1 Introduction

Let \(\mathbb {C}^{n}\) be the Euclidean space of complex dimension n. For \(z= (z_1,\dots ,z_n)\) and \(w=(w_1,\dots ,w_n)\) in \(\mathbb {C}^n\), we write \(\langle z,w\rangle =\sum _{j=1}^nz_j\overline{w_j}\) and \(|z|=\sqrt{\langle z,z\rangle }\). Let \(\mathrm{d}v\) be the volume measure on \(\mathbb {C}^n\) normalized so that \(\int _{\mathbb {C}^n}e^{-|z|^2}\mathrm{d}v(z)=1\). For \(\alpha\) real, we let

$$\begin{aligned} \mathrm{d}v_\alpha (z)=\frac{\mathrm{d}v(z)}{(1+|z|)^\alpha }. \end{aligned}$$

For \(0<p<\infty\), let \(L_\alpha ^p\) denote the space of Lebesgue measurable functions f on \(\mathbb {C}^n\) such that

$$\begin{aligned} \Vert f\Vert _{p,\alpha }^p=\int _{\mathbb {C}^n}\left| f(z)e^{-\frac{1}{2}|z|^2}\right| ^p\mathrm{d}v_\alpha (z) <\infty , \end{aligned}$$

where we use the term norm \(\Vert f\Vert _{p,\alpha }\) for \(0<p<1\) only for convenience. For \(p=\infty\), we use the notation \(L_\alpha ^\infty\) to denote the space of Lebesgue measurable functions f on \(\mathbb {C}^n\), such that

$$\begin{aligned} \Vert f\Vert _{\infty ,\alpha }=\sup \left\{ \frac{|f(z)|e^{-\frac{1}{2}|z|^2}}{(1+|z|)^\alpha }: z\in \mathbb {C}^n\right\} <\infty . \end{aligned}$$

Let \(F^p_\alpha\) denote the class of holomorphic functions in \(L_\alpha ^p\). Clearly, \(F_\alpha ^p\subset F_\beta ^p\) when \(\alpha <\beta\). For \(1\le p\le \infty\), \(F_\alpha ^p\) is a Banach space. When \(0<p<1\), \(F_\alpha ^p\) is a complete metric space with the distance \(d(f,g)=\Vert f-g\Vert _{p,\alpha }^p\). In particular, when \(\alpha =0\), \(F_0^p\) is called the Fock space (see [25]). Therefore, we call \(F^p_\alpha\) the weighted Fock space, which is identified with the Fock–Sobolev space of fractional order. For more detailed information about weighted Fock spaces \(F^p_\alpha\), see [6].

For a holomorphic mapping \(\varphi :\mathbb {C}^n\rightarrow \mathbb {C}^n\), the composition operator \(C_{\varphi }\) on the weighted Fock space is defined by \(C_{\varphi }f=f\circ \varphi\) for \(f\in F_\alpha ^p\). The main subject in the study of composition operators is to describe operator theoretic properties of \(C_{\varphi }\) in terms of function theoretic properties of \(\varphi\), see [7]. Let \({\mathcal {C}}(X)\) denote the space of bounded composition operators with the operator norm topology on a space X of holomorphic functions. An area of considerable interest is the topological structure of \({\mathcal {C}}(X)\). In 1981, Berkson [2] initiated the topological structure with his isolation results on composition operators acting on the Hardy space \(H^2\). After that, many experts studied the same questions on various holomorphic function spaces (see [3, 9, 11, 13, 17,18,19, 22]). However, a complete description of topological components of \({\mathcal {C}}(H^2)\) is still unknown so far. In [8], the second author of this paper completely characterized the topological structure of composition operators acting on the Fock space \(F^2_0\) in \(\mathbb {C}^n\). Our main purpose here is to extend the result of [8] to weighted Fock spaces \(F^p_\alpha\) with \(\alpha\) real and \(0<p\le \infty\). Because the weighted Fock space \(F^p_\alpha\) is not a Hilbert space when \(p\ne 2\), we cannot use the approach in [8] to prove our main result (see Theorem 3.7). Our work with the full range of p requires some new techniques.

Let X be a space of holomorphic functions on a domain \(\Omega\) in \(\mathbb {C}^n\). For \(a=(a_1,\dots , a_n)\) in \(\Omega\) and f in X, if there exists functions \(f_1, \dots , f_n\) in X, such that

$$\begin{aligned} f(z)-f(a)=\sum _{k=1}^n (z_k-a_k)f_k(z) \end{aligned}$$

for all z in \(\Omega\), we say that Gleason’s problem on X is solvable. Note that

$$\begin{aligned} f(z)-f(a)=\int _0^1\frac{df(a+t(z-a))}{\mathrm{d}t}\mathrm{d}t=\sum _{k=1}^n(z_k-a_k) \int _0^1\frac{\partial f}{\partial z_k}(a+t(z-a))\mathrm{d}t. \end{aligned}$$

Thus, if

$$\begin{aligned} A_kf(z)=\int _0^1\frac{\partial f}{\partial z_k}(a+t(z-a))\mathrm{d}t \end{aligned}$$
(1.1)

is in X for each \(k(1\le k\le n)\), then Gleason’s problem on X is solvable. The difficulty of the problem depends on \(\Omega\) and X. Gleason’s problem was investigated on various function spaces and domains in \(\mathbb {C}^n\) (see [1, 12, 15, 20, 21, 23]). In [10], the second author of the present paper and Zhou solved Gleason’s problem on the Fock–Sobolev space, or equivalently, a weighted Fock space \(F_\alpha ^p\) for \(\alpha\) real satisfying certain conditions. In this paper, we prove that Gleason’s problem is solvable on any wighted Fock space \(F_\alpha ^p\) with \(\alpha\) real and \(0<p\le \infty\) (see Theorem 4.3), which extends the corresponding result in [10].

Throughout this paper, the notation \(X\preceq Y\) or \(Y\succeq X\) for two nonnegative quantities X and Y means that \(X\le CY\) for some inessential positive constant C. Similarly, we write \(X\approx Y\) if \(X\preceq Y\) and \(Y\preceq X\).

2 Preliminary results

In this section, we will collect some preliminary results. The following proposition characterizes completely the boundedness and compactness of a composition operator on the weighted Fock space, and it is an extension of the corresponding result on the Fock space in [4].

Proposition 2.1

([16]) Let \(\varphi :\mathbb {C}^n\rightarrow \mathbb {C}^n\) be a holomorphic mapping. Then, the following statements hold.

(i) \(C_{\varphi }\) is bounded on \(F_{\alpha }^p\) if and only if \(\varphi (z)=Az+B\), where A is an \(n\times n\) matrix with \(\Vert A\Vert \le 1\) and B is an \(n\times 1\) vector satisfying \(\langle A\zeta , B\rangle =0\) whenever \(|A\zeta |=|\zeta |\) for \(\zeta \in \mathbb {C}^n\).

(ii) \(C_{\varphi }\) is compact on \(F_{\alpha }^p\) if and only if \(\varphi (z)=Az+B\), where A is an \(n\times n\) matrix with \(\Vert A\Vert <1\) and B is an \(n\times 1\) vector.

The proof of Proposition 2.1 need to use the notion of the singular value decomposition of a matrix. Suppose that A is an \(n\times n\) matrix of rank r. Let \(\sigma _j(j=1, \dots ,n)\) be the nonnegative square roots of the eigenvalues of \(AA^*\) listing in decreasing order so that \(\sigma _1\ge \sigma _2\ge \cdots \ge \sigma _r>\sigma _{r+1}=\cdots =\sigma _n=0\). By the singular value decomposition of a matrix, there are unitary matrices U and V such that \(A=U\Lambda V\), where \(\Lambda\) is the diagonal matrix whose jth diagonal entry is \(\sigma _j\). If \(\Vert A\Vert \le 1\), then \(0\le \sigma _j\le 1\) for all j and at least one will equal 1 if \(\Vert A\Vert =1\). Let

$$\begin{aligned} k=\max \{j:\sigma _j=1\}. \end{aligned}$$
(2.1)

If \(\sigma _j<1\) for all \(j=1,\ldots , n\), that is \(\Vert A\Vert <1\), we write \(k=0\). Let \(\varphi (z)=Az+B\) and \(\psi (z)=\Lambda z+B'\), where the singular value decomposition of A is \(U\Lambda V\) and \(B'=U^*B\). Then we call \(\psi\) a normalization of \(\varphi\).

The following lemmas are very useful in the proof of our main results.

Lemma 2.2

([4]) Let \(\varphi (z)=Az+B\), where A is an \(n\times n\) matrix with \(\Vert A\Vert \le 1\) and B is an \(n\times 1\) vector satisfying \(\langle A\zeta , B\rangle =0\) whenever \(|A\zeta |=|\zeta |\) for \(\zeta \in \mathbb {C}^n\). Let \(\psi (z)=\Lambda z+B'\) be a normalization of \(\varphi\). Then \(C_\varphi =C_{Vz}C_\psi C_{Uz}\) and the first k coordinates of \(B'\) are 0, where k is defined by (2.1).

Lemma 2.3

([8]) Let A and \(A_1\) be \(n\times n\) matrices with \(\Vert A\Vert =\Vert A_1\Vert =1\). Let \(E_k\) be a \(k\times k\) unit matrix, where k is defined by (2.1). Suppose that \(A\zeta = A_1\zeta\) for all \(\zeta\) with \(|A\zeta |=|\zeta |\) or \(|A_1\zeta |=|\zeta |\). Then there exist \(n\times n\) unitary matrices U and V, such that

$$\begin{aligned} A=U\left( \begin{array}{cc}E_k &{} O \\ O &{}D \end{array}\right) V, \qquad A_1=U\left( \begin{array}{cc}E_k &{} O \\ O &{}D_1 \end{array}\right) V, \end{aligned}$$

where D and \(D_1\) are \((n-k)\times (n-k)\) matrices with \(\Vert D\Vert <1\) and \(\Vert D_1\Vert <1\).

Lemma 2.4

([24]) Suppose that \((X,\mu )\) is a measure space, H is a non-negative measurable function on the product space \(X\times X\) and T is the integral operator induced by H as follows:

$$\begin{aligned} Tf(x)=\int _X H(x,y)f(y)\mathrm{d}\mu (y). \end{aligned}$$

Let \(1<p<\infty\) with \(1/p+1/q\)=1. If there exists a positive measurable function h on X satisfying

$$\begin{aligned} \int _X H(x,y)h^q(y)\mathrm{d}\mu (y)\preceq h^q(x) \end{aligned}$$

for almost all \(x\in X\), and

$$\begin{aligned} \int _X H(x,y)h^p(x)\mathrm{d}\mu (x)\preceq h^p(y) \end{aligned}$$

for almost all \(y\in Y\), then the operator T is bounded on the space \(L^p(X,\mathrm{d}\mu )\).

Lemma 2.5

([6]) For any real number \(\alpha\) and \(0<p\le \infty\), then the reproducing kernel \(e^{\langle z,w\rangle }\) of \(F_0^2\) can reproduce functions in any weighted Fock space \(F_\alpha ^p\), that is

$$\begin{aligned} f(z)=\int _{\mathbb {C}^n}f(w)e^{\langle z,w\rangle }e^{-|w|^2}\mathrm{d}v(w), \qquad f\in F_\alpha ^p, \quad z\in \mathbb {C}^n. \end{aligned}$$
(2.2)

Lemma 2.6

([16]) For \(0<p\le \infty\), \(\alpha\) real and \(f\in F_\alpha ^p(\mathbb {C}^n)\), let \(g(z)=f(z_1,\ldots ,z_{n-1},0)\). Then \(g\in F_\alpha ^p\) and \(\Vert g\Vert _{p,\alpha }\preceq \Vert f\Vert _{p,\alpha }\).

Lemma 2.7

Let \(\alpha\) be a real number and \(0<p, r<\infty\). Then

$$\begin{aligned} \frac{|f(z)|^pe^{-\frac{p}{2}|z|^2}}{(1+|z_j|)^p(1+|z|)^\alpha } \preceq \int _{|w-z|<r}\frac{|f(w)|^pe^{-\frac{p}{2}|w|^2}}{(1+|w_j|)^p}\mathrm{d}v_\alpha (w) \end{aligned}$$

for all holomorphic functions f and \(z\in \mathbb {C}^n\), where \(z_j(1\le j\le n)\) is the jth component of z.

Proof

For any zw in \(\mathbb {C}^n\), we see that

$$\begin{aligned} 1+|z|\le 1+|w|+|z-w||\le (1+|w|)(1+|z-w|). \end{aligned}$$

It follows that

$$\begin{aligned} (1+|z-w|)^{-|\alpha |}\le \left( \frac{1+|z|}{1+|w|}\right) ^\alpha \le (1+|z-w|)^{|\alpha |} \end{aligned}$$
(2.3)

for any real number \(\alpha\). Since

$$\begin{aligned} 1+|z_j|\le (1+|w_j|)(1+|z_j-w_j|)\le (1+|w_j|)(1+|z-w|), \end{aligned}$$

we also have

$$\begin{aligned} (1+|z-w|)^{-|\alpha |}\le \left( \frac{1+|z_j|}{1+|w_j|}\right) ^\alpha \le (1+|z-w|)^{|\alpha |}. \end{aligned}$$
(2.4)

Using (2.3) and (2.4), we obtain

$$\begin{aligned}&(1+|z_j|)^{p}(1+|z|)^{\alpha } \int _{|w-z|<r}\frac{|f(w)|^pe^{-\frac{p}{2}|w|^2}}{(1+|w_j|)^p}\mathrm{d}v_\alpha (w)\\&=\int _{|w-z|<r}|f(w)|^pe^{-\frac{p}{2}|w|^2}\frac{(1+|z_j|)^{p}(1+|z|)^{\alpha }}{(1+|w_j|)^p(1+|w|)^\alpha }\mathrm{d}v(w) \\&\ge \int _{|w-z|<r}\frac{|f(w)|^pe^{-\frac{p}{2}|w|^2}}{(1+|w-z|)^{p+|\alpha |}}\mathrm{d}v(w)\\&=\int _{|w|<r}\frac{|f(w+z)|^pe^{-\frac{p}{2}|w+z|^2}}{(1+|w|)^{p+|\alpha |}}\mathrm{d}v(w)\\&=e^{-\frac{p}{2}|z|^2}\int _{|w|<r}\frac{|f(w+z)e^{-\langle w,z\rangle }|^pe^{-\frac{p}{2}|w|^2}}{(1+|w|)^{p+|\alpha |}}\mathrm{d}v(w). \end{aligned}$$

Let \(d\sigma\) denote the surface measure on the unit sphere \(\partial \mathbb {B}_n=\{\zeta \in \mathbb {C}^n: |\zeta |=1\}\). By integrating in polar coordinates (see [21]) and using the subharmonicity of the function \(|f(w+z)e^{-\langle w,z\rangle }|^p\) with respect to w, we have

$$\begin{aligned}&\int _{|w|<r}\frac{|f(w+z)e^{-\langle w,z\rangle }|^pe^{-\frac{p}{2}|w|^2}}{(1+|w|)^{p+|\alpha |}}\mathrm{d}v(w) \\&\approx \int _0^r \frac{t^{2n-1}e^{-\frac{p}{2} t^2}}{(1+t)^{p+|\alpha |}}\mathrm{d}t\int _{\partial \mathbb {B}_n} |f(t\zeta +z)e^{-t\langle \zeta ,z\rangle }|^pd\sigma (\zeta )\succeq |f(z)|^p. \end{aligned}$$

So the desired inequality follows. \(\square\)

It is known that the (weighted) Fock space can be characterized in terms of partial derivatives. For example, if f belongs to the Fock space \(F^p_0(0<p<\infty )\), Hu proved in [14] that \(\partial _j f/(1+|z|)\in L^p_0\), where \(\partial _jf\) is denoted by the partial derivative of f with respect to \(z_j(1\le j\le n)\). We will improve Hu’s result and generalize it to the weighted Fock space, that is \(\partial _j f/(1+|z_j|)\in L^p_\alpha\) if \(f\in F^p_\alpha\) for any \(\alpha\) real.

Lemma 2.8

Let \(\alpha\) be a real number, \(0<p\le \infty\) and \(f\in F^p_\alpha\). Then

$$\begin{aligned}&\int _{\mathbb {C}^n}\frac{|\partial _jf(z)|^pe^{-\frac{p}{2}|z|^2}}{(1+|z_j|)^{p}}\mathrm{d}v_\alpha (z)\preceq \Vert f\Vert _{p,\alpha }^p, \qquad 0<p<\infty ; \\&\sup _{z\in \mathbb {C}^n}\frac{|\partial _jf(z)|e^{-\frac{|z|^2}{2}}}{(1+|z_j|)(1+|z|)^\alpha } \preceq \Vert f\Vert _{\infty ,\alpha }, \qquad p=\infty . \end{aligned}$$

Proof

For any \(f\in F^p_\alpha\), by (2.2) we have

$$\begin{aligned} \partial _jf(z)=\int _{\mathbb {C}^n}f(w)e^{\langle z,w\rangle }\overline{w_j}e^{-|w|^2}\mathrm{d}v(w), \end{aligned}$$
(2.5)

which, together with (2.4), yields

$$\begin{aligned} \frac{|\partial _jf(z)|}{1+|z_j|}&\le \int _{\mathbb {C}^n}\left| f(w)e^{\langle w,z\rangle }\right| \frac{1+|w_j|}{1+|z_j|}e^{-|w|^2}\mathrm{d}v(w) \\&\le \int _{\mathbb {C}^n}|f(w)|(1+|w-z|)e^{-|w|^2+R e\langle w,z\rangle }\mathrm{d}v(w). \end{aligned}$$

When \(1<p<\infty\), let

$$\begin{aligned} H(z,w)=(1+|w-z|)(1+|w|)^\alpha e^{(\frac{p}{2}-1)|w|^2+R e\langle w,z\rangle }, \quad \mathrm{d}\mu (w)=e^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w). \end{aligned}$$

We define an integral operator T on the space \(L^p(\mathbb {C}^n,\mathrm{d}\mu )\) as follows:

$$\begin{aligned} Tf(z)=\int _{\mathbb {C}^n}f(w)H(z,w)\mathrm{d}\mu (w). \end{aligned}$$

Let \(1<q<\infty\) with \(\frac{1}{p}+\frac{1}{q}=1\) and consider the positive function \(h(z)=e^{\frac{|z|^2}{2q}}\). Then

$$\begin{aligned} \int _{\mathbb {C}^n}H(z,w)h^q(w)\mathrm{d}\mu (w)&=\int _{\mathbb {C}^n}e^{-\frac{|w|^2}{2}+R e\langle w,z\rangle } (1+|w-z|)\mathrm{d}v(w)\\&=e^{\frac{|z|^2}{2}}\int _{\mathbb {C}^n}e^{-\frac{|w-z|^2}{2}} (1+|w-z|)\mathrm{d}v(w)\\&=e^{\frac{|z|^2}{2}}\int _{\mathbb {C}^n}e^{-\frac{|w|^2}{2}}(1+|w|)\mathrm{d}v(w)\\&\preceq e^{\frac{|z|^2}{2}}=h^q(z). \end{aligned}$$

Meanwhile, by (2.3), we have

$$\begin{aligned}&\int _{\mathbb {C}^n}H(z,w)h^p(z)\mathrm{d}\mu (z)\\&= e^{(\frac{p}{2}-1)|w|^2} \int _{\mathbb {C}^n}e^{-\frac{|z|^2}{2}+R e\langle w,z\rangle }(1+|w-z|) \frac{(1+|w|)^\alpha }{(1+|z|)^\alpha }\mathrm{d}v(z)\\&\le e^{\frac{p-1}{2}|w|^2}\int _{\mathbb {C}^n}e^{-\frac{|w-z|^2}{2}} (1+|w-z|)^{1+|\alpha |}\mathrm{d}v(z)\\&=e^{\frac{p}{2q}|w|^2}\int _{\mathbb {C}^n}e^{-\frac{|w|^2}{2}}(1+|w|)^{1+|\alpha |}\mathrm{d}v(z))\preceq h^p(w). \end{aligned}$$

It follows from Lemma 2.4 that the operator T is bounded on \(L^p(\mathbb {C}^n,\mathrm{d}\mu )\), and so

$$\begin{aligned} \int _{\mathbb {C}^n}\frac{|\partial _jf(z)|^pe^{-\frac{p}{2}|z|^2}}{(1+|z_j|)^{p}}\mathrm{d}v_\alpha (z)&=\int _{\mathbb {C}^n}\frac{|\partial _jf(z)|^p}{(1+|z_j|)^{p}}\mathrm{d}\mu (z)\le \int _{\mathbb {C}^n}[T|f|(z)]^{p}\mathrm{d}\mu (z)\\&\preceq \int _{\mathbb {C}^n}|f(z)|^{p}\mathrm{d}\mu (z)=\Vert f\Vert _{p,\alpha }^p. \end{aligned}$$

When \(0<p\le 1\), by (2.5), we have

$$\begin{aligned} |\partial _jf(z)|\le \int _{\mathbb {C}^n}|f(w)e^{\langle w,z\rangle }w_j|e^{-|w|^2}\mathrm{d}v(w). \end{aligned}$$

Noting that \(f(w)e^{\langle w,z\rangle }w_j\) is holomorphic with respect to w on \(\mathbb {C}^n\), we have by Lemma 4 in [5]

$$\begin{aligned} |\partial _jf(z)|^p\preceq \int _{\mathbb {C}^n}|f(w)e^{\langle w,z\rangle }w_j|^pe^{-p|w|^2}\mathrm{d}v(w). \end{aligned}$$

This yields together with (2.4)

$$\begin{aligned} \frac{|\partial _jf(z)|^p}{(1+|z_j|)^p}&\preceq \int _{\mathbb {C}^n}|f(w)e^{\langle w,z\rangle }|^p \left( \frac{1+|w_j|}{1+|z_j|}\right) ^pe^{-p|w|^2}\mathrm{d}v(w)\\&\le \int _{\mathbb {C}^n}|f(w)|^p(1+|w-z|)^p e^{p(R e\langle w,z\rangle -|w|^2)}\mathrm{d}v(w). \end{aligned}$$

It follows from Fubini’s theorem and (2.3) that

$$\begin{aligned}&\int _{\mathbb {C}^n}\frac{|\partial _jf(z)|^pe^{-\frac{p}{2}|z|^2}}{(1+|z_j|)^{p}}\mathrm{d}v_\alpha (z)\\&\preceq \int _{\mathbb {C}^n}\int _{\mathbb {C}^n} \frac{e^{p(R e\langle w,z\rangle -\frac{|z|^2}{2})}(1+|z-w|)^p}{(1+|z|)^{\alpha }}\mathrm{d}v(z) |f(w)|^pe^{-p|w|^2}\mathrm{d}v(w)\\&=\int _{\mathbb {C}^n}\left[ \int _{C^n} e^{-\frac{p}{2}|z-w|^2}(1+|z-w|)^p\frac{(1+|w|)^\alpha }{(1+|z|)^\alpha } \mathrm{d}v(z)\right] |f(w)|^pe^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w)\\&\le \int _{C^n}\left[ \int _{\mathbb {C}^n} e^{-\frac{p}{2}|z-w|^2}(1+|z-w|)^{p+|\alpha |}\mathrm{d}v(z)\right] |f(w)|^pe^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w)\\&\preceq \int _{\mathbb {C}^n}|f(w)|^pe^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w)=\Vert f\Vert _{p,\alpha }^p. \end{aligned}$$

For \(p=\infty\) and \(f\in F^\infty _\alpha\), by (2.5), (2.3) and (2.4) we obtain

$$\begin{aligned}&\frac{|\partial _jf(z)|e^{-\frac{|z|^2}{2}}}{(1+|z_j|)(1+|z|)^\alpha }\\&\le e^{-\frac{|z|^2}{2}}\Vert f\Vert _{\infty ,\alpha }\int _{\mathbb {C}^n}\frac{(1+|w_j|)(1+|w|)^\alpha }{(1+|z_j|)(1+|z|)^\alpha } e^{-\frac{|w|^2}{2}+R e\langle z,w\rangle }\mathrm{d}v(w)\\&\le \Vert f\Vert _{\infty ,\alpha }\int _{\mathbb {C}^n}(1+|w-z|)^{1+|\alpha |} e^{-\frac{|w-z|^2}{2}}\mathrm{d}v(w)\preceq \Vert f\Vert _{\infty ,\alpha }. \end{aligned}$$

The proof is complete. \(\square\)

3 Topological structures of \({\mathcal {C}}(F_\alpha ^p)\)

Proposition 3.1

For \(0<p\le \infty\) and \(\alpha\) real, let A be an \(n\times n\) matrix and B be an \(n\times 1\) vector such that \(C_{Az+B}\) is bounded on \(F^p_\alpha\). Then \(C_{Az}\) and \(C_{Az+B}\) are in the same path component in \({\mathcal {C}}(F^p_\alpha )\).

Proof

The boundedness of \(C_{Az+B}\) on \(F^p_\alpha\) implies the boundedness of \(C_{Az}\) by Proposition 2.1. Let \(\varphi _t(z)=t(Az+B)+(1-t)Az=A z+tB~(0\le t\le 1)\). It suffices to prove that \(t\mapsto C_{\varphi _t}\) is a continuous path joining \(C_{Az}\) to \(C_{Az+B}\). Let \(\psi (z)=\Lambda z+B'\) be the normalization of \(Az+B\) as described previously. For a unitary matrix U, the composition operator \(C_{Uz}\) is unitary on \(F_\alpha ^p\). By Lemma 2.2 we only need to show that the map \(t\mapsto C_{\psi _t}\) is continuous, where \(\psi _t(z)=\Lambda z+tB'\). Let t and s be distinct points in [0, 1]. We may take \(t>s\) without loss of generality. Let \(b_j'(j=k+1,\ldots , n)\) be the j-th entry of \(B'\). It suffices to prove \(\Vert C_{\psi _t}-C_{\psi _s}\Vert _{p,\alpha }\preceq (t-s)\).

If \(\Lambda\) is invertible, for \(0<p<\infty\) and \(f\in F_\alpha ^p\), we have by a change of variables:

$$\begin{aligned}&\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{p,\alpha }^p= \int _{\mathbb {C}^n}|f(\Lambda w+tB')-f(\Lambda w+sB')|^pe^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w)\\&=(\det \Lambda )^{-2}\int _{\mathbb {C}^n}|f(z+tB')-f(z+sB')|^pe^{-\frac{p}{2}|\Lambda ^{-1}z|^2} (1+|\Lambda ^{-1}z|)^{-\alpha }\mathrm{d}v(z)\\&=(\det \Lambda )^{-2}\int _{\mathbb {C}^n}\left| \int _s^t\sum _{j=k+1}^nb_j'\partial _jf( z+\tau B')\mathrm{d}\tau \right| ^p e^{-\frac{p}{2}|\Lambda ^{-1}z|^2}(1+|\Lambda ^{-1}z|)^{-\alpha }\mathrm{d}v(z)\\&\preceq \int _{\mathbb {C}^n}\left( \sum _{j=k+1}^n\int _s^t|\partial _jf(z+\tau B')|\mathrm{d}\tau \right) ^p e^{-\frac{p}{2}|\Lambda ^{-1}z|^2}(1+|z|)^{-\alpha }\mathrm{d}v(z). \end{aligned}$$

Below we assume \(B'\ne 0\), since there is nothing to prove when \(B'=0\). By Lemma 2.7, we obtain

$$\begin{aligned} |\partial _jf(z+\tau B')|^p&\preceq (1+|z_j+\tau b_j'|)^{p}(1+|z+\tau B'|)^\alpha e^{\frac{p}{2}|z+\tau B'|^2}\\&\times \int _{|w-z-\tau B'|<|B'|} \frac{|\partial _jf(w)|^pe^{-\frac{p}{2}|w|^2}}{(1+|w_j|)^p}\mathrm{d}v_\alpha (w)\\&\preceq (1+|z_j|)^p(1+|z|)^\alpha e^{\frac{p}{2}|z+\tau B'|^2}F(z) \end{aligned}$$

for all \(0\le \tau \le 1\) and \(z\in \mathbb {C}^n\), where

$$\begin{aligned} F(z)&=\int _{|w-z|<2|B'|}\frac{|\partial _jf(w)|^pe^{-\frac{p}{2}|w|^2}}{(1+|w_j|)^p}\mathrm{d}v_\alpha (w)\\&=\int _{|w|<2|B'|}\frac{|\partial _jf(w+z)|^pe^{-\frac{p}{2}|w+z|^2}}{(1+|w_j+z_j|)^p(1+|w+z|)^\alpha }\mathrm{d}v(w). \end{aligned}$$

Hence

$$\begin{aligned}&\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{p,\alpha }^p\\&\preceq \int _{\mathbb {C}^n}\left( \sum _{j=k+1}^n\int _s^t(1+|z_j|) e^{\frac{1}{2}(|z+\tau B'|^2-|\Lambda ^{-1}z|^2)} \mathrm{d}\tau \right) ^pF(z)\mathrm{d}v(z). \end{aligned}$$

Let \(\sigma _j\) be the j-th diagonal of \(\Lambda\). Then, \(0<\sigma _j<1\) for \(k+1\le j\le n\). Noting that

$$\begin{aligned} |z+\tau B'|^2-|\Lambda ^{-1}z|^2=\sum _{j=k+1}^n\left( \frac{|\tau b_j'|^2}{1-\sigma _j^2} -\frac{1-\sigma _j^2}{\sigma _j^2}\left| z_j-\frac{\tau b_j'\sigma _j^2}{1-\sigma _j^2}\right| ^2\right) , \end{aligned}$$

we have

$$\begin{aligned} e^{\frac{1}{2}(|z+\tau B'|^2-|\Lambda ^{-1}z|^2)}(1+|z_j|)\preceq 1 \end{aligned}$$

for all \(z\in \mathbb {C}^n\) and \(\tau \in [0,1]\) and \(k+1\le j\le n\). Thus, by Fubini’s theorem and Lemma 2.8, we have

$$\begin{aligned}&\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{p,\alpha }^p\preceq (t-s)^p\int _{\mathbb {C}^n}F(z)\mathrm{d}v(z)\\&=(t-s)^p\int _{|w|<2|B'|} \left[ \int _{\mathbb {C}^n}\frac{|\partial _jf(w+z)|^pe^{-\frac{p}{2}|w+z|^2}}{(1+|w_j+z_j|)^p(1+|w+z|)^\alpha }\mathrm{d}v(z)\right] \mathrm{d}v(w)\\&=(t-s)^p\int _{|w|<2|B'|} \left[ \int _{\mathbb {C}^n}\frac{|\partial _jf(z)|^pe^{-\frac{p}{2}|z|^2}}{(1+|z_j|)^p}\mathrm{d}v_\alpha (z)\right] \mathrm{d}v(w)\\&\preceq (t-s)^p\Vert f\Vert _{p,\alpha }^p \end{aligned}$$

as desired.

When \(p=\infty\) and \(f\in F_\alpha ^\infty\),

$$\begin{aligned} |f(\Lambda z+tB')-f(\Lambda z+sB')|&= \left| \int _s^t\sum _{j=k+1}^nb_j'\partial _jf(\Lambda z+\tau B')\mathrm{d}\tau \right| \\&\preceq \sum _{j=k+1}^n\int _s^t|\partial _jf(\Lambda z+\tau B')|\mathrm{d}\tau . \end{aligned}$$

It follows from Lemma 2.8 that

$$\begin{aligned}&\frac{|\partial _jf(\Lambda z+\tau B')|e^{-\frac{|z|^2}{2}}}{(1+|z|)^\alpha }\\&\preceq \Vert f\Vert _{\infty ,\alpha } \frac{(1+|\Lambda z+\tau B'|)^\alpha }{(1+|z|)^\alpha }(1+|\sigma _j z_j+\tau b_j'|) e^{\frac{1}{2}(|\Lambda z+\tau B'|^2-|z|^2)}\\&\preceq \Vert f\Vert _{\infty ,\alpha } (1+|z_j|)e^{\frac{1}{2}(|\Lambda z+\tau B'|^2-|z|^2)}. \end{aligned}$$

Since

$$\begin{aligned} |\Lambda z+\tau B'|^2-|z|^2= \sum _{j=k+1}^n\left( \frac{|\tau b_j'|^2}{1-\sigma _j^2} -(1-\sigma _j^2)\left| z_j-\frac{\tau b_j'\sigma _j}{1-\sigma _j^2}\right| ^2\right) , \end{aligned}$$

we conclude that \((1+|z_j|)e^{\frac{1}{2}(|\Lambda z+\tau B'|^2-|z|^2)}\) is uniformly bounded for \(\tau \in [0,1]\) and \(k+1\le j\le n\), and so

$$\begin{aligned} |f(\Lambda z+tB')-f(\Lambda z+sB')|e^{-\frac{|z|^2}{2}}(1+|z|)^{-\alpha }\preceq (t-s)\Vert f\Vert _{\infty ,\alpha }. \end{aligned}$$

This means \(\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{\infty ,\alpha }\preceq (t-s)\Vert f\Vert _{\infty ,\alpha }\) and \(\Vert C_{\psi _t}-C_{\psi _s}\Vert _{\infty ,\alpha }\preceq (t-s)\).

If \(\Lambda\) is not invertible, then we see that \(\sigma _m=0\) for \(r<m\le n\), where r=rank \(\Lambda\). Let \(\Sigma\) be the diagonal matrix with \(\Sigma =\Lambda\) except in the last \(n-r\) positions along the diagonal, where \(\Lambda\) has entries equal to 0 and \(\Sigma\) has entries equal to 1/2. Let \(\phi _t(z)=\Sigma z+tB'\). Using Lemma 2.6 we obtain \(\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{p,\alpha }\preceq \Vert (C_{\phi _t}-C_{\phi _s}) f\Vert _{p,\alpha }\) for any \(f\in F_\alpha ^p\). By the argument just finished we see that \(\Vert (C_{\phi _t}-C_{\phi _s}) f\Vert _{p,\alpha }\preceq (t-s)\Vert f\Vert _{p,\alpha }\). Therefore, \(\Vert (C_{\psi _t}-C_{\psi _s})f\Vert _{p,\alpha }\preceq (t-s)\Vert f\Vert _{p,\alpha }\) This proves \(\Vert C_{\psi _t}-C_{\psi _s}\Vert _{p,\alpha }\preceq (t-s)\). \(\square\)

Lemma 3.2

Let \(a>0\) and \(b>0\). Then, for all \(x\ge 0\),

$$\begin{aligned} F(x)=\int _0^\infty (1+r)^ae^{-b(r-x)^2}dr\preceq (1+x)^{a+1}. \end{aligned}$$

Proof

We write

$$\begin{aligned} F(x)&=\int _{-x}^\infty (1+r+x)^ae^{-br^2}\mathrm{d}r\\&=\int _{-x}^0 (1+r+x)^ae^{-br^2}\mathrm{d}r+ \int _{0}^\infty (1+r+x)^ae^{-br^2}\mathrm{d}r. \end{aligned}$$

For \(x\ge 0\), we have

$$\begin{aligned} \int _{-x}^0 (1+r+x)^ae^{-br^2}\mathrm{d}r\le \int _{-x}^0 (1+r+x)^a\mathrm{d}r\le \frac{(1+x)^{a+1}}{a+1} \end{aligned}$$

and

$$\begin{aligned} \int _{0}^\infty (1+r+x)^ae^{-br^2}\mathrm{d}r\le 2^a\int _{0}^\infty [r^a+(1+x)^a]e^{-br^2}\mathrm{d}r\preceq (1+x)^a. \end{aligned}$$

The desired estimate follows. \(\square\)

For simplicity, we use the notation \(z=(z_k',z')\) with \(1\le k<n\), where \(z_k'=(z_1,\ldots ,z_k)\) and \(z'=(z_{k+1},\cdots z_n)\).

Lemma 3.3

Let \(0<p\le \infty\) and \(\alpha\) real. Suppose that k is a positive integer with \(1\le k<n\) and \(\Lambda\) is an arbitrary \((n-k)\times (n-k)\) diagonal matrix whose jth diagonal entry is \(\sigma _j\) with \(0\le \sigma _j<1\). Then

$$\begin{aligned} \Vert f(z_k',t\Lambda z')-f(z_k',s\Lambda z')\Vert _{p,\alpha }\preceq (t-s)\Vert f\Vert _{p,\alpha } \end{aligned}$$

for any \(f\in F_\alpha ^p\) and \(0\le s<t\le 1\).

Proof

By Lemma 2.6 it is sufficient to prove for the case that \(\Lambda\) is invertible. We split the proof into three cases for p.

Case 1: \(0<p\le 1\). For any \(f\in F_\alpha ^p\), it follows from (2.2) and Lemma 4 in [5] that

$$\begin{aligned}&|f(z_k',t\Lambda z')-f(z_k',s\Lambda z')|^p\\&=\left| \int _{\mathbb {C}^n}f(w)e^{\langle z_k',w_k'\rangle } \left( e^{t\langle \Lambda z',w'\rangle }-e^{s\langle \Lambda z',w'\rangle }\right) e^{-|w|^2}\mathrm{d}v(w)\right| ^p \\&\le \left( \int _{\mathbb {C}^n}\left| f(w)e^{\langle w_k',z_k'\rangle } \left( e^{t\langle w', \Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }\right) \right| e^{-|w|^2}\mathrm{d}v(w)\right) ^p\\&\preceq \int _{\mathbb {C}^n}|f(w)|^p|e^{p\langle w_k',z_k'\rangle }| \left| e^{t\langle \ w',\Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }\right| ^pe^{-p|w|^2}\mathrm{d}v(w). \end{aligned}$$

Integrating both sides and using Fubini’s theorem, we obtain

$$\begin{aligned} \int _{\mathbb {C}^n}|f(z_k',t\Lambda z')-f(z_k',s\Lambda z')|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z) \preceq \int _{\mathbb {C}^n}|f(w)|^pe^{-p|w|^2}g(w)\mathrm{d}v(w), \end{aligned}$$

where

$$\begin{aligned} g(w)=\int _{\mathbb {C}^n}|e^{p\langle w_k',z_k'\rangle }|e^{-\frac{p}{2}|z|^2} \left| e^{t\langle w',\Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }\right| ^p\mathrm{d}v_\alpha (z). \end{aligned}$$

We easily see that

$$\begin{aligned} g(w)\preceq \int _{\mathbb {C}^{n-k}}\left| e^{t\langle w', \Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }\right| ^p e^{-\frac{p}{2}|z'|^2}h(w_k')\mathrm{d}v(z'), \end{aligned}$$

where

$$\begin{aligned} h(w_k')=\int _{\mathbb {C}^k}\frac{|e^{p\langle w_k',z_k'\rangle }|e^{-\frac{p}{2}|z_k'|^2}}{(1+|z_k'|+|z'|)^\alpha }\mathrm{d}v(z_k'). \end{aligned}$$

Meanwhile, for any \(c\ge 1\) and zw in \(\mathbb {C}^n\)

$$\begin{aligned} c+|z|\le c+|w|+|z-w|\le (c+|w|)(1+|z-w|). \end{aligned}$$
(3.1)

Then

$$\begin{aligned} h(w_k')&=e^{\frac{p}{2}|w_k'|^2}\int _{\mathbb {C}^k}\frac{e^{-\frac{p}{2}|z_k'-w_k'|^2}}{(1+|z_k'|+|z'|)^\alpha }\mathrm{d}v(z_k')\\&\le \frac{e^{\frac{p}{2}|w_k'|^2}}{(1+|w_k'|+|z'|)^\alpha } \int _{\mathbb {C}^k}e^{-\frac{p}{2}|z_k'-w_k'|^2}(1+|z_k'-w_k'|)^{|\alpha |}\mathrm{d}v(z_k')\\&\preceq \frac{e^{\frac{p}{2}|w_k'|^2}}{(1+|w_k'|+|z'|)^\alpha }\le \frac{e^{\frac{p}{2}|w_k'|^2}(1+|z'-w'|)^{|\alpha |}}{(1+|w_k'|+|w'|)^\alpha }\\&\preceq \frac{e^{\frac{p}{2}|w_k'|^2}(1+|z'-w'|)^{|\alpha |}}{(1+|w|)^\alpha } \le \frac{e^{\frac{p}{2}|w_k'|^2}(1+|w'|)^{|\alpha |}(1+|z'|)^{|\alpha |}}{(1+|w|)^\alpha }. \end{aligned}$$

On the other hand

$$\begin{aligned} |e^{t\langle w',\Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }|=\left| \int _s^t \langle w',\Lambda z'\rangle e^{\tau \langle w',\Lambda z'\rangle }\mathrm{d}\tau \right| \le (t-s)|z'||w'|e^{|z'|\cdot |\Lambda w'|} \end{aligned}$$

for \(0\le s<t\le 1\). Let

$$\begin{aligned} \sigma =\max \{\sigma _j: ~j=1,2,\ldots ,n-k\}. \end{aligned}$$

Then, \(\sigma <1\). Combining above, we obtain by Lemma 3.2

$$\begin{aligned}&\int _{\mathbb {C}^n}|e^{p\langle w_k',z_k'\rangle }|e^{-\frac{p}{2}|z|^2} \left| e^{t\langle w',\Lambda z'\rangle }-e^{s\langle w',\Lambda z'\rangle }\right| ^p\mathrm{d}v_\alpha (z)\\&\preceq \frac{(t-s)^pe^{\frac{p}{2}|w_k'|^2}(1+|w'|)^{|\alpha |+p}}{(1+|w|)^\alpha } \int _{\mathbb {C}^{n-k}}(1+|z'|)^{|\alpha |+p} e^{p|z'|\cdot |\Lambda w'|}e^{-\frac{p}{2}|z'|^2}\mathrm{d}v(z')\\&=\frac{(t-s)^pe^{\frac{p}{2}(|w_k'|^2+|\Lambda w'|^2)}(1+|w'|)^{|\alpha |+p}}{(1+|w|)^\alpha } \int _{\mathbb {C}^{n-k}}\frac{(1+|z'|)^{|\alpha |+p}}{e^{\frac{p}{2}(|z'|-|\Lambda w'|)^2}} \mathrm{d}v(z')\\&\preceq \frac{(t-s)^pe^{\frac{p}{2}(|w_k'|^2+\sigma ^2|w'|^2)}(1+|w'|)^{|\alpha |+p}}{(1+|w|)^\alpha } \int _0^\infty \frac{(1+r)^{2(n-k)-1+|\alpha |+p}}{e^{\frac{p}{2}(r-|\Lambda w'|)^2}}\mathrm{d}r\\&\preceq \frac{(t-s)^pe^{\frac{p}{2}|w|^2}e^{-\frac{p}{2}(1-\sigma ^2)|w'|^2}(1+|w'|)^{2(n-k+|\alpha |+p)}}{(1+|w|)^\alpha }\\&\preceq \frac{(t-s)^pe^{\frac{p}{2}|w|^2}}{(1+|w|)^\alpha }. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \Vert f(z_k',t\Lambda z')&-f(z_k',s\Lambda z')\Vert _{p,\alpha }^p =\int _{\mathbb {C}^n}|f(z_k',t\Lambda z')-f(z_k',s\Lambda z')|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&\preceq (t-s)^p\int _{\mathbb {C}^n}|f(w)|^pe^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w) =(t-s)^p\Vert f\Vert _{p,\alpha }^p. \end{aligned}$$

Case 2: \(1<p<\infty\). Applying Hölder’s inequality and Fubini’s theorem, we obtain

$$\begin{aligned} \Vert f(z_k',t\Lambda z')&-f(z_k',s\Lambda z')\Vert _{p,\alpha }^p=\int _{\mathbb {C}^n}|f(z_k',t\Lambda z')-f(z_k',s\Lambda z')|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&=\int _{\mathbb {C}^n}\left| \int _s^t\sum _{j=k+1}^n\sigma _jz_j\partial _jf(z_k',\tau \Lambda z')\mathrm{d}\tau \right| ^p e^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&\preceq \int _{\mathbb {C}^n}\sum _{j=k+1}^n\left( \int _s^t|\partial _jf(z_k',\tau \Lambda z')|\mathrm{d}\tau \right) ^p |z'|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&\preceq (t-s)^{p-1}\sum _{j=k+1}^n\left( \int _{\mathbb {C}^n}\int _s^t|\partial _jf(z_k',\tau \Lambda z')|^p\mathrm{d}\tau \right) |z'|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&=(t-s)^{p-1}\sum _{j=k+1}^n\int _s^t \left( \int _{\mathbb {C}^n}|\partial _jf(z_k',\tau \Lambda z')|^p|z'|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\right) \mathrm{d}\tau . \end{aligned}$$

For \(0<\tau \le 1\), we have by a change of variables

$$\begin{aligned}&\int _{\mathbb {C}^n}|\partial _jf(z_k',\tau \Lambda z')|^p|z'|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&\preceq \tau ^{-2(n-k)-p} \int _{\mathbb {C}^n}\frac{|\partial _jf(z_k',z')|^p|\Lambda ^{-1}z'|^pe^{-\frac{p}{2} (|z_k'|^2+|\tau ^{-1}\Lambda ^{-1}z'|^2)}}{(1+|z_k'|+|\tau ^{-1}\Lambda ^{-1}z'|)^{\alpha }}\mathrm{d}v(z)\\&\preceq \int _{\mathbb {C}^n}|\partial _jf(z_k',z')|^p(1+|z'|)^{-p}e^{-\frac{p}{2}|z|^2}F(z',\tau )\mathrm{d}v_\alpha (z), \end{aligned}$$

where

$$\begin{aligned} F(z',\tau )=\tau ^{-2(n-k)-p-|\alpha |}(1+|z'|)^p |\Lambda ^{-1}z'|^pe^{-\frac{p}{2}(|\tau ^{-1}\Lambda ^{-1}z'|^2-|z'|^2)}. \end{aligned}$$

Since

$$\begin{aligned} |\tau ^{-1}\Lambda ^{-1}z'|^2-|z'|^2\ge (\sigma ^{-2}-1)\tau ^{-2}|z'|^2, \end{aligned}$$

we conclude that \(F(z',\tau )\preceq 1\) for all \(z\in \mathbb {C}^n\) and \(0<\tau \le 1\). This, together with Lemma 2.8, yields

$$\begin{aligned}&\int _{\mathbb {C}^n}|\partial _jf(z_k',\tau \Lambda z')|^p|z'|^pe^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z)\\&\preceq \int _{\mathbb {C}^n}|\partial _jf(z_k',z')|^p(1+|z'|)^{-p}e^{-\frac{p}{2}|z|^2}\mathrm{d}v_\alpha (z) \preceq \Vert f\Vert _{p,\alpha }^p \end{aligned}$$

for \(k+1\le j\le n\). Therefore, we have \(\Vert f(z_k',t\Lambda z')-f(z_k',s\Lambda z')\Vert _{p,\alpha }^p\preceq (t-s)^{p}\Vert f\Vert _{p,\alpha }^p\) as desired.

Case 3: \(p=\infty\). For any \(z\in \mathbb {C}^n\), we have

$$\begin{aligned} |f(z_k',t\Lambda z')-f(z_k',s\Lambda z')|&=\left| \int _s^t\sum _{j =k+1}^n\sigma _jz_j\partial _jf(z_k',\tau \Lambda z')\mathrm{d}\tau \right| \\&\preceq |z'|\sum _{j=k+1}^n \int _s^t|\partial _jf(z_k',\tau \Lambda z')|\mathrm{d}\tau . \end{aligned}$$

When \(k+1\le j\le n\) and \(0\le \tau \le 1\), we obtain from Lemma 2.8

$$\begin{aligned} |\partial _jf(z_k',\tau \Lambda z')|&\preceq (1+|\tau \sigma _jz_j|)(1+|z_k'|+|\tau \Lambda z'|)^\alpha e^{\frac{1}{2}(|z_k'|^2+|\tau \Lambda z'|^2)}\Vert f\Vert _{\infty ,\alpha }\\&\preceq (1+|z'|)(1+|z_k'|+\tau |z'|)^\alpha e^{\frac{1}{2}(|z_k'|^2+|\Lambda z'|^2)}\Vert f\Vert _{\infty ,\alpha }. \end{aligned}$$

By (3.1), we have

$$\begin{aligned} (1+|z_k'|+\tau |z'|)^\alpha&\le (1+|z_k'|+|z'|)^\alpha [1+(1-\tau )|z'|]^{|\alpha |}\\&\preceq (1+|z|)^\alpha (1+|z'|)^{|\alpha |}. \end{aligned}$$

Hence,

$$\begin{aligned}&|f(z_k',t\Lambda z')-f(z_k',s\Lambda z')(1+|z|)^{-\alpha } |e^{-\frac{|z|^2}{2}}\\&\preceq (t-s) e^{-\frac{1}{2}(|z'|^2-|\Lambda z'|^2)}(1+|z'|)^{2+|\alpha |}\Vert f\Vert _{\infty ,\alpha }\\&\le (t-s)e^{-\frac{1-\sigma ^2}{2}|z'|^2}(1+|z'|)^{2+|\alpha |}\Vert f\Vert _{\infty ,\alpha } \preceq (t-s)\Vert f\Vert _{\infty ,\alpha }. \end{aligned}$$

This proves \(\Vert f(z_k',t\Lambda z')-f(z_k',s\Lambda z')\Vert _{\infty ,\alpha }\preceq (t-s)\Vert f\Vert _{\infty ,\alpha }\). The proof is complete. \(\square\)

Remark 3.4

Lemma 3.3 still remains valid for the case \(k=0\). That is, for an \(n\times n\) diagonal matrix \(\Lambda\) with \(\Vert \Lambda \Vert <1\),

$$\begin{aligned} \Vert f(t\Lambda z)-f(s\Lambda z)\Vert _{p,\alpha }\preceq (t-s)\Vert f\Vert _{p,\alpha }, \qquad f\in F_\alpha ^p, \quad 0\le s<t\le 1. \end{aligned}$$

Corollary 3.5

Let \(0<p\le \infty\) and \(\alpha\) real. Suppose that k is a positive integer with \(1\le k<n\) and D is an arbitrary \((n-k)\times (n-k)\) matrix with \(\Vert D\Vert <1\). Let

$$\begin{aligned} P=\left( \begin{array}{cc}E_k &{} O \\ O &{}O \end{array}\right) , \qquad P_1=\left( \begin{array}{cc}E_k &{} O \\ O &{}D \end{array}\right) . \end{aligned}$$

Then \(C_{Pz}\) and \(C_{P_1z}\) are in the same path component in \({\mathcal {C}}(F_\alpha ^p)\).

Proof

By the singular value decomposition of D, there exist \((n-k)\times (n-k)\) unitary matrices U and V such that \(\Lambda =U\mathrm{d}v\), where \(\Lambda\) is a diagonal matrix whose j-th diagonal entry is \(\sigma _j\) with \(0\le \sigma _j<1(1\le j\le n-k)\). Let

$$\begin{aligned} U_1=\left( \begin{array}{cc}E_k &{} O \\ O &{}U \end{array}\right) , \qquad V_1=\left( \begin{array}{cc}E_k &{} O \\ O&{}V \end{array}\right) . \end{aligned}$$

Then, \(U_1\) and \(V_1\) are \(n\times n\) unitary matrices. Furthermore

$$\begin{aligned} Q=U_1PV_1=\left( \begin{array}{cc}E_k &{} O \\ O &{}O \end{array}\right) , \qquad Q_1=U_1P_1V_1=\left( \begin{array}{cc}E_k &{} O \\ O &{}\Lambda \end{array}\right) . \end{aligned}$$

We only need to show that \(C_{Qz}\) and \(C_{Q_1z}\) are in the same path component in \({\mathcal {C}}(F_\alpha ^p)\). Let

$$\begin{aligned} \varphi _t(z)=tQ_1z+(1-t)Qz=(z_k', t\Lambda z'). \end{aligned}$$

By Lemma 3.3, we conclude that \(t\mapsto C_{\varphi _t}\) is a continuous path joining \(C_{Qz}\) to \(C_{Q_1z}\) as desired. \(\square\)

Lemma 3.6

Let \(0<p\le \infty\) and \(\alpha\) real. Suppose that \(C_\varphi\) and \(C_\psi\) are bounded on \(F_\alpha ^p\) in \(\mathbb {C}^n\) with \(\varphi (z)=Az+B\) and \(\psi (z)=A_1z+B_1\), where A and \(A_1\) are \(n\times n\) matrices, and B and \(B_1\) are \(n\times 1\) vectors. If there exists \(\zeta \in \mathbb {C}^n\) such that \(|A\zeta |=|\zeta |\) but \(A_1\zeta \ne A\zeta\), then there is a positive constant \(C_{p,\alpha }\) only depending on p and \(\alpha\) such that \(\Vert C_\varphi -C_\psi \Vert _{p,\alpha }\ge C_{p,\alpha }\).

Proof

For \(0<p<\infty\), let \(f_w(z)=e^{\langle z,w\rangle -\frac{|w|^2}{2}}(1+|w|)^{\frac{\alpha }{p}}\). Then, by Lemma 2.2 in [16] we have \(\Vert f_w\Vert _{p,\alpha }\approx 1\) for all w in \(\mathbb {C}^n\). Since \(F_\alpha ^p\subset F^\infty _{\alpha /p}\) for \(0<p<\infty\) and \(\Vert f\Vert _{\infty ,\alpha /p}\preceq \Vert f\Vert _{p,\alpha }\) for any \(f\in F_\alpha ^p\) (see [6]), it follows that

$$\begin{aligned}&\Vert C_\varphi -C_\psi \Vert _{p,\alpha }\ge \frac{\Vert (C_\varphi -C_\psi )f_{\varphi (w)}\Vert _{p,\alpha }}{\Vert f_{\varphi (w)}\Vert _{p,\alpha }} \approx \Vert (C_\varphi -C_\psi )f_{\varphi (w)}\Vert _{p,\alpha } \\&\succeq \Vert (C_\varphi -C_\psi )f_{\varphi (w)}\Vert _{\infty ,\alpha /p}\\&=e^{-\frac{|\varphi (w)|^2}{2}}(1+|\varphi (w)|)^{\frac{\alpha }{p}} \sup _{z\in \mathbb {C}^n}\left\{ e^{-\frac{|z|^2}{2}}(1+|z|)^{-\frac{\alpha }{p}} |e^{\langle \varphi (z),\varphi (w)\rangle }-e^{\langle \psi (z),\varphi (w)\rangle }|\right\} \\&\ge e^{-\frac{1}{2}(|\varphi (w)|^2+|w|^2)}\left( \frac{1+|\varphi (w)|}{1+|w|}\right) ^{\frac{\alpha }{p}} \left| e^{|\varphi (w)|^2}-e^{\langle \psi (w),\varphi (w)\rangle }\right| \\&=e^{\frac{1}{2}(|\varphi (w)|^2-|w|^2)}\left( \frac{1+|\varphi (w)|}{1+|w|}\right) ^{\frac{\alpha }{p}} \left| 1-e^{\langle \psi (w)-\varphi (w),\varphi (w)\rangle }\right| . \end{aligned}$$

For \(\zeta \in \mathbb {C}^n\) with \(|A\zeta |=|\zeta |\) and \(A_1\zeta \ne A\zeta\), then \(\zeta \ne 0\). Let \(w=\lambda \zeta\), where \(\lambda \in \mathbb {C}\). It follows from Proposition 3.1 that \(\langle A\zeta ,B\rangle =0\). Thus we obtain

$$\begin{aligned} |\varphi (w)|^2-|w|^2=|\lambda A\zeta |^2+|B|^2+2Re \lambda \langle A\zeta ,B\rangle -|\lambda \zeta |^2 =|B|^2, \end{aligned}$$

and

$$\begin{aligned} \frac{1+|\varphi (w)|}{1+|w|}=\frac{1+\sqrt{|\lambda \zeta |^2+|B|^2}}{1+|\lambda \zeta |}\longrightarrow 1 \end{aligned}$$

as \(|\lambda |\rightarrow \infty\). Let \(\eta =A\zeta\) and \(\eta _1=A_1\zeta\). We have

$$\begin{aligned}&\langle \psi (w)-\varphi (w),\varphi (w)\rangle = \langle \psi (\lambda \zeta )-\varphi (\lambda \zeta ),\varphi (\lambda \zeta )\rangle \\&=\langle \lambda (\eta _1-\eta )+B_1-B,\lambda \eta +B\rangle \\&=|\lambda |^2(\langle \eta _1,\eta \rangle -1)+\lambda \langle \eta _1-\eta ,B\rangle + \overline{\lambda }\langle B_1-B,\eta \rangle +\langle B_1-B,B\rangle . \end{aligned}$$

Noting that \(\eta \ne \eta _1\) and \(|\eta |=1\) and \(|\eta _1|\le 1\), we have \(Re \langle \eta _1,\eta \rangle -1<0\). By letting \(w=\lambda \zeta\) and \(|\lambda |\rightarrow \infty\), we obtain

$$\begin{aligned} \left| e^{\langle \psi (w)-\varphi (w),\varphi (w)\rangle }\right| = e^{Re \langle \psi (w)-\varphi (w),\varphi (w)\rangle }\longrightarrow 0. \end{aligned}$$

Combining these, we easily see that \(\Vert C_\varphi -C_\psi \Vert _{p,\alpha }\succeq e^{\frac{1}{2}|B|^2}\ge 1\).

When \(p=\infty\), put \(g_w(z)=e^{\langle z,w\rangle -\frac{|w|^2}{2}}(1+|w|)^{\alpha }\). By (2.3) we have

$$\begin{aligned} e^{-\frac{|z-w|^2}{2}}(1+|z-w|)^{-|\alpha |}&\le \frac{|g_w(z)|e^{-\frac{|z|^2}{2}}}{(1+|z|)^{\alpha }} =e^{-\frac{|z-w|^2}{2}}\left( \frac{1+|w|}{1+|z|}\right) ^\alpha \\&\le e^{-\frac{|z-w|^2}{2}}(1+|z-w|)^{|\alpha |}. \end{aligned}$$

This yields

$$\begin{aligned} \sup _{z\in \mathbb {C}^n}\{e^{-\frac{|z|^2}{2}}(1+|z|)^{-|\alpha |}\} \le \Vert g_w\Vert _{\infty ,\alpha }\le \sup _{z\in \mathbb {C}^n}\{e^{-\frac{|z|^2}{2}}(1+|z|)^{|\alpha |}\}, \end{aligned}$$

which implies \(\Vert g_w\Vert _{\infty ,\alpha }\approx 1\) for all w in \(\mathbb {C}^n\). Thus

$$\begin{aligned}&\Vert C_\varphi -C_\psi \Vert _{\infty ,\alpha }\ge \frac{\Vert (C_\varphi -C_\psi )g_{\varphi (w)}\Vert _{\infty ,\alpha }}{\Vert g_{\varphi (w)}\Vert _{\infty ,\alpha }} \approx \Vert (C_\varphi -C_\psi )g_{\varphi (w)}\Vert _{\infty ,\alpha }\\&=e^{-\frac{|\varphi (w)|^2}{2}}(1+|\varphi (w)|)^{\alpha } \sup _{z\in \mathbb {C}^n}\left\{ e^{-\frac{|z|^2}{2}}(1+|z|)^{-\alpha } |e^{\langle \varphi (z),\varphi (w)\rangle }-e^{\langle \psi (z),\varphi (w)\rangle }|\right\} \\&\ge e^{\frac{1}{2}(|\varphi (w)|^2-|w|^2)}\left( \frac{1+|\varphi (w)|}{1+|w|}\right) ^{\alpha } \left| 1-e^{\langle \psi (w)-\varphi (w),\varphi (w)\rangle }\right| . \end{aligned}$$

Similar to the argument above for the case \(0<p<\infty\), we can conclude \(\Vert C_\varphi -C_\psi \Vert _{\infty ,\alpha }\succeq 1\). The proof is complete. \(\square\)

Now, we state our main theorem, which completely characterizes the topological structure of \({\mathcal {C}}(F^p_\alpha )\) with \(\alpha\) real and \(0<p\le \infty\).

Theorem 3.7

Let \(\alpha\) be a real number and \(0<p\le \infty\). Then the following statements hold.

(a) Suppose that \(C_\varphi\) and \(C_\psi\) are noncompact bounded composition operators with \(\varphi (z)=Az+B\) and \(\psi (z)=A_1z+B_1\). Then \(C_\varphi\) and \(C_\psi\) are in the same path component in \({\mathcal {C}}(F^p_\alpha )\) if and only if \(A\zeta = A_1\zeta\) for all \(\zeta \in \mathbb {C}^n\) satisfying \(|A\zeta |=|\zeta |\) or \(|A_1\zeta |=|\zeta |\).

(b) All compact composition operators \(\{C_\varphi :\varphi (z)=Az+B, \Vert A\Vert <1\}\) on \(F^p_\alpha\) form a path component in \({\mathcal {C}}(F^p_\alpha )\).

(c) A composition operator \(C_\varphi\) is isolated in \({\mathcal {C}}(F^p_\alpha )\) if and only if \(\varphi (z)=Uz\), where U is a unitary matrix.

Proof

(a) Suppose that \(C_\varphi\) and \(C_\psi\) are in the same path component. Let \(C_{p,\alpha }\) be a positive constant as in Lemma 3.6, Then there exists a finite sequence of bounded composition operators \(\{C_{\varphi _i}\}_{i=1}^{m}(m\ge 2)\) with \(C_{\varphi _1}=C_\psi\), \(C_{\varphi _{m}}=C_\varphi\) and \(\Vert C_{\varphi _{i+1}}-C_{\varphi _i}\Vert <C_{p,\alpha }/2\) for \(i=1,\ldots ,m-1\). Let \(\varphi _i(z)=A_iz+B_i\). It follows from Lemma 3.6 that \(A_{i+1}\zeta = A_{i}\zeta\) for all \(\zeta\) with \(|A_i\zeta |=|\zeta |\) or \(|A_{i+1}\zeta |=|\zeta |\). By transitivity we conclude the desired result.

Conversely, if \(A\zeta = A_1\zeta\) for all \(\zeta\) satisfying \(|A\zeta |=|\zeta |\) or \(|A_1\zeta |=|\zeta |\), by Proposition 3.1 it is sufficient to show that \(C_{Az}\) and \(C_{A_1z}\) with \(\Vert A\Vert =\Vert A_1\Vert =1\) are in the same path component. By Lemma 2.3 there exist unitary matrices U and V such that \(A=UHV\) and \(A_1=UH_1V\) with

$$\begin{aligned} H=\left( \begin{array}{cc}E_k &{} O \\ O &{}D \end{array}\right) ,\qquad H_1=\left( \begin{array}{cc}E_k &{} O \\ O &{}D_1 \end{array}\right) , \end{aligned}$$

and \(\Vert D\Vert<1, ~\Vert D_1\Vert <1\). We only need to show that \(C_{Hz}\) and \(C_{H_1z}\) are in the same path component in \({\mathcal {C}}(F_\alpha ^p)\). The desired result follows from Corollary 3.5.

(b) From Proposition 2.1 and the proof of Theorem 3.7(a), we see easily that a compact operator and a noncompact bounded operator are not path connected. Therefore, it is enough to show that compact composition operators on \(F_\alpha ^p\) are in the same path component in \({\mathcal {C}}(F_\alpha ^p)\). Let A be an arbitrary \(n\times n\) matrix with \(\Vert A\Vert <1\). By Proposition 3.1 we only need to show that \(C_{Az}\) and \(C_{0}\) are in the same path component, where \(C_{0}\) denotes a composition operator induced by \(\psi (z)=0\). Let \(\varphi (z)=\Lambda z\) be the normalization of Az. It suffices to prove that \(C_{\Lambda z}\) and \(C_{0}\) are in the same path component. From Remark 3.4 we conclude that \(C_{t\Lambda z}\) is a continuous path joining \(C_{0}\) to \(C_{\Lambda z}\) as desired.

(c) Let U be a unitary matrix and \(\varphi (z)=Az+B\ne Uz\). Then \(A\ne U\) otherwise it follows that \(B=0\) from Proposition 2.1. Thus there exists a vector \(\zeta\) such that \(A\zeta \ne U\zeta\). But \(|U\zeta |=|\zeta |\). We conclude by Theorem 3.7(a) and (b) that \(C_{Uz}\) and \(C_\varphi\) are not in the same path component. On the other hand, if A is an \(n\times n\) non-unitary matrix with \(\Vert A\Vert \le 1\), we will show that there exists some \(n\times 1\) non-zero vector B such that \(C_{Az+B}\) is bounded on \(F_\alpha ^p\). If \(\Vert A\Vert <1\), then any \(n\times 1\) non-zero vector B may satisfy the requirement. When \(\Vert A\Vert =1\), we write \(A=U\Lambda V\) as before. By hypothesis \(\Lambda\) is not a unit matrix. Thus we may choose an \(n\times 1\) non-zero vector \(B'\) as described in Lemma 2.2 such that \(C_{\Lambda z+B'}\) is bounded on \(F_\alpha ^p\). Let \(B={U}B'\). Then \(B\ne 0\) and \(C_{Az+B}\) is bounded on \(F_\alpha ^p\). By Proposition 3.7, \(C_{Az}\) and \(C_{Az+B}\) are in the same path component. That is to say, \(C_{Az+B}\) is not isolated with \(Az+B\ne Uz\). The proof is complete. \(\square\)

Corollary 3.8

The components and the path components in \({\mathcal {C}}(F_\alpha ^p)\) are the same.

Proof

Let \(S_1\) and \(S_2\) be two distinct path components in \({{\mathcal {C}}(F_\alpha ^p)}\). For any \(C_\varphi \in S_1\) with \(\varphi (z)=Az+B\) and \(C_\psi \in S_2\) with \(\psi (z)=A_1z+B_1\), it is easy to see from Theorem 3.7 that there exists \(\zeta \in \mathbb {C}^n\) with \(|A\zeta |=|\zeta |\) or \(|A_1\zeta |=|\zeta |\) such that \(A\zeta \ne A_1\zeta\). Applying Lemma 3.6 we have \(\Vert C_\varphi -C_\psi \Vert \ge C_{p,\alpha }\). Thus \(\overline{S_1}\cap \overline{S_2}=\emptyset\). This means that \(S_1\) and \(S_2\) are distinct components. On the other hand, path connectedness implies connectedness. Therefore, this desired result follows. \(\square\)

4 Gleason’s problem on \(F_\alpha ^p\)

To solve Gleason’s problem on the weighted Fock space, we need two useful lemmas.

Lemma 4.1

Let \(0<p<\infty\) and \(\alpha\) real. For fixed a in \(\mathbb {C}^n\), we have

$$\begin{aligned} \int _{\mathbb {C}^n}(1+|w|)^{\alpha }e^{\frac{-|w|^2}{2}+ Re \langle a, w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] \mathrm{d}v(w) \preceq (1+|z|)^{\alpha -2}e^{\frac{|z|^2}{2}} \end{aligned}$$
(4.1)

for all z in \(\mathbb {C}^n\), and

$$\begin{aligned} \int _{\mathbb {C}^n}(1+|z|)^{\alpha }e^{-\frac{p}{2}|z|^2} \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] ^p\mathrm{d}v(z) \preceq (1+|w|)^{\alpha -2p}e^{\frac{p}{2}|w|^2-Re \langle pw, a\rangle } \end{aligned}$$
(4.2)

for all w in \(\mathbb {C}^n\).

Proof

We first prove

$$\begin{aligned} (1+|z|)(1+|w|)\int _0^1|e^{e^{t\langle z-a, w\rangle }}|\mathrm{d}t\preceq e^{\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8}}. \end{aligned}$$
(4.3)

An easy computation shows that

$$\begin{aligned} \max \left\{ Re( z\cdot \overline{w}), ~~\frac{|z|^2+|w|^2}{4}\right\} \le \frac{|z|^2+|w|^2}{2}-\frac{|z-w|^2}{8}. \end{aligned}$$
(4.4)

When \(\min \{|z|,|w|\}\ge 1+2|a|\), then \(1+|z|\le 2|z|\le 2(|z-a|+|a|)\le 4|z-a|\) and \(1+|w|\le 2|w|\). Thus, we obtain by (4.4)

$$\begin{aligned}&(1+|z|)(1+|w|)\int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t =(1+|z|)(1+|w|)\int _0^1e^{tRe \langle z-a, w\rangle }\mathrm{d}t\\&\le 8|z-a|\cdot |w|\int _0^1e^{t(\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8})}\mathrm{d}t\\&\le \frac{4(|z-a|^2+|w|^2)}{\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8}} \left( e^{\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8}}-1\right) \\&\le 16e^{\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8}}. \end{aligned}$$

On the other hand, when \(|z|<1+2|a|\) or \(|w|<1+2|a|\), we easily see that

$$\begin{aligned} (1+|z|)(1+|w|)\int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t&\le (1+|z|)(1+|w|)e^{|z-a||w|} \preceq e^{\frac{|z-a|^2+|w|^2}{4}}\\&\le e^{\frac{|z-a|^2+|w|^2}{2}-\frac{|z-a-w|^2}{8}}. \end{aligned}$$

This completes the proof of (4.3). Next, we have by (4.3) and (2.3)

$$\begin{aligned}&\int _{\mathbb {C}^n}(1+|w|)^{\alpha } e^{-\frac{1}{2}|w|^2+Re \langle a, w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] \mathrm{d}v(w) \\&\preceq (1+|z|)^{-1}e^{\frac{|z|^2}{2}}\int _{\mathbb {C}^n}(1+|w|)^{\alpha -1} e^{-\frac{|w-z+a|^2}{8}+Re \langle a, w-z\rangle }\mathrm{d}v(w) \\&\preceq (1+|z|)^{\alpha -2} e^{\frac{|z|^2}{2}}\int _{\mathbb {C}^n} (1+|w-z|)^{|\alpha -1|} e^{-\frac{|w-z-3a|^2}{8}}\mathrm{d}v(w)\\&= (1+|z|)^{\alpha -2} e^{\frac{|z|^2}{2}}\int _{\mathbb {C}^n} (1+|w|)^{|\alpha -1|} e^{-\frac{|w-3a|^2}{8}}\mathrm{d}v(w)\\&\preceq (1+|z|)^{\alpha -2} e^{\frac{|z|^2}{2}}. \end{aligned}$$

This proves (4.1). Finally, we see from (4.3) and (2.3) that

$$\begin{aligned}&e^{Re \langle pw, a\rangle }\int _{\mathbb {C}^n}(1+|z|)^{\alpha }e^{-\frac{p}{2}|z|^2} \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] ^p\mathrm{d}v(z)\\&\preceq (1+|w|)^{-p}e^{\frac{p}{2}|w|^2}\int _{\mathbb {C}^n}(1+|z|)^{\alpha -p} e^{\frac{-p|z-a-w|^2}{8}-Re \langle p(z-w), a\rangle }\mathrm{d}v(z) \\&\preceq (1+|w|)^{\alpha -2p} e^{\frac{p}{2}|w|^2}\int _{\mathbb {C}^n} (1+|z-w|)^{|\alpha -p|} e^{-\frac{p|z-w+3a|^2}{8}}\mathrm{d}v(z)\\&\preceq (1+|w|)^{\alpha -2p} e^{\frac{p}{2}|w|^2}. \end{aligned}$$

The proof is complete. \(\square\)

Lemma 4.2

Let \(1<p<\infty\) and \(\alpha\) real. Fix \(a\in \mathbb {C}^n\) and define an integral operator T by

$$\begin{aligned} Tf(z)=\int _{\mathbb {C}^n}(1+|w|)e^{-|w|^2+Re \langle a,w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] f(w)\mathrm{d}v(w). \end{aligned}$$

Then \(T: L_\alpha ^p\rightarrow L^p_{\alpha -p}\) is bounded.

Proof

Note that \(f(z)\in L^p_{\alpha -p}\) if and only if \((1+|z|)f(z)\in L_\alpha ^p\). We define an integral operator S associated with T by

$$\begin{aligned} Sf(z)&=(1+|z|)Tf(z)\\&=\int _{\mathbb {C}^n}(1+|z|)(1+|w|)e^{-|w|^2+Re \langle a,w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] f(w)\mathrm{d}v(w). \end{aligned}$$

It is sufficient to prove the operator S is bounded on \(L_\alpha ^p\). Let

$$\begin{aligned} \mathrm{d}\lambda (w)=e^{-\frac{p}{2}|w|^2}\mathrm{d}v_\alpha (w). \end{aligned}$$

Then \(L_\alpha ^p=L^p(\mathbb {C}^n, \mathrm{d}\lambda )\) and

$$\begin{aligned} Sf(z)=\int _{\mathbb {C}^n}H(z,w)f(w)\mathrm{d}\lambda (w), \end{aligned}$$

where

$$\begin{aligned} H(z,w)=(1+|z|)(1+|w|)^{\alpha +1}e^{(\frac{p}{2}-1)|w|^2+Re \langle a,w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] . \end{aligned}$$

For \(1<q<\infty\) with \(1/p+1/q\)=1, let \(h(z)=e^{\frac{|z|^2}{2q}}\). By (4.1) we have

$$\begin{aligned}&\int _{\mathbb {C}^n}H(z,w)h^q(w)\mathrm{d}\lambda (w)\\&=(1+|z|)\int _{\mathbb {C}^n}(1+|w|)e^{-\frac{|w|^2}{2}+Re \langle a,w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] \mathrm{d}v(w)\\&\preceq e^{\frac{|z|^2}{2}}=h^q(z). \end{aligned}$$

On the other hand, by (4.2) we obtain

$$\begin{aligned} \int _{\mathbb {C}^n}H(z,w)h^p(z)\mathrm{d}\lambda (z)&=(1+|w|)^{\alpha +1}e^{(\frac{p}{2}-1)|w|^2+Re \langle a,w\rangle }\\&\times \int _{\mathbb {C}^n}(1+|z|)^{1-\alpha }e^{-\frac{|z|^2}{2}} \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] \mathrm{d}v(z)\\&\preceq e^{\frac{p-1}{2}|w|^2}=h^p(w). \end{aligned}$$

By Lemma 2.4 we conclude that the operator S is bounded on \(L^p(\mathbb {C}^n, \mathrm{d}\lambda )\) as desired. \(\square\)

Theorem 4.3

Let \(\alpha\) be a real number and a be any fixed point in \(\mathbb {C}^n\). For \(0<p<\infty\), there exist bounded linear operators \(A_1,\ldots ,A_n\) from \(F^p_\alpha\) to \(F^p_{\alpha -p}\) such that

$$\begin{aligned} f(z)-f(a)=\sum _{k=1}^n (z_k-a_k)A_kf(z) \end{aligned}$$

for all f in \(F^p_\alpha\) and z in \(\mathbb {C}^n\). In addition, there exist bounded linear operators \(A_1,\ldots ,A_n\) from \(F^\infty _\alpha\) to \(F^\infty _{\alpha -1}\), such that

$$\begin{aligned} f(z)-f(a)=\sum _{k=1}^n (z_k-a_k)A_kf(z) \end{aligned}$$

for all f in \(F^\infty _\alpha\) and z in \(\mathbb {C}^n\). \(\square\)

Proof

Let \(f\in F^p_\alpha\) and define \(A_k\) by (1.1) \((1\le k\le n)\). Obviously \(A_k\) is linear and \(A_kf\) is holomorphic on \(\mathbb {C}^n\). Furthermore, by (1.1), (2.2) and Fubini’s theorem we may write

$$\begin{aligned} A_k f(z)= \int _{\mathbb {C}^n}\overline{w_k}e^{\langle a, w\rangle }e^{-|w|^2} \left[ \int _0^1e^{t\langle z-a, w\rangle }\mathrm{d}t\right] f(w)\mathrm{d}v(w). \end{aligned}$$

To prove the boundedness of \(A_k:F^p_\alpha \rightarrow F^p_{\alpha -p}\), we first consider the case \(0<p\le 1\). It is easy to see that

$$\begin{aligned} |A_k f(z)|\le \int _{\mathbb {C}^n}|w|e^{-|w|^2} \left| e^{\langle a, w\rangle }\int _0^1e^{t\langle z-a, w\rangle }\mathrm{d}t\right| |f(w)|\mathrm{d}v(w). \end{aligned}$$
(4.5)

Since the following function

$$\begin{aligned} e^{\langle a, w\rangle }\int _0^1e^{t\langle z-a, w\rangle }\mathrm{d}t \end{aligned}$$

is anti-holomorphic with respect to w on \(\mathbb {C}^n\), by Lemma 2.2 in [10] we have

$$\begin{aligned} |A_kf(z)|^p\preceq \int _{\mathbb {C}^n}|w|^p|e^{p\langle a, w\rangle }|e^{-p|w|^2} \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] ^p|f(w)|^p\mathrm{d}v(w). \end{aligned}$$

By Fubini’s theorem, we have

$$\begin{aligned} \int _{\mathbb {C}^n}\left| A_kf(z)e^{-\frac{1}{2}|z|^2}\right| ^p\mathrm{d}v_{\alpha -p}(z)\preceq \int _{\mathbb {C}^n}|f(w)|^pe^{-p|w|^2+Re \langle pa, w\rangle }|w|^p g(w)\mathrm{d}v(w), \end{aligned}$$

where

$$\begin{aligned} g(w)=\int _{\mathbb {C}^n}(1+|z|)^{p-\alpha }e^{-\frac{p}{2}|z|^2} \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] ^p\mathrm{d}v(z). \end{aligned}$$

Using (4.2), we deduce

$$\begin{aligned} \int _{\mathbb {C}^n}\left| A_kf(z)e^{-\frac{1}{2}|z|^2}\right| ^p\mathrm{d}v_{\alpha -p}(z) \preceq \int _{\mathbb {C}^n}|f(w)|^pe^{-\frac{p}{2}|w|^2}(1+|w|)^{-\alpha }\mathrm{d}v(w). \end{aligned}$$

This shows \(\Vert A_kf\Vert _{p,\alpha -p}\preceq \Vert f\Vert _{p,\alpha }\).

Next, for \(1<p<\infty\), it follows from Lemma 4.2 that \(\Vert A_kf\Vert _{p,\alpha -p}\le \Vert T|f|\Vert _{p,\alpha -p}\preceq \Vert f\Vert _{p,\alpha }\).

Finally, when \(p=\infty\) it remains to show the boundedness of \(A_k: F^\infty _\alpha \rightarrow F^\infty _{\alpha -1}\). From the definition of \(F^\infty _\alpha\), together with (4.5) and (4.1), we have

$$\begin{aligned}&\frac{e^{\frac{-|z|^2}{2}}|A_k f(z)|}{(1+|z|)^{\alpha -1}}\\&\preceq \frac{ e^{\frac{-|z|^2}{2}}\Vert f\Vert _{\infty ,\alpha }}{(1+|z|)^{\alpha -1}} \int _{\mathbb {C}^n}(1+|w|)^{\alpha +1}e^{\frac{-|w|^2}{2}+Re \langle a, w\rangle } \left[ \int _0^1|e^{t\langle z-a, w\rangle }|\mathrm{d}t\right] \mathrm{d}v(w)\\&\preceq \Vert f\Vert _{\infty ,\alpha }. \end{aligned}$$

This proves that \(A_k: F^\infty _\alpha \rightarrow F^\infty _{\alpha -1}\) is bounded. \(\square\)