwise estimates of functions in \(F^p_{\alpha ,w}\) and some estimates on the weight w. To prove Theorem 1.2, a new characterization on the positive Borel measures \(\mu\), such that the embedding operator \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) is bounded in the case \(p>q\) is established (see Theorem 2.4).

After the boundedness and compactness are settled, we intend to study the behavior of approximation numbers of composition operators. Let \(T:X\rightarrow Y\) be a bounded linear operator between Banach spaces X and Y. For \(n\ge 1\), the nth approximation number \(a_n(T)\) of T is defined by

$$\begin{aligned} a_n(T):=\inf _{\textrm{rank}\ R<n}\Vert T-R\Vert _{X\rightarrow Y}. \end{aligned}$$

It is clear that \(a_1(T)=\Vert T\Vert _{X\rightarrow Y}\) and \(\{a_n(T)\}\) is a non-increasing sequence, and in the case that Y has the approximation property, \(T:X\rightarrow Y\) is compact if and only if \(a_n(T)\rightarrow 0\).

Recently, the investigation of approximation numbers of composition operators on various spaces of holomorphic functions has drawn many attentions (see [8, 12,13,14,15,16]). In particular, Doan et al. [8] established some estimates for the approximation numbers of composition operators acting on the Hilbertian Fock spaces \(F^2_{\alpha }\). Given \(m\in \mathbb {R}\), we now consider the approximation numbers of composition operators acting on \(F^p_{\alpha ,m}:=F^p_{\alpha ,w_{mp}}\), where \(w_{mp}(z):=(1+|z|)^{mp}\). Note that the weighted Fock spaces \(F^p_{\alpha ,m}\) are actually the Fock–Sobolev spaces that were studied in [5, 7]. By [3, Lemma 2.1], \(w_{mp}\in A^{\textrm{restricted}}_{\infty }\) for any \(m\in \mathbb {R}\). As an application of Theorem 1.1, the boundedness and compactness of composition operators acting on \(F^p_{\alpha ,m}\) can be characterized as follows (see also [6, 17]).

Corollary 1.3

Suppose that \(0<p,\alpha <\infty\), \(m\in \mathbb {R}\) and \(\varphi \in \mathcal {H}(\mathbb {C})\).

  1. (1)

    \(C_{\varphi }\) is bounded on \(F^p_{\alpha ,m}\) if and only if \(\varphi (z)=az+b\) for some \(a,b\in \mathbb {C}\) with \(|a|<1\), or \(|a|=1\) and \(b=0\).

  2. (2)

    \(C_{\varphi }\) is compact on \(F^p_{\alpha ,m}\) if and only if \(\varphi (z)=az+b\) for some \(a,b\in \mathbb {C}\) with \(|a|<1\).

To study the behavior of the approximation numbers of composition operators on \(F^p_{\alpha ,m}\), we establish some coefficient estimates of functions in \(F^p_{\alpha ,m}\) in Sect. 3, including the Hardy–Littlewood type and the Hausdorff–Young type theorems. Based on these estimates, we obtain the following upper bound for the approximation numbers of compact composition operators acting on \(F^p_{\alpha ,m}\).

Theorem 1.4

Let \(1\le p<\infty\), \(\alpha >0\), \(m\in \mathbb {R}\) and \(C_{\varphi }\) be a compact composition operator on \(F^p_{\alpha ,m}\) induced by \(\varphi (z)=az+b\), where \(0<|a|<1\). Then, for sufficiently large positive integer n, we have

$$\begin{aligned} a_{n}(C_{\varphi })\lesssim |a|^ne^{c\sqrt{m+n}}, \end{aligned}$$

where \(c=|a|^{-1}|b|\sqrt{\alpha }\).

This theorem is proved in Sect. 4. As an application, we obtain that for any \(0<p<\infty\), any compact composition operator on \(F^2_{\alpha ,m}\) belongs to the Schatten class \(S_p(F^2_{\alpha ,m})\). Using a generalization of Weyl’s inequality, we also show that if \(\varphi\) is not constant, then the approximation numbers of \(C_{\varphi }\) acting on \(F^p_{\alpha ,m}\) cannot decrease faster than geometrically.

Throughout the paper, the notation \(A\lesssim B\) (or \(B\gtrsim A\)) means that there exists a nonessential constant \(C>0\), such that \(A\le CB\). If \(A\lesssim B\lesssim A\), then we write \(A\asymp B\).

2 Bounded and compact composition operators

In this section, we study the boundedness and compactness of composition operators. Let v be a weight and \(\varphi\) be an entire function. We use \(\mu ^{\beta ,q,v}_{\varphi }\) to denote the positive pull-back measure on \(\mathbb {C}\) defined by

$$\begin{aligned} \mu ^{\beta ,q,v}_{\varphi }(E):=\int _{\varphi ^{-1}(E)}e^{-\frac{q\beta }{2}|z|^2}v(z)\textrm{d}A(z) \end{aligned}$$

for every Borel subset E of \(\mathbb {C}\). Then, the non-univalent change of variables formula gives that for any entire function f

$$\begin{aligned} \Vert C_{\varphi }f\Vert ^q_{F^q_{\beta ,v}}=\int _{\mathbb {C}}|f(\varphi (z))|^qe^{-\frac{q\beta }{2}|z|^2}v(z)\textrm{d}A(z) =\int _{\mathbb {C}}|f(z)|^q\textrm{d}\mu _{\varphi }^{\beta ,q,v}(z). \end{aligned}$$
(2.1)

The following lemma follows from an elementary computation (see [20, Lemma 2] for a proof).

Lemma 2.1

Let \(0<q,\alpha ,\beta <\infty\), v be a weight, and \(\varphi \in \mathcal {H}(\mathbb {C})\). Then

$$\begin{aligned} \int _{D(u,1)}e^{\frac{q\alpha }{2}|z|^2}\textrm{d}\mu ^{\beta ,q,v}_{\varphi }(z)\lesssim B_{\alpha }^{\beta ,q,v}(\varphi )(u). \end{aligned}$$

We will need the following estimates for weights in the class \(A^{\textrm{restricted}}_{\infty }\), which can be found in [3, Remark 2.3] and [11, Lemma 3.4]. Here, we write \(Q_1(z)\) for the square of center \(z\in \mathbb {C}\) with side length \(l(Q)=1\). Moreover, since \(\mathbb {R}^2\) can be canonically identified with \(\mathbb {C}\), we will treat \(\mathbb {Z}^2\) as a subset of \(\mathbb {C}\).

Lemma 2.2

Let \(w\in A^{\textrm{restricted}}_{\infty }\).

  1. (1)

    There exists \(C>0\), such that for any \(\nu ,\nu '\in \mathbb {Z}^2\),

    $$\begin{aligned} \frac{w(Q_1(\nu ))}{w(Q_1(\nu '))}\le C^{|\nu -\nu '|}. \end{aligned}$$
  2. (2)

    For any \(z,u\in \mathbb {C}\), such that \(|z-u|<1\)

    $$\begin{aligned} w(Q_1(z))\asymp w(Q_1(u))\asymp w(D(z,1))\asymp w(D(u,1)). \end{aligned}$$

The following lemma gives a family of test functions in \(F^p_{\alpha ,w}\).

Lemma 2.3

Let \(0<p,\alpha <\infty\) and \(w\in A^{\textrm{restricted}}_{\infty }\). For \(u\in \mathbb {C}\), define

$$\begin{aligned} f_u(z):=w(D(u,1))^{-1/p}e^{\alpha \bar{u}z-\frac{\alpha }{2}|u|^2},\quad z\in \mathbb {C}. \end{aligned}$$

Then, \(\Vert f_u\Vert _{F^p_{\alpha ,w}}\asymp 1\) and \(f_u\rightarrow 0\) uniformly on compact subsets of \(\mathbb {C}\) as \(|u|\rightarrow \infty\).

Proof

The norm estimate follows from [3, Proposition 4.1]. We now prove the second assertion. By Lemma 2.2, we may find \(C>0\), such that

$$\begin{aligned} \frac{w(D(u,1))}{w(D(0,1))}\ge C^{-|u|}. \end{aligned}$$

Therefore, if \(|z|\le R\) for some \(R>0\), then

$$\begin{aligned} |f_u(z)|&\le w(D(0,1))^{-1/p}C^{|u|/p}e^{\alpha \Re (\bar{u}z)-\frac{\alpha }{2}|u|^2}\\&=w(D(0,1))^{-1/p}C^{|u|/p}e^{\frac{\alpha }{2}|z|^2-\frac{\alpha }{2}|u-z|^2}\\&\le w(D(0,1))^{-1/p}e^{\alpha R^2}C^{|u|/p}e^{-\frac{\alpha }{4}|u|^2}\rightarrow 0 \end{aligned}$$

as \(|u|\rightarrow \infty\), which completes the proof. \(\square\)

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1

For \(u\in \mathbb {C}\), write

$$\begin{aligned} f_u(z)=w(D(u,1))^{-1/p}e^{\alpha \bar{u}z-\frac{\alpha }{2}|u|^2},\quad z\in \mathbb {C}. \end{aligned}$$

(1) Assume first that \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is bounded. Then, by Lemma 2.3, we have

$$\begin{aligned} \Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}} \gtrsim \Vert C_{\varphi }f_u\Vert ^q_{F^q_{\beta ,v}}=G(u), \end{aligned}$$
(2.2)

which gives that \(\Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}\gtrsim \sup _{u\in \mathbb {C}}G(u)\).

Conversely, assume that the function G is bounded on \(\mathbb {C}\). For any \(f\in F^p_{\alpha ,w}\), by Eq. (2.1), [3, Lemma 3.1], Fubini’s theorem, Lemmas 2.1 and 2.2, we obtain that

$$\begin{aligned} \Vert C_{\varphi }f\Vert ^q_{F^q_{\beta ,v}}&=\int _{\mathbb {C}}|f(z)|^q\textrm{d}\mu _{\varphi }^{\beta ,q,v}(z)\nonumber \\&\lesssim \int _{\mathbb {C}}\frac{e^{\frac{q\alpha }{2}|z|^2}}{w(D(z,1))} \int _{D(z,1)}|f(u)|^qe^{-\frac{q\alpha }{2}|u|^2}w(u)\textrm{d}A(u)\textrm{d}\mu ^{\beta ,q,v}_{\varphi }(z)\nonumber \\&\asymp \int _{\mathbb {C}}|f(u)|^qe^{-\frac{q\alpha }{2}|u|^2}\frac{w(u)}{w(D(u,1))} \int _{D(u,1)}e^{\frac{q\alpha }{2}|z|^2}\textrm{d}\mu ^{\beta ,q,v}_{\varphi }(z)\textrm{d}A(u)\nonumber \\&\lesssim \int _{\mathbb {C}}|f(u)|^qe^{-\frac{q\alpha }{2}|u|^2}w(u)\frac{B_{\alpha }^{\beta ,q,v}(\varphi )(u)}{w(D(u,1))}\textrm{d}A(u)\nonumber \\&\le \left( \sup _{u\in \mathbb {C}}G(u)\right) \int _{\mathbb {C}}|f(u)|^qe^{-\frac{q\alpha }{2}|u|^2}\frac{w(u)}{w(D(u,1))^{(p-q)/p}}\textrm{d}A(u). \end{aligned}$$
(2.3)

Applying [3, Corollary 3.2] yields that

$$\begin{aligned}&\int _{\mathbb {C}}|f(u)|^qe^{-\frac{q\alpha }{2}|u|^2}\frac{w(u)}{w(D(u,1))^{(p-q)/p}}\textrm{d}A(u)\nonumber \\&\quad =\int _{\mathbb {C}}|f(u)|^pe^{-\frac{p\alpha }{2}|u|^2}w(u) \left( |f(u)|e^{-\frac{\alpha }{2}|u|^2}w(D(u,1))^{1/p}\right) ^{q-p}\textrm{d}A(u)\lesssim \Vert f\Vert ^q_{F^p_{\alpha ,w}}. \end{aligned}$$
(2.4)

Therefore, \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is bounded, and \(\Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}\lesssim \sup _{u\in \mathbb {C}}G(u)\).

(2) If \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) is compact, then by Lemma 2.3 and (2.2), we obtain that

$$\begin{aligned} G(u)=\Vert C_{\varphi }f_u\Vert ^q_{F^q_{\beta ,v}}\rightarrow 0 \end{aligned}$$

as \(|u|\rightarrow \infty\). Assume now that \(\lim _{|u|\rightarrow \infty }G(u)=0\). Then, for any \(\epsilon >0\), there exists \(R>0\), such that \(G(u)<\epsilon ^q\) whenever \(|u|>R\). Let \(\{f_n\}\subset F^p_{\alpha ,w}\) be a bounded sequence that converges to 0 uniformly on compact subsets of \(\mathbb {C}\). Then, by (2.3) and (2.4)

$$\begin{aligned}&\Vert C_{\varphi }f_n\Vert ^q_{F^q_{\beta ,v}}\\&\quad \lesssim \left( \int _{|u|\le R}+\int _{|u|>R}\right) |f_n(u)|^qe^{-\frac{q\alpha }{2}|u|^2}w(u) w(D(u,1))^{\frac{q-p}{p}}G(u)\textrm{d}A(u)\\&\quad \lesssim \left( \sup _{u\in \mathbb {C}}G(u)\right) \int _{|u|\le R}|f_n(u)|^qe^{-\frac{q\alpha }{2}|u|^2}w(u) w(D(u,1))^{\frac{q-p}{p}}\textrm{d}A(u)+\epsilon ^q. \end{aligned}$$

Since \(f_n\rightarrow 0\) uniformly on the set \(\{|u|\le R\}\), we obtain that

$$\begin{aligned} \limsup _{n\rightarrow \infty }\Vert C_{\varphi }f_n\Vert _{F^q_{\beta ,v}}\lesssim \epsilon . \end{aligned}$$

The arbitrariness of \(\epsilon >0\) then implies the desired compactness. \(\square\)

To study the boundedness and compactness of \(C_{\varphi }:F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}\) in the case \(p>q\), we need a new characterization of positive Borel measures \(\mu\), such that the embedding operator \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) is bounded. For a positive Borel measure \(\mu\) on \(\mathbb {C}\) and \(0<p,\alpha <\infty\), let \(\widetilde{\mu }_{\alpha ,q}\) be the function defined by

$$\begin{aligned} \widetilde{\mu }_{\alpha ,q}(z):=\int _{\mathbb {C}}e^{q\alpha \Re (\bar{z}u)-\frac{q\alpha }{2}|z|^2}\textrm{d}\mu (u),\quad z\in \mathbb {C}. \end{aligned}$$

The following theorem characterizes the boundedness of \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) in the case \(p>q\) via the functions \(\widetilde{\mu }_{\alpha ,q}\).

Theorem 2.4

Suppose that \(0<q<p<\infty\), \(\alpha >0\), \(w\in A^{\textrm{restricted}}_{\infty }\) and \(\mu\) is a positive Borel measure on \(\mathbb {C}\). Then, the embedding operator \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) is bounded if and only if the function

$$\begin{aligned} \Psi _{\mu }(z):=\frac{\widetilde{\mu }_{\alpha ,q}(z)}{w(D(z,1))} \end{aligned}$$

belongs to \(L^{\frac{p}{p-q}}(\mathbb {C},w)\). Moreover

$$\begin{aligned} \Vert I_d\Vert ^q_{F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )}\asymp \Vert \Psi _{\mu }\Vert _{L^{\frac{p}{p-q}}(\mathbb {C},w)}. \end{aligned}$$

Proof

Assume first that \(\Psi _{\mu }\in L^{\frac{p}{p-q}}(\mathbb {C},w)\). It is easy to see that for \(z\in \mathbb {C}\)

$$\begin{aligned} \widetilde{\mu }_{\alpha ,q}(z)=\int _{\mathbb {C}}e^{\frac{q\alpha }{2}|u|^2-\frac{q\alpha }{2}|z-u|^2}\textrm{d}\mu (u) \gtrsim \int _{D(z,1)}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u). \end{aligned}$$

Therefore, it follows from [3, Theorem 1.2] that \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) is bounded, and \(\Vert I_d\Vert ^q_{F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )}\lesssim \Vert \Psi _{\mu }\Vert _{L^{\frac{p}{p-q}}(\mathbb {C},w)}\).

Conversely, assume that \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )\) is bounded. Then, the proof of [3, Theorem 4.4] yields that

$$\begin{aligned} \sum _{\nu \in \mathbb {Z}^2}\left( \frac{\int _{D(\nu ,2)}e^{\frac{q\alpha }{2}|z|^2}\textrm{d}\mu (z)}{w(D(\nu ,1))^{q/p}}\right) ^{\frac{p}{p-q}}\lesssim \Vert I_d\Vert ^{\frac{pq}{p-q}}_{F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu )}. \end{aligned}$$
(2.5)

Using some elementary computations and Lemma 2.2 gives that

$$\begin{aligned}&\Vert \Psi _{\mu }\Vert ^{\frac{p}{p-q}}_{L^{\frac{p}{p-q}}(\mathbb {C},w)}\nonumber \\&\quad =\int _{\mathbb {C}}\left( \frac{1}{w(D(z,1))}\int _{\mathbb {C}}e^{q\alpha \Re (\bar{z}u)-\frac{q\alpha }{2}|z|^2} \textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}w(z)\textrm{d}A(z)\nonumber \\&\quad =\sum _{\nu \in \mathbb {Z}^2}\int _{Q_1(\nu )}\left( \frac{1}{w(D(z,1))}\sum _{\nu '\in \mathbb {Z}^2} \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2-\frac{q\alpha }{2}|z-u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}w(z)\textrm{d}A(z)\nonumber \\&\quad \lesssim \sum _{\nu \in \mathbb {Z}^2}\int _{Q_1(\nu )}\left( \frac{1}{w(D(z,1))}\sum _{\nu '\in \mathbb {Z}^2} e^{-\frac{q\alpha }{4}|\nu -\nu '|^2}\int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}} w(z)\textrm{d}A(z)\nonumber \\&\quad \asymp \sum _{\nu \in \mathbb {Z}^2}\frac{1}{w(D(\nu ,1))^{\frac{q}{p-q}}} \left( \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{q\alpha }{4}|\nu -\nu '|^2} \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}. \end{aligned}$$
(2.6)

By Hölder’s inequality, we have that

$$\begin{aligned}&\left( \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{q\alpha }{4}|\nu -\nu '|^2} \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}\\&\quad \le \left( \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{p\alpha }{8}|\nu -\nu '|^2}\right) ^{\frac{q}{p-q}} \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2} \left( \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}\\&\quad \lesssim \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2} \left( \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}. \end{aligned}$$

Inserting this into (2.6) and using Fubini’s theorem, we obtain that

$$\begin{aligned}&\Vert \Psi _{\mu }\Vert ^{\frac{p}{p-q}}_{L^{\frac{p}{p-q}}(\mathbb {C},w)}\\&\quad \lesssim \sum _{\nu \in \mathbb {Z}^2}\frac{1}{w(D(\nu ,1))^{\frac{q}{p-q}}} \sum _{\nu '\in \mathbb {Z}^2}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2} \left( \int _{Q_1(\nu ')}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)\right) ^{\frac{p}{p-q}}\\&\quad \le \sum _{\nu '\in \mathbb {Z}^2}\sum _{\nu \in \mathbb {Z}^2} \left( \frac{w(D(\nu ',1))}{w(D(\nu ,1))}\right) ^{\frac{q}{p-q}}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2} \left( \frac{\int _{D(\nu ',2)}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)}{w(D(\nu ',1))^{q/p}}\right) ^{\frac{p}{p-q}}. \end{aligned}$$

By Lemma 2.2, we may find \(C>0\), such that

$$\begin{aligned} \sum _{\nu \in \mathbb {Z}^2} \left( \frac{w(D(\nu ',1))}{w(D(\nu ,1))}\right) ^{\frac{q}{p-q}}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2} \lesssim \sum _{\nu \in \mathbb {Z}^2}C^{|\nu -\nu '|}e^{-\frac{pq\alpha }{8(p-q)}|\nu -\nu '|^2}<\infty . \end{aligned}$$

Therefore

$$\begin{aligned} \Vert \Psi _{\mu }\Vert ^{\frac{p}{p-q}}_{L^{\frac{p}{p-q}}(\mathbb {C},w)}\lesssim \sum _{\nu '\in \mathbb {Z}^2} \left( \frac{\int _{D(\nu ',2)}e^{\frac{q\alpha }{2}|u|^2}\textrm{d}\mu (u)}{w(D(\nu ',1))^{q/p}}\right) ^{\frac{p}{p-q}}, \end{aligned}$$

which, in conjunction with (2.5), finishes the proof. \(\square\)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2

The implication (b)\(\Rightarrow\)(a) is trivial. We now prove the implications (a)\(\Rightarrow\)(c)\(\Rightarrow\)(b).

Assume first that (a) holds. Then, by Eq. (2.1), the embedding operator \(I_d:F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu ^{\beta ,q,v}_{\varphi })\) is bounded, and

$$\begin{aligned} \Vert I_d\Vert _{F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu ^{\beta ,q,v}_{\varphi })}=\Vert C_{\varphi }\Vert _{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}. \end{aligned}$$

Consequently, Theorem 2.4 implies that \(\frac{\widetilde{(\mu ^{\beta ,q,v}_{\varphi })}_{\alpha ,q}(\cdot )}{w(D(\cdot ,1))}\in L^{\frac{p}{p-q}}(\mathbb {C},w)\), and

$$\begin{aligned} \left\| \frac{\widetilde{(\mu ^{\beta ,q,v}_{\varphi })}_{\alpha ,q}(\cdot )}{w(D(\cdot ,1))}\right\| _{L^{\frac{p}{p-q}}(\mathbb {C},w)}\asymp \Vert I_d\Vert ^q_{F^p_{\alpha ,w}\rightarrow L^q(\mathbb {C},\mu ^{\beta ,q,v}_{\varphi })} =\Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}. \end{aligned}$$

The definition of \(\mu ^{\beta ,q,v}_{\varphi }\) gives that

$$\begin{aligned} \widetilde{(\mu ^{\beta ,q,v}_{\varphi })}_{\alpha ,q}(z)= \int _{\mathbb {C}}e^{q\alpha \Re (\bar{z}u)-\frac{q\alpha }{2}|z|^2}\textrm{d}\mu ^{\beta ,q,v}_{\varphi }(u) =B_{\alpha }^{\beta ,q,v}(\varphi )(z),\quad z\in \mathbb {C}. \end{aligned}$$

Therefore, \(H\in L^{\frac{p}{p-q}}(\mathbb {C},w)\) with \(\Vert H\Vert _{L^{\frac{p}{p-q}}(\mathbb {C},w)}\asymp \Vert C_{\varphi }\Vert ^q_{F^p_{\alpha ,w}\rightarrow F^q_{\beta ,v}}\), that is, (c) holds.

Assume now that (c) holds. Then, for any \(\epsilon >0\), we may choose \(R>0\), such that

$$\begin{aligned} \int _{|u|>R}H(u)^{\frac{p}{p-q}}w(u)\textrm{d}A(u)<\epsilon ^{\frac{pq}{p-q}}. \end{aligned}$$

Let \(\{f_n\}\subset F^p_{\alpha ,w}\) be a bounded sequence that converges to 0 uniformly on compact subsets of \(\mathbb {C}\). Then, by (2.3) and Hölder’s inequality

$$\begin{aligned} \Vert C_{\varphi }f_n\Vert ^q_{F^q_{\beta ,v}}&\lesssim \left( \int _{|u|\le R}+\int _{|u|>R}\right) |f_n(u)|^qe^{-\frac{q\alpha }{2}|u|^2}w(u)H(u)\textrm{d}A(u)\\&\le \left( \int _{|u|\le R}|f_n(u)|^pe^{-\frac{p\alpha }{2}|u|^2}w(u)\textrm{d}A(u)\right) ^{q/p} \Vert H\Vert _{L^{\frac{p}{p-q}}(\mathbb {C},w)}\\&\qquad +\Vert f_n\Vert ^q_{F^p_{\alpha ,w}}\left( \int _{|u|>R}H(u)^{\frac{p}{p-q}}w(u)\textrm{d}A(u)\right) ^{\frac{p-q}{p}}\\&\lesssim \left( \int _{|u|\le R}|f_n(u)|^pe^{-\frac{p\alpha }{2}|u|^2}w(u)\textrm{d}A(u)\right) ^{q/p}+\epsilon ^q. \end{aligned}$$

Since \(f_n\rightarrow 0\) uniformly on the set \(\{|u|\le R\}\), we obtain that

$$\begin{aligned} \limsup _{n\rightarrow \infty }\Vert C_{\varphi }f_n\Vert _{F^q_{\beta ,v}}\lesssim \epsilon . \end{aligned}$$

The arbitrariness of \(\epsilon\) then implies (b). \(\square\)

To prove Corollary 1.3, note that for any \(\gamma \in \mathbb {R}\)

$$\begin{aligned} w_{\gamma }(D(u,1))=\int _{D(u,1)}(1+|z|)^{\gamma }\textrm{d}A(z)\asymp (1+|u|)^{\gamma },\quad u\in \mathbb {C}. \end{aligned}$$
(2.7)

Proof of Corollary 1.3

By Theorem 1.1 and (2.7), \(C_{\varphi }\) is bounded on \(F^p_{\alpha ,m}\) if and only if the function

$$\begin{aligned} G_{\varphi }(u):=\frac{1}{(1+|u|)^{mp}}\int _{\mathbb {C}}\left| e^{\alpha \bar{u}\varphi (z)}\right| ^p e^{-\frac{p\alpha }{2}|u|^2-\frac{p\alpha }{2}|z|^2}(1+|z|)^{mp}\textrm{d}A(z) \end{aligned}$$

is bounded on \(\mathbb {C}\), and \(C_{\varphi }\) is compact on \(F^p_{\alpha ,m}\) if and only if \(\lim _{|u|\rightarrow \infty }G_{\varphi }(u)=0\).

Assume first that \(C_{\varphi }\) is bounded on \(F^p_{\alpha ,m}\). Then, using the subharmonic property, we have for any \(u\in \mathbb {C}\)

$$\begin{aligned} \sup _{\mathbb {C}} G_{\varphi }&\ge \frac{1}{(1+|u|)^{mp}}\int _{D(u,1)}\left| e^{\alpha \bar{u}\varphi (z)}\right| ^p e^{-p\alpha \Re (\bar{u}z)-\frac{p\alpha }{2}|z-u|^2}(1+|z|)^{mp}\textrm{d}A(z)\nonumber \\&\gtrsim \int _{D(u,1)}\left| e^{\alpha \bar{u}(\varphi (z)-z)}\right| ^p\textrm{d}A(z) \gtrsim e^{p\alpha (\Re (\bar{u}\varphi (u))-|u|^2)}, \end{aligned}$$
(2.8)

which implies that

$$\begin{aligned} \limsup _{|u|\rightarrow \infty }\Re \left( \frac{\varphi (u)}{u}\right) \le 1. \end{aligned}$$

Consequently, \(\varphi (u)=au+b\) for some \(a,b\in \mathbb {C}\) with \(\Re a\le 1\). Since the boundedness of \(C_{\varphi }\) on \(F^p_{\alpha ,m}\) implies that for any \(\theta \in [0,2\pi )\), \(C_{\varphi _{e^{i\theta }}}\) is bounded on \(F^p_{\alpha ,m}\), where \(\varphi _{e^{i\theta }}(z):=\varphi (e^{i\theta }z)\), we actually have \(|a|\le 1\). If \(|a|=1\), then applying (2.8) to the symbol \(\varphi _{\bar{a}}\) gives that

$$\begin{aligned} \sup _{\mathbb {C}}G_{\varphi }=\sup _{\mathbb {C}}G_{\varphi _{\bar{a}}}\gtrsim e^{p\alpha (\Re (\bar{u}\varphi (\bar{a}u))-|u|^2)} =e^{p\alpha \Re (\bar{u}b)},\quad \forall u\in \mathbb {C}, \end{aligned}$$

which gives \(b=0\). Therefore, we obtain that if \(C_{\varphi }\) is bounded on \(F^p_{\alpha ,m}\), then \(\varphi (z)=az+b\) for some \(a,b\in \mathbb {C}\) with \(|a|<1\), or \(|a|=1\) and \(b=0\).

If \(\varphi (z)=az\) for some unimodular constant a, then the rotation invariance of the Lebesgue measure \(\textrm{d}A\) implies that \(C_{\varphi }\) is an isometric isomorphism on \(F^p_{\alpha ,m}\), which is unquestionably non-compact.

Assume now that \(\varphi (z)=az+b\) for some \(a,b\in \mathbb {C}\) with \(|a|<1\). A straightforward computation gives that

$$\begin{aligned} G_{\varphi }(u)&=\frac{1}{(1+|u|)^{mp}}\int _{\mathbb {C}}\left| e^{\alpha \bar{u}(az+b)}\right| ^p e^{-\frac{p\alpha }{2}|u|^2-\frac{p\alpha }{2}|z|^2}(1+|z|)^{mp}\textrm{d}A(z)\\&=\frac{e^{p\alpha \Re (\bar{u}b)}}{(1+|u|)^{mp}}\int _{\mathbb {C}} e^{-\frac{p\alpha }{2}|\bar{a}u-z|^2+\frac{p\alpha }{2}|au|^2-\frac{p\alpha }{2}|u|^2}(1+|z|)^{mp}\textrm{d}A(z)\\&=\frac{e^{-\frac{p\alpha }{2}(1-|a|^2)|u|^2+p\alpha \Re (\bar{u}b)}}{(1+|u|)^{mp}} \int _{\mathbb {C}}e^{-\frac{p\alpha }{2}|z|^2}(1+|z-\bar{a}u|)^{mp}\textrm{d}A(z). \end{aligned}$$

In the case \(m\ge 0\), we have

$$\begin{aligned} G_{\varphi }(u)&\le e^{-\frac{p\alpha }{2}(1-|a|^2)|u|^2+p\alpha \Re (\bar{u}b)} \int _{\mathbb {C}}e^{-\frac{p\alpha }{2}|z|^2}(1+|z|)^{mp}\textrm{d}A(z)\\&\lesssim e^{-\frac{p\alpha }{4}(1-|a|^2)|u|^2}\rightarrow 0 \end{aligned}$$

as \(|u|\rightarrow \infty\). In the case \(m<0\), we have

$$\begin{aligned}&\sup _{z,u\in \mathbb {C}}\left( \frac{1+|z-\bar{a}u|}{1+|u|}\right) ^{mp}e^{-\frac{p\alpha }{4}(1-|a|^2)|u|^2}\\&\quad \le \sup _{u\in \mathbb {C}}(1+|u|)^{-mp}e^{-\frac{p\alpha }{4}(1-|a|^2)|u|^2}<\infty . \end{aligned}$$

Consequently

$$\begin{aligned} G_{\varphi }(u)\lesssim e^{-\frac{p\alpha }{4}(1-|a|^2)|u|^2+p\alpha \Re (\bar{u}b)} \int _{\mathbb {C}}e^{-\frac{p\alpha }{2}|z|^2}\textrm{d}A(z)\lesssim e^{-\frac{p\alpha }{8}(1-|a|^2)|u|^2}\rightarrow 0 \end{aligned}$$

as \(|u|\rightarrow \infty\). Therefore, in both cases, \(C_{\varphi }\) is compact on \(F^p_{\alpha ,m}\). The proof is complete. \(\square\)

3 Taylor coefficients of functions in \(F^p_{\alpha ,m}\)

In this section, we establish some estimates for the Taylor coefficients of functions in weighted Fock spaces \(F^p_{\alpha ,m}\), which generalize some results on \(F^p_{\alpha }\) in [19].

We will need the following integral estimate.

Lemma 3.1

Let \(0<p,\alpha <\infty\) and \(m\in \mathbb {R}\). For any positive integer n with \(n+m>0\), we have

$$\begin{aligned} \int _0^{\infty }r^{np+1}(r+1)^{mp}e^{-\frac{p\alpha }{2}r^2}\textrm{d}r\asymp \bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}}n^{\frac{(2m-1)p+2}{4}}, \end{aligned}$$

where the implicit constant is independent of n.

Proof

By a change of variables, we have that

$$\begin{aligned} \int _0^{\infty }&r^{np+1}(r+1)^{mp}e^{-\frac{p\alpha }{2}r^2}\textrm{d}r\\&\lesssim \int _0^1e^{-\frac{p\alpha }{2}r^2}\textrm{d}r+ \int _1^{\infty }r^{(m+n)p+1}e^{-\frac{p\alpha }{2}r^2}\textrm{d}r\\&\lesssim 1+\frac{1}{2}\left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p+2}{2}} \int _{\frac{p\alpha }{2}}^{\infty }t^{\frac{(m+n)p}{2}}e^{-t}\textrm{d}t\\&\lesssim 1+\left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p}{2}} \Gamma \left( \frac{(m+n)p}{2}+1\right) . \end{aligned}$$

Similarly

$$\begin{aligned} \int _0^{\infty }&r^{np+1}(r+1)^{mp}e^{-\frac{p\alpha }{2}r^2}\textrm{d}r\\&\gtrsim \int _1^{\infty }r^{(m+n)p+1}e^{-\frac{p\alpha }{2}r^2}\textrm{d}r\\&=\frac{1}{2}\left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p+2}{2}} \int _{\frac{p\alpha }{2}}^{\infty }t^{\frac{(m+n)p}{2}}e^{-t}\textrm{d}t\\&\asymp \left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p}{2}} \int _{0}^{\infty }\left( t+\frac{p\alpha }{2}\right) ^{\frac{(m+n)p}{2}} e^{-t-\frac{p\alpha }{2}}\textrm{d}t\\&\gtrsim \left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p}{2}} \Gamma \left( \frac{(m+n)p}{2}+1\right) . \end{aligned}$$

Using Stirling’s formula twice yields that

$$\begin{aligned} \left( \frac{2}{p\alpha }\right) ^{\frac{(m+n)p}{2}} \Gamma \left( \frac{(m+n)p}{2}+1\right)&\asymp \left( \frac{m+n}{\alpha e}\right) ^{\frac{(m+n)p}{2}}\sqrt{2\pi (m+n)}\nonumber \\&\asymp \bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}}n^{\frac{(2m-1)p+2}{4}}, \end{aligned}$$
(3.1)

which completes the proof. \(\square\)

The following result gives the Hardy–Littlewood type theorem on Taylor coefficients of functions in \(F^p_{\alpha ,m}\).

Theorem 3.2

Let \(f(z)=\sum _{n\ge 0}a_nz^n\) be an entire function. Fix \(\alpha >0\) and \(m\in \mathbb {R}\), and consider the following conditions:

$$\begin{aligned} \sum _{n=1}^{\infty }|a_n|^p\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}} n^{\frac{(2m-1)p+2}{4}}<\infty \end{aligned}$$
(3.2)

and

$$\begin{aligned} \sum _{n=1}^{\infty }|a_n|^p\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}} n^{\frac{(2m+3)p-6}{4}}<\infty . \end{aligned}$$
(3.3)
  1. (1)

    If \(0<p\le 2\), then (3.2) implies \(f\in F^p_{\alpha ,m}\), and \(f\in F^p_{\alpha ,m}\) implies (3.3).

  2. (2)

    If \(2\le p<\infty\), then (3.3) implies \(f\in F^p_{\alpha ,m}\), and \(f\in F^p_{\alpha ,m}\) implies (3.2).

Proof

Fix \(r>0\). By Hölder’s inequality and the Hardy–Littlewood theorem for Hardy spaces (see, for instance, [9, Theorems 6.2 and 6.3]), we have

$$\begin{aligned} \sum _{n=0}^{\infty }(n+1)^{p-2}|a_n|^pr^{np}\lesssim \int _0^{2\pi }|f(re^{i\theta })|^p\textrm{d}\theta \lesssim \sum _{n=0}^{\infty }|a_n|^pr^{np}, \end{aligned}$$

in the case \(0<p\le 2\), and

$$\begin{aligned} \sum _{n=0}^{\infty }|a_n|^pr^{np}\lesssim \int _0^{2\pi }|f(re^{i\theta })|^p\textrm{d}\theta \lesssim \sum _{n=0}^{\infty }(n+1)^{p-2}|a_n|^pr^{np} \end{aligned}$$

in the case \(2\le p<\infty\), where the implicit constants are all independent of r. Computing the norm of f in \(F^p_{\alpha ,m}\) by polar coordinates, and combining the above inequalities with Lemma 3.1, we can obtain the desired results. \(\square\)

As an immediate consequence of Theorem 3.2, we have for any entire function \(f(z)=\sum _{n\ge 0}a_nz^n\)

$$\begin{aligned} \Vert f\Vert ^2_{F^2_{\alpha ,m}}\asymp |a_0|^2+\sum _{n=1}^{\infty }|a_n|^2\frac{n!n^m}{\alpha ^n}. \end{aligned}$$
(3.4)

Our next aim is to establish the Hausdorff–Young theorem for the spaces \(F^p_{\alpha ,m}\). To this end, we recall some facts on integral operators induced by reproducing kernels of \(F^2_{\alpha ,m}\) (see [5, 7] for details). Given an entire function \(f(z)=\sum _{n\ge 0}a_nz^n\) and a real number s, write

$$\begin{aligned} f^+_s(z):=\sum _{n>|s|}a_nz^n\quad \text {and} \quad f^-_s(z):=\sum _{0\le n\le |s|}a_nz^n. \end{aligned}$$

For \(m\in \mathbb {R}\) and \(\alpha >0\), let \(\langle \cdot ,\cdot \rangle _{\alpha ,m}\) be the pairing defined for \(f,g\in F^2_{\alpha ,m}\) by

$$\begin{aligned} \langle f,g\rangle _{\alpha ,m}:=\int _{\mathbb {C}}f(z)\overline{g(z)}|z|^{2m}e^{-\alpha |z|^2}\textrm{d}A(z) \end{aligned}$$

if \(m>-1\), and

$$\begin{aligned} \langle f,g\rangle _{\alpha ,m}:=\int _{\mathbb {C}}\left( f^-_m(z)\overline{g^-_m(z)}+ f^+_m(z)\overline{g^+_m(z)}|z|^{2m}\right) e^{-\alpha |z|^2}\textrm{d}A(z) \end{aligned}$$

if \(m\le -1\). Then, \(\langle \cdot ,\cdot \rangle _{\alpha ,m}\) is an inner product on \(F^2_{\alpha ,m}\) that induces an equivalent norm. For any \(u\in \mathbb {C}\), let \(K^{\alpha ,m}_u\) be the reproducing kernel of the Hilbert space \(F^2_{\alpha ,m}\) endowed with the inner product \(\langle \cdot ,\cdot \rangle _{\alpha ,m}\), and write \(K^{\alpha ,m+}_u:=(K^{\alpha ,m}_u)^+_{2m}\). For \(f\in L^p_{\alpha ,m}:=L^p_{\alpha ,w_{mp}}\), define

$$\begin{aligned} P_{\alpha ,m}f(z):=\int _{\mathbb {C}}f(u)\overline{K^{\alpha ,m}_z(u)}|u|^{2m}e^{-\alpha |u|^2}\textrm{d}A(u),\quad z\in \mathbb {C}, \end{aligned}$$

in the case \(m>-1\), and define

$$\begin{aligned} P^+_{\alpha ,m}f(z):=\int _{\mathbb {C}}f(u)\overline{K^{\alpha ,m+}_z(u)}|u|^{2m} e^{-\alpha |u|^2}\textrm{d}A(u),\quad z\in \mathbb {C} \end{aligned}$$

in the case \(m\le -1\). The following result can be found in [7, Theorem 5.3].

Lemma 3.3

Let \(1\le p<\infty\), \(\alpha >0\) and \(m\in \mathbb {R}\).

  1. (1)

    If \(m>-1\), then \(P_{\alpha ,m}:L^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}\) is a bounded projection.

  2. (2)

    If \(m\le -1\), then \(P^+_{\alpha ,m}:L^p_{\alpha ,m}\rightarrow F^{p,+}_{\alpha ,m}\) is a bounded projection, where

    $$\begin{aligned} F^{p,+}_{\alpha ,m}:=\{f\in F^p_{\alpha ,m}:f^-_{2m}=0\}. \end{aligned}$$

We are now ready to establish the Hausdorff–Young theorem for \(F^p_{\alpha ,m}\).

Theorem 3.4

Let \(1\le p\le \infty\), \(\alpha >0\), and \(m\in \mathbb {R}\), and let \(f(z)=\sum _{n\ge 0}a_nz^n\) be an entire function. Consider the following condition for \(1<p\le \infty\):

$$\begin{aligned} \sum _{n=1}^{\infty }|a_n|^{p'}\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p'}{2}} n^{\frac{(2m+1)p'-2}{4}}<\infty . \end{aligned}$$
(3.5)
  1. (1)

    If \(2\le p\le \infty\) and (3.5) holds, then \(f\in F^p_{\alpha ,m}\).

  2. (2)

    If \(1<p\le 2\) and \(f\in F^p_{\alpha ,m}\), then (3.5) holds.

  3. (3)

    If \(f\in F^1_{\alpha ,m}\), then

    $$\begin{aligned} \sup _{n\ge 1}|a_n|\sqrt{\frac{n!}{\alpha ^n}}n^{\frac{2m+1}{4}}<\infty . \end{aligned}$$

Proof

We consider the Lebesgue spaces \(L^p(\mathbb {C}):=L^p(\mathbb {C},\textrm{d}A)\) and \(l^p(\mu ):=L^p(\mathbb {N}_0,\mu )\), where \(\mu\) is the discrete measure defined by

$$\begin{aligned} \mu (\{0\}):=1 \quad \text {and} \quad \mu (\{n\}):=\frac{1}{\sqrt{n}},\ n=1,2,\ldots . \end{aligned}$$

(1) For any sequence \(\sigma =\{\sigma _n\}_{n\ge 0}\), define

$$\begin{aligned} T(\sigma )(z):=\left( \sigma _0+\sum _{n=1}^{\infty }\sqrt{\frac{\alpha ^n}{n!n^{m+\frac{1}{2}}}}\sigma _nz^n\right) (1+|z|)^me^{-\frac{\alpha }{2}|z|^2},\quad z\in \mathbb {C}. \end{aligned}$$

It is easy to see that for any \(\sigma \in l^{p'}(\mu )\), \(T(\sigma )\) is well defined and the sum inside the parentheses is an entire function. We now prove that \(T:l^{p'}(\mu )\rightarrow L^p(\mathbb {C})\) is bounded for any \(2\le p\le \infty\). By the Riesz–Thorin theorem, it is sufficient to show that \(T:l^2(\mu )\rightarrow L^2(\mathbb {C})\) and \(T:l^1(\mu )\rightarrow L^{\infty }(\mathbb {C})\) are both bounded.

For the boundedness of \(T:l^2(\mu )\rightarrow L^2(\mathbb {C})\), by (3.4), it is easy to see that

$$\begin{aligned} \Vert T(\sigma )\Vert ^2_{L^2(\mathbb {C})}&=\bigg \Vert \sigma _0+\sum _{n=1}^{\infty }\sqrt{\frac{\alpha ^n}{n!n^{m+\frac{1}{2}}}}\sigma _nz^n\bigg \Vert ^2_{F^2_{\alpha ,m}}\\&\asymp |\sigma _0|^2+\sum _{n=1}^{\infty }\frac{|\sigma _n|^2}{\sqrt{n}}=\Vert \sigma \Vert ^2_{l^2(\mu )}. \end{aligned}$$

We next consider the boundedness of \(T:l^1(\mu )\rightarrow L^{\infty }(\mathbb {C})\). It is clear that

$$\begin{aligned} \Vert T(\sigma )\Vert _{L^{\infty }(\mathbb {C})}\lesssim |\sigma _0|+ \sum _{n=1}^{\infty }\sqrt{\frac{\alpha ^n}{n!n^{m+\frac{1}{2}}}}|\sigma _n|\sup _{z\in \mathbb {C}} \Big (|z|^n(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\Big ). \end{aligned}$$

In the case \(m\le 0\), for any \(n>-m\), by (3.1), we have that

$$\begin{aligned} \sup _{z\in \mathbb {C}}\Big (|z|^n(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\Big )&\le \sup _{z\in \mathbb {C}}\Big (|z|^{m+n}e^{-\frac{\alpha }{2}|z|^2}\Big )\\&=\bigg (\frac{m+n}{\alpha e}\bigg )^{\frac{m+n}{2}}\asymp \sqrt{\frac{n!n^{m-\frac{1}{2}}}{\alpha ^n}}. \end{aligned}$$

Similarly, in the case \(m>0\), for any \(n\ge 1\)

$$\begin{aligned} \sup _{z\in \mathbb {C}}\Big (|z|^n(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\Big )&\lesssim \sup _{z\in \mathbb {C}}\Big (|z|^n(1+|z|^m)e^{-\frac{\alpha }{2}|z|^2}\Big )\\&\le \bigg (\frac{n}{\alpha e}\bigg )^{\frac{n}{2}}+ \bigg (\frac{m+n}{\alpha e}\bigg )^{\frac{m+n}{2}}\\&\lesssim \sqrt{\frac{n!n^{m-\frac{1}{2}}}{\alpha ^n}}. \end{aligned}$$

Therefore

$$\begin{aligned} \Vert T(\sigma )\Vert _{L^{\infty }(\mathbb {C})}\lesssim |\sigma _0|+ \sum _{n=1}^{\infty }\frac{|\sigma _n|}{\sqrt{n}}=\Vert \sigma \Vert _{l^1(\mu )}. \end{aligned}$$

Consequently, for any \(2\le p\le \infty\), the operator \(T:l^{p'}(\mu )\rightarrow L^p(\mathbb {C})\) is bounded.

Assume now that (3.5) holds. Then, the sequence \(\sigma =\{\sigma _n\}_{n\ge 0}\) defined by

$$\begin{aligned} \sigma _0:=a_0 \quad \text {and} \quad \sigma _n:=\sqrt{\frac{n!n^{m+\frac{1}{2}}}{\alpha ^n}}a_n,\ n=1,2,\ldots \end{aligned}$$

is in \(l^{p'}(\mu )\). Hence, the boundedness of \(T:l^{p'}(\mu )\rightarrow L^p(\mathbb {C})\) gives that

$$\begin{aligned} \Vert f\Vert ^p_{F^p_{\alpha ,m}}&=\int _{\mathbb {C}}\bigg |\bigg (\sum _{n=0}^{\infty } a_nz^n\bigg )(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\bigg |^p\textrm{d}A(z)\\&=\int _{\mathbb {C}}\bigg |\bigg (\sigma _0+\sum _{n=1}^{\infty }\sqrt{\frac{\alpha ^n}{n!n^{m+\frac{1}{2}}}}\sigma _nz^n\bigg )(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\bigg |^p\textrm{d}A(z)\\&=\Vert T(\sigma )\Vert ^p_{L^p(\mathbb {C})}\lesssim \Vert \sigma \Vert ^{p}_{l^{p'}(\mu )}<\infty , \end{aligned}$$

which is \(f\in F^p_{\alpha ,m}\).

(2) We first consider the case \(m>-1\). By Lemma 3.3, \(P_{\alpha ,m}:L^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}\) is a bounded projection. For any function \(g\in L^p(\mathbb {C})\), define

$$\begin{aligned} \sigma _0:=\int _{\mathbb {C}}P_{\alpha ,m}Vg(z)(1+|z|)^{2m}e^{-\alpha |z|^2}\textrm{d}A(z) \end{aligned}$$

and

$$\begin{aligned} \sigma _n:=\sqrt{\frac{\alpha ^n\sqrt{n}}{n!n^m}}\int _{\mathbb {C}}\bar{z}^nP_{\alpha ,m}Vg(z) (1+|z|)^{2m}e^{-\alpha |z|^2}\textrm{d}A(z),\quad n\ge 1, \end{aligned}$$

and let \(S(g)=\sigma :=\{\sigma _n\}_{n\ge 0}\), where V is the isometry from \(L^p(\mathbb {C})\) to \(L^p_{\alpha ,m}\) defined by

$$\begin{aligned} Vg(z):=g(z)(1+|z|)^{-m}e^{\frac{\alpha }{2}|z|^2},\quad z\in \mathbb {C}. \end{aligned}$$

We claim that \(S:L^1(\mathbb {C})\rightarrow l^{\infty }(\mu )\) is bounded. In fact, it is obvious that

$$\begin{aligned} |\sigma _0|\lesssim \Vert P_{\alpha ,m}Vg\Vert _{F^1_{\alpha ,m}}\lesssim \Vert Vg\Vert _{L^1_{\alpha ,m}} =\Vert g\Vert _{L^1(\mathbb {C})}. \end{aligned}$$

For any positive integer n, arguing as (1), we have that

$$\begin{aligned} |\sigma _n|&\le \sqrt{\frac{\alpha ^n\sqrt{n}}{n!n^m}}\sup _{z\in \mathbb {C}} \left( |z|^n(1+|z|)^me^{-\frac{\alpha }{2}|z|^2}\right) \Vert P_{\alpha ,m}Vg\Vert _{F^1_{\alpha ,m}}\\&\lesssim \sqrt{\frac{\alpha ^n\sqrt{n}}{n!n^m}}\bigg (\frac{m+n}{\alpha e}\bigg )^{\frac{m+n}{2}}\Vert g\Vert _{L^1(\mathbb {C})}\asymp \Vert g\Vert _{L^1(\mathbb {C})}. \end{aligned}$$

Hence, \(S:L^1(\mathbb {C})\rightarrow l^{\infty }(\mu )\) is bounded. We next prove that \(S:L^2(\mathbb {C})\rightarrow l^2(\mu )\) is bounded. Suppose that \(P_{\alpha ,m}Vg(z)=\sum _{n\ge 0}c_nz^n\). Then, it is clear that \(|\sigma _0|\asymp |c_0|\) and by Lemma 3.1

$$\begin{aligned} |\sigma _n|=|c_n|\sqrt{\frac{\alpha ^n\sqrt{n}}{n!n^m}}\int _{\mathbb {C}}|z|^{2n} (1+|z|)^{2m}e^{-\alpha |z|^2}\textrm{d}A(z)\asymp |c_n|\sqrt{\frac{n!}{\alpha ^n}}n^{\frac{2m+1}{4}} \end{aligned}$$

for any positive integer n. Consequently, by (3.4) and the boundedness of \(P_{\alpha ,m}:L^2_{\alpha ,m}\rightarrow F^2_{\alpha ,m}\)

$$\begin{aligned} \Vert \sigma \Vert ^2_{l^2(\mu )}&=|\sigma _0|^2+\sum _{n=1}^{\infty }\frac{|\sigma _n|^2}{\sqrt{n}} \asymp |c_0|^2+\sum _{n=1}^{\infty }|c_n|^2\frac{n!n^m}{\alpha ^n}\\&\asymp \Vert P_{\alpha ,m}Vg\Vert ^2_{F^2_{\alpha ,m}}\lesssim \Vert Vg\Vert ^2_{L^2_{\alpha ,m}}=\Vert g\Vert ^2_{L^2(\mathbb {C})}, \end{aligned}$$

which gives the boundedness of \(S:L^2(\mathbb {C})\rightarrow l^2(\mu )\). Therefore, for any \(1\le p\le 2\), \(S:L^p(\mathbb {C})\rightarrow l^{p'}(\mu )\) is bounded by the Riesz–Thorin theorem.

We now assume that \(1<p\le 2\) and \(f(z)=\sum _{n\ge 0}a_nz^n\) belongs to \(F^p_{\alpha ,m}\). Then, \(f=Vg\) for some \(g\in L^p(\mathbb {C})\) with \(\Vert f\Vert _{F^p_{\alpha ,m}}=\Vert g\Vert _{L^p(\mathbb {C})}\), and \(P_{\alpha ,m}Vg=P_{\alpha ,m}f=f\). Thus, we have \(S(g)=\{\sigma _n\}\), where

$$\begin{aligned} |\sigma _0|\asymp |a_0|,\quad |\sigma _n|\asymp |a_n|\sqrt{\frac{n!}{\alpha ^n}}n^{\frac{2m+1}{4}},\quad n\ge 1. \end{aligned}$$

Therefore

$$\begin{aligned} \sum _{n=1}^{\infty }|a_n|^{p'}\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p'}{2}} n^{\frac{(2m+1)p'-2}{4}}&\asymp \sum _{n=1}^{\infty }\frac{|\sigma _n|^{p'}}{\sqrt{n}} \le \Vert S(g)\Vert ^{p'}_{l^{p'}(\mu )}\\&\lesssim \Vert g\Vert ^{p'}_{L^p(\mathbb {C})}=\Vert f\Vert ^{p'}_{F^p_{\alpha ,m}}<\infty , \end{aligned}$$

that is, (3.5) holds.

In the case \(m\le -1\), we use the bounded projection \(P^+_{\alpha ,m}:L^p_{\alpha ,m}\rightarrow F^{p,+}_{\alpha ,m}\) instead of \(P_{\alpha ,m}\). The rest part is the same and so is omitted.

(3) As in (2), this follows from the boundedness of \(S:L^1(\mathbb {C})\rightarrow l^{\infty }(\mu )\). \(\square\)

4 Approximation numbers of composition operators

In this section, we study the behavior of approximation numbers of composition operators \(C_{\varphi }\) acting on \(F^p_{\alpha ,m}\). To this end, we need to estimate the norms of \(\varphi ^n\), which relies on the following lemma.

Lemma 4.1

Let \(0<p,c<\infty\). Then, for sufficiently large \(s>0\)

$$\begin{aligned} I_s:=\int _c^{\infty }x^{sp+1}e^{-\frac{p}{2}(x-c)^2}\textrm{d}x\lesssim \big (\Gamma (s)\big )^{\frac{p}{2}}s^{\frac{1}{2}+\frac{p}{4}}e^{pc\sqrt{s}}, \end{aligned}$$

where the implicit constant is independent of s.

Proof

Write \(h_s(x):=(sp+1)\log x-\frac{p}{2}(x-c)^2\). Then, we have

$$\begin{aligned} h'_s(x)=\frac{sp+1}{x}-p(x-c) \end{aligned}$$

and

$$\begin{aligned} h''_s(x)=-\frac{sp+1}{x^2}-p\le -p. \end{aligned}$$
(4.1)

Letting \(h'_s(x)=0\), we obtain

$$\begin{aligned} x=x_s:=\frac{pc+\sqrt{p^2c^2+4p(sp+1)}}{2p}, \end{aligned}$$

and

$$\begin{aligned} h_s(x_s)&=(sp+1)\log \frac{pc+\sqrt{p^2c^2+4p(sp+1)}}{2p}\\&\quad -\frac{p}{2}s+ \frac{c\sqrt{p^2c^2+4p(sp+1)}}{4}-\frac{pc^2}{4}-\frac{1}{2}. \end{aligned}$$

By an elementary computation, we have

$$\begin{aligned} \lim _{s\rightarrow +\infty }\biggl ((sp+1)\biggl (\log \frac{pc+\sqrt{p^2c^2+4p(sp+1)}}{2p} -\log \sqrt{s}\biggr )-\frac{pc}{2}\sqrt{s}\biggr )=\frac{1}{2}, \end{aligned}$$

so we can find \(C>0\), independent of s, such that for sufficiently large s

$$\begin{aligned} h_s(x_s)\le \frac{sp+1}{2}\log s-\frac{sp}{2}+pc\sqrt{s}+C, \end{aligned}$$

which implies that

$$\begin{aligned} e^{h_s(x_s)}\lesssim s^{\frac{sp+1}{2}}e^{-\frac{sp}{2}}e^{pc\sqrt{s}}. \end{aligned}$$

Stirling’s formula then yields

$$\begin{aligned} e^{h_s(x_s)}\lesssim \big (\Gamma (s)\big )^{\frac{p}{2}}s^{\frac{1}{2}+\frac{p}{4}}e^{pc\sqrt{s}}. \end{aligned}$$

Since for any \(x\in [c,\infty )\), by (4.1), there exists \(\xi\), such that

$$\begin{aligned} h_s(x)=h_s(x_s)+\frac{(x-x_s)^2}{2}h''_s(\xi )\le h_s(x_s)-\frac{p}{2}(x-x_s)^2, \end{aligned}$$

we obtain that

$$\begin{aligned} I_s&=\int _c^{\infty }e^{h_s(x)}\textrm{d}x\le e^{h_s(x_s)}\int _c^{\infty }e^{-\frac{p}{2}(x-x_s)^2}\textrm{d}x\\&\lesssim e^{h_s(x_s)}\lesssim \big (\Gamma (s)\big )^{\frac{p}{2}}s^{\frac{1}{2}+\frac{p}{4}}e^{pc\sqrt{s}}. \end{aligned}$$

The proof is complete. \(\square\)

Lemma 4.2

Let \(0<p,\alpha <\infty\), \(m\in \mathbb {R}\), and \(\varphi (z)=az+b\), \(a\ne 0\). Then, for sufficiently large positive integer n

$$\begin{aligned} \Vert \varphi ^n\Vert ^p_{F^p_{\alpha ,m}}\lesssim |a|^{np}\bigg (\frac{n!}{\alpha ^n}\bigg ) ^{\frac{p}{2}}n^{\frac{(2m-1)p+2}{4}}e^{pc\sqrt{m+n}}, \end{aligned}$$

where \(c=|a|^{-1}|b|\sqrt{\alpha }\), and the implicit constant is independent of n.

Proof

In the case \(b\ne 0\), we have \(|z|+1\asymp |z|+|a|^{-1}|b|\) for any \(z\in \mathbb {C}\). Consequently

$$\begin{aligned} \Vert \varphi ^n\Vert ^p_{F^p_{\alpha ,m}}&=\int _{\mathbb {C}}|az+b|^{np}(|z|+1)^{mp} e^{-\frac{p\alpha }{2}|z|^2}\textrm{d}A(z)\\&\lesssim |a|^{np}\int _{\mathbb {C}}(|z|+|a|^{-1}|b|)^{(m+n)p} e^{-\frac{p\alpha }{2}|z|^2}\textrm{d}A(z)\\&\lesssim |a|^{np}\int _0^{\infty }(r+|a|^{-1}|b|)^{(m+n)p+1}e^{-\frac{p\alpha }{2}r^2}dr\\&=|a|^{np}\alpha ^{-\frac{(m+n)p+2}{2}}\int _c^{\infty }x^{(m+n)p+1}e^{-\frac{p}{2}(x-c)^2}\textrm{d}x. \end{aligned}$$

Therefore, by Lemma 4.1 and Stirling’s formula, we obtain that

$$\begin{aligned} \Vert \varphi ^n\Vert ^p_{F^p_{\alpha ,m}}&\lesssim \alpha ^{-\frac{np}{2}}|a|^{np} \big (\Gamma (m+n)\big )^{\frac{p}{2}} (m+n)^{\frac{1}{2}+\frac{p}{4}}e^{pc\sqrt{m+n}}\\&\asymp |a|^{np}\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}} n^{\frac{(2m-1)p+2}{4}}e^{pc\sqrt{m+n}}. \end{aligned}$$

In the case \(b=0\), by Lemma 3.1, we have that

$$\begin{aligned} \Vert \varphi ^n\Vert ^p_{F^p_{\alpha ,m}}&=|a|^{np}\int _{\mathbb {C}}|z|^{np}(|z|+1)^{mp} e^{-\frac{p\alpha }{2}|z|^2}\textrm{d}A(z)\\&=2\pi |a|^{np}\int _0^{\infty }r^{np+1}(r+1)^{mp} e^{-\frac{p\alpha }{2}r^2}dr\\&\asymp |a|^{np}\bigg (\frac{n!}{\alpha ^n}\bigg )^{\frac{p}{2}}n^{\frac{(2m-1)p+2}{4}}, \end{aligned}$$

which finishes the proof. \(\square\)

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4

Assume that \(n>-m\) is large enough. Define \(K_n:F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}\) by

$$\begin{aligned} K_n(f)(z)=\sum _{k=0}^{n-1}a_kz^k \end{aligned}$$

for \(f(z)=\sum _{k\ge 0}a_kz^k\). Then, \(\textrm{rank}(C_{\varphi }\circ K_n)\le n\), and we have

$$\begin{aligned} \Vert (C_{\varphi }-C_{\varphi }\circ K_n)f\Vert _{F^p_{\alpha ,m}}= \biggl \Vert \sum _{k=n}^{\infty }a_k\varphi ^k\biggr \Vert _{F^p_{\alpha ,m}} \le \sum _{k=n}^{\infty }|a_k|\Vert \varphi ^k\Vert _{F^p_{\alpha ,m}}. \end{aligned}$$

We first consider the case \(1\le p\le 2\). In the case \(p=1\), using Theorem 3.4 and Lemma 4.2 yields that

$$\begin{aligned} \Vert (C_{\varphi }-C_{\varphi }\circ K_n)f\Vert _{F^1_{\alpha ,m}}&\lesssim \Vert f\Vert _{F^1_{\alpha ,m}}\sum _{k=n}^{\infty }\alpha ^{\frac{k}{2}}(k!)^{-\frac{1}{2}} k^{-\frac{2m+1}{4}}\Vert \varphi ^k\Vert _{F^1_{\alpha ,m}}\\&\lesssim \Vert f\Vert _{F^1_{\alpha ,m}}\sum _{k=n}^{\infty }|a|^ke^{c\sqrt{m+k}}. \end{aligned}$$

In the case \(1<p\le 2\), by Hölder’s inequality, Theorem 3.4, and Lemma 4.2, we obtain that

$$\begin{aligned}&\Vert (C_{\varphi }-C_{\varphi }\circ K_n)f\Vert _{F^p_{\alpha ,m}}\\&\quad \le \left( \sum _{k=n}^{\infty }|a_k|^{p'}\left( \frac{k!}{\alpha ^k}\right) ^{\frac{p'}{2}} k^{\frac{(2m+1)p'-2}{4}}\right) ^{\frac{1}{p'}} \\&\quad \times \left( \sum _{k=n}^{\infty }\Vert \varphi ^k\Vert ^p_{F^p_{\alpha ,m}}\left( \frac{\alpha ^k}{k!} \right) ^{\frac{p}{2}}k^{\frac{p}{2p'}-\frac{(2m+1)p}{4}}\right) ^{\frac{1}{p}}\\&\quad \lesssim \Vert f\Vert _{F^p_{\alpha ,m}}\left( \sum _{k=n}^{\infty } |a|^{kp}e^{pc\sqrt{m+k}}\right) ^{\frac{1}{p}}. \end{aligned}$$

Therefore, for any \(1\le p\le 2\), we have

$$\begin{aligned} \Vert C_{\varphi }-C_{\varphi }\circ K_n\Vert _{F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}}\lesssim \left( \sum _{k=n}^{\infty }|a|^{kp}e^{pc\sqrt{m+k}}\right) ^{\frac{1}{p}}. \end{aligned}$$

Noting that \(\lim _{k\rightarrow \infty }(k+1)^2|a|^ke^{c\sqrt{k}}=0\), we establish that

$$\begin{aligned} a_{n+1}(C_{\varphi })&\le \Vert C_{\varphi }-C_{\varphi }\circ K_n\Vert _{F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}}\\&\lesssim \left( \sum _{k=n}^{\infty }|a|^{kp}e^{pc\sqrt{m+k}}\right) ^{\frac{1}{p}}\\&=|a|^ne^{c\sqrt{m+n}}\left( \sum _{k=n}^{\infty }|a|^{p(k-n)} e^{pc(\sqrt{m+k}-\sqrt{m+n})}\right) ^{\frac{1}{p}}\\&\le |a|^ne^{c\sqrt{m+n}}\left( \sum _{k=n}^{\infty }|a|^{p(k-n)} e^{pc\sqrt{k-n}}\right) ^{\frac{1}{p}}\\&\lesssim |a|^ne^{c\sqrt{m+n}}\left( \sum _{k=n}^{\infty }(k-n+1)^{-2p}\right) ^{\frac{1}{p}}\\&\lesssim |a|^{n+1}e^{c\sqrt{m+n+1}}. \end{aligned}$$

In the case \(2<p<\infty\), using Theorem 3.2 instead of Theorem 3.4, we can similarly establish that

$$\begin{aligned} a_{n+1}(C_{\varphi })&\le \Vert C_{\varphi }-C_{\varphi }\circ K_n\Vert _{F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}}\\&\lesssim \biggl (\sum _{k=n}^{\infty }|a|^{kp'}e^{p'c\sqrt{m+k}}\biggr )^{\frac{1}{p'}} \lesssim |a|^{n+1}e^{c\sqrt{m+n+1}}, \end{aligned}$$

which finishes the proof. \(\square\)

Recall that for \(0<p<\infty\), a compact operator T on a separated Hilbert space H is said to be in the Schatten class \(S_p(H)\) if \(\sum _{n=1}^{\infty }a_n(T)^p<\infty\). As an application of Theorem 1.4, we have the following corollary.

Corollary 4.3

Let \(\alpha >0\) and \(m\in \mathbb {R}\). Then, for any \(0<p<\infty\), any compact composition operator \(C_{\varphi }\) on \(F^2_{\alpha ,m}\) belongs to the Schatten class \(S_p(F^2_{\alpha ,m})\).

Proof

Since \(C_{\varphi }\) is compact, by Corollary 1.3, we can write \(\varphi (z)=az+b\), where \(|a|<1\) and \(b\in \mathbb {C}\). If \(a=0\), then \(C_{\varphi }\) is of rank 1, and consequently in any \(S_p(F^2_{\alpha ,m})\). If \(0<|a|<1\), by Theorem 1.4, we have for some \(N>0\)

$$\begin{aligned} \sum _{n>N}a_n(C_{\varphi })^p\lesssim \sum _{n>N}|a|^{np}e^{pc\sqrt{m+n}}<\infty . \end{aligned}$$

The proof is complete. \(\square\)

We now turn to the lower estimates for \(a_n(C_{\varphi })\). Before proceeding, we recall the following generalization of Weyl’s inequality, which can be found in [1, Proposition 2].

Lemma 4.4

Let T be a compact operator on a complex Banach space X and \(\{\lambda _n(T)\}_{n\ge 1}\) be the sequence of its eigenvalues, indexed, such that \(|\lambda _1(T)|\ge |\lambda _2(T)|\ge \cdots\). Then, for \(n=1,2,\ldots\) and \(m=0,1,\ldots ,n-1\), one has

$$\begin{aligned} \prod _{k=1}^n|\lambda _k(T)|\le 16^n\Vert T\Vert _{X\rightarrow X}^ma_{m+1}(T)^{n-m}. \end{aligned}$$

We also need the following lemma (see [8, Lemma 3.3] for instance).

Lemma 4.5

If \(\varphi (z)=az+b\) with \(0<|a|<1\), then \(\{1,a,a^2,\ldots \}\) are all the eigenvalues of the operator \(C_{\varphi }:F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}\).

The following proposition gives a lower estimate for \(a_n(C_{\varphi })\), which indicates that in the non-trivial case, the approximation numbers of compact composition operators on \(F^p_{\alpha ,m}\) cannot decrease faster than geometrically.

Proposition 4.6

Let \(1\le p<\infty\), \(\alpha >0\), \(m\in \mathbb {R}\) and \(C_{\varphi }\) be a compact operator on \(F^p_{\alpha ,m}\) induced by \(\varphi (z)=az+b\), where \(0<|a|<1\). Then

$$\begin{aligned} a_n(C_{\varphi })\ge \frac{1}{256\Vert C_{\varphi }\Vert _{F^p_{\alpha ,m} \rightarrow F^p_{\alpha ,m}}}|a|^{2n-1}. \end{aligned}$$

Proof

By Lemmas 4.4 and 4.5, we have that

$$\begin{aligned} |a|^{n(2n-1)}&=\prod _{k=1}^{2n}|\lambda _k(C_{\varphi })| \le 16^{2n}\Vert C_{\varphi }\Vert _{F^p_{\alpha ,m}\rightarrow F^p_{\alpha ,m}}^{n-1}a_n(C_{\varphi })^{n+1}\\&\le 16^{2n}\Vert C_{\varphi }\Vert _{F^p_{\alpha ,m} \rightarrow F^p_{\alpha ,m}}^{n}a_n(C_{\varphi })^n, \end{aligned}$$

which gives the desired result. \(\square\)