1 Introduction

The tempered fractional calculus is a generalization of the fractional calculus, and the definition contains both the weak singular kernel and the exponential kernel. It has particular mathematical properties and plays an important role in the actual mathematical physics model. The tempered fractional calculus describes the transition between normal and anomalous diffusions or some anomalous diffusions in finite time or bounded space domain. As we know, the anomalous diffusion phenomena can be seen frequently in the nature world, and the continuous time random walk (CTRW) model has been proved to be a useful tool that describes this phenomenon well [28]. The process of the CTRW model, which is non-Markovian is usually depicted by the waiting time probability density function (PDF) and the jump length PDF. For the CTRW model with tempered power law waiting time, the PDF of diffusion particles obeys the tempered fractional diffusion equation [13, 16, 40]

$$\begin{aligned} u_t(\mathbf{x} ,t)=\kappa _\alpha ~_{0}{\text{D}}_t^{1-\alpha ,\lambda }\left( \Delta u(\mathbf{x} ,t)\right) -\lambda u(\mathbf{x} ,t), \end{aligned}$$
(1)

where \(u(\mathbf{x} ,t)\) denotes the probability density of searching a particle in position \(\mathbf{x}\) at time t, \(\kappa _\alpha >0\) is the diffusion coefficient, the standard Laplace operator \(\Delta =\sum\limits_{i=1}^{d}\frac{\partial ^2}{\partial x^2_i},d=1,2,\) and \(_{0}{\text{D}}_t^{1-\alpha ,\lambda }\,(0<\alpha <1)\) represents the Riemann–Liouville tempered fractional derivative operator. The Riemann–Liouville tempered fractional derivative of order \(\beta\,(n-1<\beta <n)\) gives [18, 31]

$$\begin{aligned} _{0}{\text{D}}_t^{\beta ,\lambda }u(\mathbf{x} ,t) =\frac{{\text{e}}^{-\lambda t}}{{{\Gamma}} (n-\beta )}\frac{\mathrm{d}^n}{\mathrm{d} t^n}\int _{0}^t\frac{{\text{e}}^{\lambda s}u(\mathbf{x} ,s)}{(t-s)^{1+\beta -n}}\mathrm{d}s. \end{aligned}$$

Using the properties of the fractional derivative [21], Eq. (1) can be rewritten as

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(\mathbf{x} ,t)=\kappa _{\alpha }\Delta u(\mathbf{x} ,t), \end{aligned}$$
(2)

where \(_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }\) denotes the Caputo-tempered fractional derivative [21, 32, 37]

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)=\frac{{\text{e}}^{-\lambda t}}{\Gamma (1-\alpha )}\int _0^t\frac{({\text{e}}^{\lambda s}u(s))^\prime }{(t-s)^{\alpha }} \mathrm{d}s,~0<\alpha <1. \end{aligned}$$
(3)

The more detailed background and application of model (1), we refer to [16, 28] or Appendix A. For the equivalence of models (1) and (2), see [36].

In this paper, without loss of generality, we consider the following time fractional subdiffusion equation:

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(\mathbf{x} ,t)=\Delta u(\mathbf{x} ,t)+f(\mathbf{x} ,t),~\mathbf{x} \in \varOmega ,t\in (0,T] \end{aligned}$$

with the initial condition

$$\begin{aligned} u(\mathbf{x} ,0)=\phi (\mathbf{x} ),~\mathbf{x} \in \varOmega \end{aligned}$$

and a Dirichlet boundary condition

$$\begin{aligned} u(\mathbf{x} ,t)=\psi (\mathbf{x} ,t),~\mathbf{x} \in \partial \varOmega ,t\in (0,T], \end{aligned}$$

where \(\varOmega \in R^d\) is a bounded domain in \(\mathbb {R}^d,d=1,2\) with the boundary \(\partial \varOmega\), and \(f,\phi ,\psi\) are given functions.

There are several numerical approaches to the Caputo fractional derivative. The first technique is the piecewise interpolation polynomials, such as the L1 approximation [10, 11, 23, 29, 35, 42], the L1-2 approximation [14, 20], and the L2-\(1_{\sigma }\) approximation [1] and so on. Another widely used technique is the shifted Grünwald–Letnikov approach [2, 6, 19, 26, 30]. The main idea is to approximate the Riemann–Liouville derivative by the Grünwald–Letnikov formula. The third used technique is the so called Lubich’s approach which is introduced by [25]. The main advantages of above-mentioned approaches are simplicity and efficiency. More importantly, the error estimates can be analyzed when above-mentioned approaches are used to approximate the time fractional diffusion equations [22, 38]. More applications of above-mentioned approaches to solve the various kinds of fractional order partial differential equations, see [15, 24, 34] and references, therein.

Recently, there has been a vast interest in the numerical solutions of tempered fractional differential equations due to their wide applications [2, 4, 7, 9, 16, 27, 37, 40, 41]. Several numerical methods, such as the Grünwald–Letnikov approach and the Lubich’s approach, have been used to approximate the tempered fractional derivatives. In [2], Baeumera and Meerschaert presented the finite difference scheme and the particle tracking method for the space-tempered fractional diffusion equation with drift. Applying the spectral method, Zayernouri et al. [39] obtained the eigenfunctions of the tempered fractional Sturm–Liouville problem. Based on the weighted and shifted Grünwald difference (WSGD) operator, Li and Deng [19] constructed a series of high-order numerical forms for the space-tempered fractional diffusion equation, and proved the stability and convergence by the matrix analysis. Using the weighted and shifted Lubich difference operator to approximate the time-tempered fractional derivative, Sun et al. [36] analyzed some local discontinuous Galerkin schemes for a time-tempered fractional diffusion equation. The implicit numerical scheme of the tempered fractional Black–Scholes equation is provided by Zhang et al. [43], and the corresponding theoretical analysis is given. Using the Lubich’s approach for the time-tempered fractional derivative, Chen and Deng [5] derived a high-order algorithm for a time–space fractional Feynman–Kac equation. Dehghan et al. [8] proposed a numerical scheme that is convergent with the second-order accuracy in time for the space–time tempered fractional diffusion–wave equation, and the unconditional stability and convergence of the developed method are also proved. Deng and Zhang [9] developed the finite difference/finite element schemes for a time fractional Feynman–Kac equation. Ding and Li [12] designed a high-order numerical algorithm to solve the space-tempered fractional convection equation with Riemann–Liouville fractional derivatives, and the rigorous stability and convergence analysis of the algorithm are also given. So far, the application of the piecewise interpolation polynomial technique to solve the tempered fractional diffusion equation has not been intensively investigated.

In this paper, we are interested in developing efficient and accurate numerical approximations for the time-tempered fractional diffusion equation. In particular, one of the challenges of this problem lies in the existence of the singular kernel and the smooth kernel. To overcome the difficulty, we discrete the tempered Caputo fractional derivative by transforming it to the conventional Caputo fractional derivative. In Sect. 2, we present three kinds of quadrature formulas for the Caputo-tempered fractional derivative of order \({\alpha} \in (0,1)\). The tempered L1 formula with the order \(2-\alpha\), the tempered L1-2 and L2-\(1_{\sigma }\) formulas with the order \(3-\alpha\). And the corresponding analysis of truncation errors of three formulas are discussed in detail. The presented discrete formulas are applied to solve the time-tempered fractional diffusion equations of one dimension and two dimension in Sects. 3 and 4, respectively. Besides, the unconditional stability and convergence of difference schemes with tempered L1 and L2-\(1_{\sigma }\) formulas are proved by the Fourier method. In Sect. 5, the numerical results in the examples illustrate the effectiveness of the three proposed discrete methods. Finally, we make a brief conclusion in Sect. 6.

2 Interpolation Formulas of Caputo-Tempered Fractional Derivative

In this section, we are concerned with the efficient numerical discretization of the Caputo-tempered fractional derivative. For a given positive integer N, let \(\{t_k\}_{k=0}^{N}\) be an equidistant partition of [0, T], and denote \(t_k=k\tau ,t_{k+1/2}={(t_k+t_{k+1})}/{2}\), where \(\tau =T/N\) is the time step size.

2.1 Tempered L1 Formula

To discrete the Caputo-tempered fractional derivative (3), we introduce the following notations:

$$\begin{aligned} \delta _tv_{k-\frac{1}{2}}=\frac{v(t_k)-v(t_{k-1})}{\tau }~~,~~\delta _t^2v_k=\frac{\delta _tv_{k+\frac{1}{2}}-\delta _tv_{k-\frac{1}{2}}}{\tau }, \end{aligned}$$

then we denote the linear interpolation function of v(t) as \(P_{1,\ell }v(t)\) on each small interval \([t_{\ell -1},t_\ell ]\,(1\leqslant \ell \leqslant k)\), i.e.,

$$\begin{aligned} P_{1,\ell }v(t)=v(t_{\ell -1})\frac{t_\ell -t}{\tau }+v(t_\ell )\frac{t-t_{\ell -1}}{\tau }, \end{aligned}$$

which leads to

$$\begin{aligned} (P_{1,\ell }v(t))'=\frac{v(t_\ell )-v(t_{\ell -1})}{\tau }=\delta _tv_{\ell -\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned} v(t)-P_{1,\ell }v(t)=\frac{v''(\xi _\ell )}{2}(t-t_{\ell -1})(t-t_\ell ), ~~t\in [t_{\ell -1},t_\ell ],~\xi _\ell \in (t_{\ell -1},t_\ell ). \end{aligned}$$

Denoting \(v(t)={\text{e}}^{\lambda t}u(t)\) and using the piecewise linear approximation on each cell \([t_{\ell -1},t_\ell ]\), then we can get the expression of the tempered L1 formula of the Caputo-tempered fractional derivative, as follows:

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}=\,&\frac{{\text{e}}^{-\lambda t_k}}{\Gamma (1-\alpha )}\sum _{\ell =1}^{k}\int _{t_{\ell -1}}^{t_\ell }(t_k-s)^{-\alpha }(P_{1,\ell }v(s))'\mathrm{d}s+R^k \\=&\frac{{\text{e}}^{-\lambda t_k}}{\Gamma (1-\alpha )}\sum_{\ell =1}^{k}\delta _tv_{\ell -\frac{1}{2}}\int _{t_{\ell -1}}^{t_\ell }(t_k-s)^{-\alpha }\mathrm{d}s+R^k \\=&\frac{{\text{e}}^{-\lambda t_k}{\tau }^{1-\alpha }}{\Gamma (2-\alpha )}\sum _{\ell =1}^{k}a_{k-\ell }^{(\alpha )}\delta _tv_{\ell -\frac{1}{2}}+R^k. \end{aligned}$$
(4)

By simple calculation, Eq. (4) provides

$$\begin{aligned}&{_0^{\text{C}}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}\nonumber \\&=\frac{{\tau }^{-\alpha }}{\Gamma (2-\alpha )} \Bigg [a_0^{(\alpha )}u(t_k)-\sum _{\ell =1}^{k-1}\left( a_{k-\ell -1}^{(\alpha )} -a_{k-\ell }^{(\alpha )}\right) {\text{e}}^{\lambda (t_\ell - t_k)}u(t_\ell )-a_{k-1}^{(\alpha )}{\text{e}}^{\lambda (t_0-t_k)}u(t_0)\Bigg ]+R^k\nonumber \\& =:~\mathbb {D}_t^{\alpha ,\lambda }u({t_{k}})+R^k, \end{aligned}$$
(5)

where

$$\begin{aligned} R^k\,=\,_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}-\mathbb {D}_{t}^{\alpha ,\lambda }u(t_{k}), \end{aligned}$$

and

$$\begin{aligned} a_j^{(\alpha )}=(j+1)^{1-\alpha }-j^{1-\alpha }~,~~~0\leqslant j\leqslant k-1. \end{aligned}$$
(6)

We denote \(\mu =\tau ^{\alpha }\Gamma {(2-\alpha )},~U^k\approx u(t_k)\) and

$$\begin{aligned}\overline{d}_{a,m}^{(\alpha )}=a_{k-m}^{(\alpha )}{\text{e}}^{\lambda (t_{m-1}-t_k)},~m=1,2,\cdots, k, \end{aligned}$$
(7)
$$\begin{aligned}&\widetilde{d}_{a,m}^{(\alpha )}=a_{k-m}^{(\alpha )}{\text{e}}^{\lambda (t_m-t_k)},~m=1,2,\cdots, k, \end{aligned}$$
(8)

then the tempered L1 approximation operator \(\mathbb {D}_t^{\alpha ,\lambda }U^k\) can be rewritten as the following form:

$$\begin{aligned} \mathbb {D}_t^{\alpha ,\lambda }U^k=\frac{1}{\mu }\Bigg [\widetilde{d}_{a,k}^{(\alpha )}U^k-\sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) U^{\ell }-\overline{d}_{a,1}^{(\alpha )}U^0\Bigg ]. \end{aligned}$$
(9)

For coefficients \(\{{a_j^{(\alpha )}}\}\), \(\{\overline{d}_{a,m}^{(\alpha )}\}\), and \(\{\widetilde{d}_{a,m}^{(\alpha )}\}\), we can obtain

Lemma 1

For any \(\alpha \in (0,1), k\geqslant 1\), the coefficients \(a_j^{(\alpha )}(0\leqslant j \leqslant k-1)\) and \(\overline{d}_{a,m}^{(\alpha )},~\widetilde{d}_{a,m}^{(\alpha )}\) \((1\leqslant m\leqslant k)\) defined in Eqs. (6), (7), and (8) satisfy

  1. (i)

    \(a_j^{(\alpha )}>0;\)

  2. (ii)

    \(1=a_0^{(\alpha )}>a_1^{(\alpha )}>a_2^{(\alpha )}>\cdots >a_{k-1}^{(\alpha )};\)

  3. (iii)

    \(\sum\limits _{j=0}^{k-1}a_j^{(\alpha )}=k^{1-\alpha };\)

  4. (iv)

    \(\overline{d}_{a,m}^{(\alpha )}>0,~\widetilde{d}_{a,m}^{(\alpha )}>0;\)

  5. (v)

    \(\overline{d}_{a,1}^{(\alpha )}<\overline{d}_{a,2}^{(\alpha )}<\overline{d}_{a,3}^{(\alpha )}<\cdots <\overline{d}_{a,k}^{(\alpha )};\)

  6. (vi)

    \(\widetilde{d}_{a,1}^{(\alpha )}<\widetilde{d}_{a,2}^{(\alpha )}<\widetilde{d}_{a,3}^{(\alpha )}< \cdots <\widetilde{d}_{a,k}^{(\alpha )};\)

  7. (vii)

    \(\overline{d}_{a,m+1}^{(\alpha )}-\widetilde{d}_{a,m}^{(\alpha )} \leqslant a_{k-m-1}^{(\alpha )}-a_{k-m}^{(\alpha )},~1\leqslant m\leqslant k-1;\)

  8. (viii)

    \(\overline{d}_{a,1}^{(\alpha )}\leqslant a_{k-1}^{(\alpha )}.\)

Proof

The proof is provided in Appendix B.

Lemma 2

Assume that \(u(t)\in C^2[0,t_k]\). Then, there is the following error estimate:

$$\begin{aligned} \left| R^k\right|&\leqslant \frac{1}{2\Gamma {(1-\alpha )}} \Big [\frac{1}{4}+\frac{\alpha }{(1-\alpha )(2-\alpha )}\Big ]\Big [\lambda ^2\mathop {\mathrm{max}}_{t_0\leqslant t\leqslant t_k}\left| u(t)\right| +2\lambda \mathop {\mathrm{max}}_{t_0\leqslant t\leqslant t_k}\left| u'(t)\right| \nonumber \\&\quad +\mathop {\mathrm{max}}_{t_0\leqslant t\leqslant t_k}\left| u''(t)\right| \Big ]{\tau ^{2-\alpha }} \end{aligned}$$
(10)

for \(R^k\).

Proof

We list the proof in Appendix C.

To see the smoothness of the solution more clearly, we also give the asymptotic expansion formula of the tempered fractional derivative. The asymptotic expansion formula of the tempered L1 approximation is derived from the asymptotic expansion of the L1 approximation. There is the asymptotic expansion of the L1 approximation of the order \(3-\alpha\) [10, 11]

$$\begin{aligned}&\frac{1}{\mu }\sum _{\ell =0}^{k}\varpi _\ell ^{(\alpha )}u^{k-\ell }\\& =\,_0^{\text{C}}{}{\text{D}}_t^{\alpha }u(t)\big |_{t=t_k}+\frac{\zeta (\alpha -1)}{\Gamma {(2-\alpha )}}(u^k)^{''}\tau ^{2-\alpha }-\Bigg (\frac{u^{\prime }(0)}{\Gamma {(-\alpha )}{t_k}^{1+\alpha }}\\&\quad -\frac{\mathrm{d}^2}{\mathrm{d}t^2} {_0^{\text{C}}}{\text{D}}_t^{\alpha }u(t)\Big |_{t=t_k} \Bigg )\frac{\tau ^2}{12}+\mathcal {O}(\tau ^{3-\alpha }), \end{aligned}$$

where \(u^k=u(t_k),\,\zeta (s)\) is the Riemann zeta function, and the L1 approximation has weights \(\varpi _0^{(\alpha )}=1,\varpi _k^{(\alpha )}=(k-1)^{1-\alpha }-k^{1-\alpha }\), and \(\varpi _\ell ^{(\alpha )}=(\ell -1)^{1-\alpha }-2\ell ^{1-\alpha }+(\ell +1)^{1-\alpha }\) for \(1\leqslant l \leqslant k-1\).

The tempered L1 approximation (9) has weights \(\widetilde{d}_{a,k}^{(\alpha )}=\varpi _0^{(\alpha )}=1,\overline{d}_{a,1}^{(\alpha )}=-\varpi _k^{(\alpha )}/{\text{e}}^{\lambda k \tau }\), and \(\overline{d}_{a,k-\ell +1}^{(\alpha )} -\widetilde{d}_{a,k-\ell }^{(\alpha )}=-\varpi _\ell ^{(\alpha )}/{\text{e}}^{\lambda \ell \tau }~(1\leqslant \ell \leqslant k-1)\). By applying the asymptotic expansion formula for the function \({\text{e}}^{\lambda s}u(s)\) and multiplying by \({\text{e}}^{-\lambda t_k}\), we obtain the asymptotic expansion formula of the order \(3-\alpha\) of the tempered L1 approximation as follows:

$$\begin{aligned}&\frac{1}{\mu }\Bigg (\widetilde{d}_{a,k}^{(\alpha )}u^k-\sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) u^{\ell }-\overline{d}_{a,1}^{(\alpha )}u^0\Bigg )\\& =\,_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}+\frac{\zeta (\alpha -1)}{\Gamma {(2-\alpha )}}\left( (u^k)^{''}+2\lambda (u^k)^{\prime }+\lambda ^2 u^k\right) \tau ^{2-\alpha }\\& \quad-\Bigg [\frac{{\text{e}}^{-\lambda t_k}(\lambda u(0)+u^{\prime }(0))}{\Gamma {(-\alpha )}t_k^{1+\alpha }}-\Bigg (\frac{\mathrm{d}^2}{\mathrm{d}t^2}+2\lambda \frac{\mathrm{d}}{\mathrm{d}t}+\lambda ^2\Bigg ) {_0^{\text{C}} {\text{D}}}_t^{\alpha ,\lambda }u(t)\,\Big |_{t=t_k}\Bigg ] \frac{\tau ^2}{12}+\mathcal {O}(\tau ^{3-\alpha }). \end{aligned}$$

2.2 Tempered L1-2 Formula

To improve the accuracy, we apply the quadratic interpolation \(P_{2,\ell }v(t)\) on each cell  \([t_{\ell -1},t_\ell ](\ell \geqslant 2)\) and the linear interpolation \(P_{1,1}v(t)=\delta _t v_{1/2}\) on the first cell \([t_0,t_1]\) to approximate the function v(t) like [14]. For the cells \([t_{\ell -1},t_\ell ] \,(\ell \geqslant 2)\), the quadratic interpolation function \(P_{2,\ell }v(t)\) with three points \((t_{\ell -2},v(t_{\ell -2}))\), \((t_{\ell -1},v(t_{\ell -1}))\), and \((t_\ell ,v(t_\ell ))\) is employed, i.e.,

$$\begin{aligned} P_{2,\ell }v(t)=\,&v(t_{\ell -1})+\frac{v(t_{\ell })-v(t_{\ell -1})}{\tau }(t-t_{\ell -1})\\&-\frac{v(t_{{\ell }})-2v(t_{\ell -1})+v(t_{\ell -2})}{\tau ^2}\frac{(t-t_{\ell -1})(t_{\ell }-t)}{2}, \end{aligned}$$

and it leads to

$$\begin{aligned} \left( P_{2,\ell }v\left( t\right) \right) '=\delta _t v_{\ell -\frac{1}{2}}+\left( \delta _t^2v_{\ell -1}\right) \left( t-t_{\ell -\frac{1}{2}}\right) , \end{aligned}$$
(11)

and

$$\begin{aligned} v\left( t\right) -P_{2,\ell }v\left( t\right) =\frac{v'''\left( \eta _\ell \right) }{6}\left( t-t_{\ell -2}\right) \left( t-t_{\ell -1}\right) \left( t-t_\ell \right) ,~~t\in [t_{\ell -1},t_\ell ],~\eta _\ell \in \left( t_{\ell -2},t_\ell \right) . \end{aligned}$$

By virtue of Eq. (11), we can obtain

$$\begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}\\&=\frac{{\text{e}}^{-\lambda t_k}}{\Gamma (1-\alpha )}\Bigg [\int _{t_0}^{t_1}(t_k-s)^{-\alpha }(P_{1,1}v(s))'\mathrm{d}s+\sum _{\ell =2}^{k}\int _{t_{\ell -1}}^{t_\ell }(t_k-s)^{-\alpha }(P_{2,\ell }v(s))'\mathrm{d}s\Bigg ]+T^k\\& =\frac{{\text{e}}^{-\lambda t_k}}{\Gamma (1-\alpha )} \Bigg [ \sum _{\ell =1}^{k}\delta _tv_{\ell -\frac{1}{2}} \int _{t_{\ell -1}}^{t_\ell } (t_k-s)^{-\alpha }\mathrm{d}s +\sum _{\ell =2}^{k}(\delta _t^2v_{\ell -1}) \int _{t_{\ell -1}}^{t_\ell } (s-t_{\ell -\frac{1}{2}}) (t_k-s)^{-\alpha }\mathrm{d}s \Bigg ]+T^k\\&=\mathbb {D}_{t}^{\alpha ,\lambda }u({t_k})+\frac{{\text{e}}^{-\lambda t_k}\tau ^{2-\alpha }}{\Gamma (2-\alpha )}\sum _{\ell =2}^kb_{(k-\ell )}^{(\alpha )}\delta _t^2v_{\ell -1}+T^k. \end{aligned}$$

Recalling \(v={\text{e}}^{\lambda t}u\), we have

$$\begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}\nonumber \\& =\frac{1}{\mu } \Bigg [c_0^{(k,\alpha )}u(t_k)-\sum _{\ell =1}^{k-1} \left( c_{k-\ell -1}^{(k,\alpha )}-c_{k-\ell }^{(k,\alpha )}\right) {\text{e}}^{\lambda (t_\ell -t_k)}u(t_\ell )-c_{k-1}^{(k,\alpha )}{\text{e}}^{\lambda (t_0-t_k)}u(t_0) \Bigg ]+T^k\nonumber \\& :=\partial _{t}^{\alpha ,\lambda }u(t_k)+T^k, \end{aligned}$$
(12)

where \(T^k={_0^{\text{C}}} {\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_k}-\partial _t^{\alpha ,\lambda }u({t_k}).\) For \(k=1\), there is \(c_0^{(k,\alpha )}=a_0^{(\alpha )}=1\); for \(k\geqslant 2\), the coefficients are given as

$$\begin{aligned} c_j^{(k,\alpha )}=\left\{ \begin{aligned}&a_0^{(\alpha )}+b_0^{(\alpha )}~,~~~~~~~~~~~~j=0,\\&a_j^{(\alpha )}+b_{j}^{(\alpha )}-b_{j-1}^{(\alpha )}~,~~1\leqslant j \leqslant k-2,\\&a_j^{(\alpha )}-b_{j-1}^{(\alpha )}~,~~~~~~~~~~~j=k-1, \end{aligned} \right. \end{aligned}$$
(13)

and

$$\begin{aligned} b_j^{(\alpha )}=\frac{1}{2-\alpha }\left[ (j+1)^{2-\alpha }-j^{2-\alpha }\right] -\frac{1}{2}\left[ (j+1)^{1-\alpha }+j^{1-\alpha }\right] ,~j\geqslant 0. \end{aligned}$$

We call the fractional numerical differentiation formula (12) the tempered L1-2 formula, which adds a correction term \(\frac{{\text{e}}^{-\lambda t_k}\tau ^{2-\alpha }}{\Gamma (2-\alpha )}\sum\limits _{\ell =2}^k b_{(k-\ell )}^{(\alpha )}\delta _t^2v_{\ell -1}\) in the tempered L1 operator \(\mathbb {D}_{t}^{\alpha ,\lambda }u({t_k})\) for \(k\geqslant 2\). Setting

$$\begin{aligned}&\overline{d}_{c,m}^{(k,\alpha )}=c_{k-m}^{(k,\alpha )}{\text{e}}^{\lambda (t_{m-1}-t_k)},~m=1,2,\cdots, k, \end{aligned}$$
(14)
$$\begin{aligned}&\widetilde{d}_{c,m}^{(k,\alpha )}=c_{k-m}^{(k,\alpha )}{\text{e}}^{\lambda (t_m-t_k)},~m=1,2,\cdots, k, \end{aligned}$$
(15)

the tempered L1-2 approximation operator \(\partial _t^{\alpha ,\lambda }U^k\) can be rewritten as

$$\begin{aligned} \partial _t^{\alpha ,\lambda }U^k=\frac{1}{\mu }\Bigg [\widetilde{d}_{c,k}^{(k,\alpha )}U^k-\sum _{\ell =1}^{k-1}\left( \overline{d}_{c,\ell +1}^{(k,\alpha )} -\widetilde{d}_{c,\ell }^{(k,\alpha )}\right) U^{\ell }-\overline{d}_{c,1}^{(k,\alpha )}U^0\Bigg ]. \end{aligned}$$
(16)

The tempered L1-2 approximation operator (16) reduces to the tempered L1 approximation operator (9) for \(k=1\); for \(k=2\), \(c_0^{(k,\alpha )}\in (1,{3}/{2}),~c_1^{(k,\alpha )}\in (-{1}/{2},1)\), then we can obtain \(\overline{d}_{c,2}^{(k,\alpha )}-\widetilde{d}_{c,1}^{(k,\alpha )}\leqslant c_0^{(k,\alpha )}-c_1^{(k,\alpha )}\); as for \(k\geqslant 3\), the properties of \(\overline{d}_{c,m}^{(k,\alpha )}\) and \(\widetilde{d}_{c,m}^{(k,\alpha )}\,(1\leqslant m \leqslant k)\) can be derived with the help of properties of \(c_j^{(k,\alpha )}\), see [14] .

Lemma 3

For any \(\alpha \in (0,1),~k\geqslant 3\), the coefficients \(c_j^{(k,\alpha )}\,(0\leqslant j \leqslant k-1)\) and \(\overline{d}_{c,m}^{(k,\alpha )}\), \(\widetilde{d}_{c,m}^{(k,\alpha )}\) \((1\leqslant m\leqslant k)\) defined in Eqs. (13), (14), and (15) satisfy

  1. (i)

    \(c_0^{(k,\alpha )}>\big |c_1^{(k,\alpha )}\big |;\)

  2. (ii)

    \(c_j^{(k,\alpha )}>0,~j\ne 1;\)

  3. (iii)

    \(c_2^{(k,\alpha )}\geqslant c_3^{(k,\alpha )}\geqslant \cdots \geqslant c_{k-1}^{(k,\alpha )};\)

  4. (iv)

    \(c_0^{(k,\alpha )}>c_2^{(k,\alpha )};\)

  5. (v)

    \(\overline{d}_{c,m}^{(k,\alpha )}>0,~\widetilde{d}_{c,m}^{(k,\alpha )}>0,~m\ne k-1;\)

  6. (vi)

    \(\overline{d}_{c,1}^{(k,\alpha )}\leqslant c_{k-1}^{(k,\alpha )};\)

  7. (vii)

    \(\overline{d}_{c,m+1}^{(k,\alpha )}>\widetilde{d}_{c,m}^{(k,\alpha )},~1\leqslant m\leqslant k-1,m\ne k-2;\)

  8. (viii)

    \(\overline{d}_{c,m+1}^{(k,\alpha )}-\widetilde{d}_{c,m}^{(k,\alpha )}\leqslant c_{k-m-1}^{(k,\alpha )}-c_{k-m}^{(k,\alpha )},~1\leqslant m\leqslant k-1,m\ne k-2.\)

It is easy to check that \(c_1^{(k,\alpha )}\in (-1/2,1),~c_2^{(k,\alpha )}\in (0,1)\), the positive and negative of \(c_1^{(k,\alpha )}\) and \(c_1^{(k,\alpha )}-c_2^{(k,\alpha )}\) change with the difference \(\alpha\,(0<\alpha <1)\), which are discussed in the following lemma.

Lemma 4

The coefficients of \(c_1^{(k,\alpha )}\) and \(c_1^{(k,\alpha )}-c_2^{(k,\alpha )}\) for different k and \(\alpha \in (0,1)\) satisfy

  1. (i)

    \(c_1^{(k,\alpha )}>0,~\overline{d}_{c,1}^{(k,\alpha )} \leqslant c_1^{(k,\alpha )},for~any~\alpha \in (0,\alpha _1),\alpha _1 \approx 0.673\,6~when~k=2;\)

  2. (ii)

    \(\begin{array}{c} c_1^{(k,\alpha )}-c_2^{(k,\alpha )}>0,~\overline{d}_{c,2}^{(k,\alpha )} -\widetilde{d}_{c,1}^{(k,\alpha )}\leqslant c_1^{(k,\alpha )}-c_2^{(k,\alpha )},~for~any~\alpha \in (0,\alpha _2),\alpha _2 \approx 0.390\,9,~k=3; \end{array}\)

  3. (iii)

    \(\begin{array}{c} c_1^{(k,\alpha )}-c_2^{(k,\alpha )}> 0,~\overline{d}_{c,k-1}^{(k,\alpha )} -\widetilde{d}_{c,k-2}^{(k,\alpha )}\leqslant c_1^{(k,\alpha )}-c_2^{(k,\alpha )},~for~any~\alpha \in (0,\alpha _3),\alpha _3\approx 0.373\,9,~k>3; \end{array}\)

  4. (iv)

    \(|c_1^{(k,\alpha )}-c_2^{(k,\alpha )}|<\frac{1}{2}.\)

Proof

The proof is provided in Appendix D.

Lemma 5

Suppose that \(u(t)\in C^3[0,t_k]\), and for the truncation error \(T^k\), we can derive that

$$\begin{aligned} \left| T^1\right|&\leqslant \frac{\alpha }{2\Gamma {(3-\alpha )}}\Big [\lambda ^2\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1}\left| u(t)\right| +2\lambda \mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1}\left| u'(t)\right| +\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1}\left| u''(t)\right| \Big ]{\tau ^{2-\alpha }}, \end{aligned}$$
(17)
$$\begin{aligned} \left| T^k\right| \leqslant&\frac{1}{\Gamma {(1-\alpha )}} \Big \{ \frac{\alpha }{12}\Big [\lambda ^2 \mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1}\left| u(t)\right| +2\lambda \mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1} \left| u'(t)\right| +\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_1} \left| u''(t)\right| \Big ](t_k-t_1)^{ -\alpha -1}{\tau ^{3}}\nonumber \\&+\Big [\frac{1}{12}+\frac{\alpha }{3(1-\alpha )(2-\alpha )}\Big (\frac{1}{2}+\frac{1}{3-\alpha }\Big )\Big ]\Big [\lambda ^3\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_k}\left| u(t)\right| +3\lambda ^2\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_k}\left| u'(t)\right| \nonumber \\&+3\lambda \mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_k}\left| u''(t)\right| +\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_k}\left| u'''(t)\right| \Big ]{\tau ^{3-\alpha }}\Big \}, ~k\geqslant 2. \end{aligned}$$
(18)

Proof

The proof is provided in Appendix E.

2.3 Tempered L2-\(1_{\sigma }\) Formula

By Alikhanov’s work [1], letting \(\sigma =1-\alpha /2\), we discuss the discretization of the tempered fractional derivative at \(t_{k+\sigma }\,(k=0,1,\cdots, N-1)\). The interpolation polynomial based on the quadratic interpolation on each interval \([t_{\ell -1},t_{\ell }]\,(1 \leqslant \ell \leqslant k)\) is constructed to approximate \(v(t)={\text{e}}^{\lambda t}u(t)\) using the three points \((t_{\ell -1},v(t_{\ell -1}))\), \((t_\ell ,v(t_\ell ))\), and \((t_{\ell +1},v(t_{\ell +1}))\), i.e.,

$$\begin{aligned} \varPi _{2,\ell }v(t)=v(t_{\ell })-\frac{v(t_{\ell })-v(t_{\ell -1})}{\tau }(t_{\ell }-t)-\frac{v(t_{{\ell }+1})-2v(t_{\ell })+v(t_{\ell -1})}{\tau ^2}\frac{(t_{\ell }-t)(t-t_{\ell -1})}{2}, \end{aligned}$$

leading to

$$\begin{aligned} (\varPi _{2,\ell }v(t))'=\delta _t v_{\ell -\frac{1}{2}}+(\delta _t^2 v_{\ell })(t-t_{\ell -\frac{1}{2}}), \end{aligned}$$

and

$$\begin{aligned} v(t)-\varPi _{2,\ell }v(t)=\frac{v'''(\gamma _\ell )}{6}(t-t_{\ell -1})(t-t_{\ell })(t-t_{\ell +1}),~t\in [t_{\ell -1},t_{\ell }],\gamma _\ell \in (t_{\ell -1},~t_{\ell +1}). \end{aligned}$$

For the last small interval \([t_k,t_{k+\sigma }]\), we use the linear interpolation in the cell \([t_k, t_{k+1}]\) at non-equidistant subdivision points \(t_k,t_{k+\sigma }\), and \(t_{k+1}\). To sum up, we have

$$\begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_{k+\sigma }}\\&=\frac{{\text{e}}^{-\lambda t_{k+\sigma }}}{\Gamma (1-\alpha )}\sum _{\ell =1}^{k}\int _{t_{\ell -1}}^{t_\ell }\frac{v'(s)\mathrm{d}s}{(t_{k+\sigma }-s)^\alpha } +\frac{{\text{e}}^{-\lambda t_{k+\sigma }}}{\Gamma (1-\alpha )}\int _{t_k}^{t_{k+\sigma }}\frac{v'(s)\mathrm{d}s}{(t_{k+\sigma }-s)^\alpha }\\& =\frac{{\text{e}}^{-\lambda t_{k+\sigma }}}{\Gamma (1-\alpha )}\sum _{\ell =1}^{k}\int _{t_{\ell -1}}^{t_\ell }\frac{(\varPi _{2,\ell }v(s))'\mathrm{d}s}{(t_{k+\sigma }-s)^\alpha } +\frac{{\text{e}}^{-\lambda t_{k+\sigma }}\delta _t v_{k+\frac{1}{2}}}{\Gamma (1-\alpha )}\int _{t_{k}}^{t_{k+\sigma }}\frac{\mathrm{d}s}{(t_{k+\sigma }-s)^\alpha }+T^{k+\sigma }\\& =\frac{{\text{e}}^{-\lambda t_{k+\sigma }}}{\Gamma (1-\alpha )} \sum _{\ell =1}^{k}\int _{t_{\ell -1}}^{t_\ell }\frac{\delta _t v_{\ell -\frac{1}{2}}+(\delta _t^2 v_{\ell })(s-t_{\ell -\frac{1}{2}})\mathrm{d}s}{(t_{k+\sigma }-s)^\alpha } +\frac{{\text{e}}^{-\lambda t_{k+\sigma }}\tau ^{1-\alpha }}{\Gamma (2-\alpha )}\delta _t v_{k+\frac{1}{2}}\sigma ^{1-\alpha }+T^{k+\sigma }\\& =\frac{{\text{e}}^{-\lambda t_{k+\sigma }}{\tau }^{1-\alpha }}{\Gamma (2-\alpha )} \Bigg [ \sum _{\ell =1}^{k} \big (p_{k-\ell +1}^{(\alpha ,\sigma )}\delta _t v_{\ell -\frac{1}{2}}+q_{k-\ell +1}^{(\alpha ,\sigma )} (\delta _t v_{\ell +\frac{1}{2}}-\delta _t v_{\ell -\frac{1}{2}})\big )+p_0^{(\alpha ,\sigma )}\delta _t v_{k+\frac{1}{2}} \Bigg ]+T^{k+\sigma }\\& =\frac{{\text{e}}^{-\lambda t_{k+\sigma }}{\tau }^{-\alpha }}{\Gamma (2-\alpha )}\sum _{\ell =0}^{k}s_{k-\ell }^{(k,\alpha ,\sigma )} \Big (v(t_{\ell +1})-v(t_{\ell })\Big )+T^{k+\sigma }, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&p_0^{(\alpha ,\sigma )}=\sigma ^{1-\alpha },~~~p_j^{(\alpha ,\sigma )}=(j+\sigma )^{1-\alpha }-(j-1+\sigma )^{1-\alpha },~j\geqslant 1 ,\\&q_j^{(\alpha ,\sigma )}=\frac{1}{2-\alpha } \left[ (j+\sigma )^{2-\alpha }-(j-1+\sigma )^{2-\alpha }\right] - \frac{1}{2} \left[ (j+\sigma )^{1-\alpha }+(j-1+\sigma )^{1-\alpha }\right] ,\,j \geqslant 1. \end{aligned} \end{aligned}$$

And for \(k=0\), we have \(s_0^{(k,\alpha ,\sigma )}=p_0^{(\alpha ,\sigma )}=\sigma ^{1-\alpha }\); for \(k\geqslant 1\), we have

$$\begin{aligned} s_j^{(k,\alpha ,\sigma )}=\left\{ \begin{aligned}&p_0^{(\alpha ,\sigma )}+q_1^{(\alpha ,\sigma )}~,~~~~~~~~~~~~~~j=0,\\&p_j^{(\alpha ,\sigma )}+q_{j+1}^{(\alpha ,\sigma )}-q_{j}^{(\alpha ,\sigma )}~,~~~1 \leqslant j \leqslant k-1,\\&p_k^{(\alpha ,\sigma )}-q_{k}^{(\alpha ,\sigma )}~,~~~~~~~~~~~~~~j=k. \end{aligned} \right. \end{aligned}$$
(19)

Moreover, recalling \(v={\text{e}}^{\lambda t}u\), we have

$$\begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_{k+\sigma }}\nonumber \\& =\frac{{\tau }^{-\alpha }}{\Gamma (2-\alpha )}\Bigg [{\text{e}}^{\lambda (t_{k+1}-t_{k+\sigma })}s_0^{(k,\alpha ,\sigma )}u(t_{k+1}) -\sum _{\ell =0}^{k-1}\left( s_{k-\ell -1}^{(k,\alpha ,\sigma )}-s_{k-\ell }^{(k,\alpha ,\sigma )} \right) {\text{e}}^{\lambda ( t_{\ell +1}-t_{k+\sigma })}u(t_{\ell +1})\nonumber \\& \quad-s_{k}^{(k,\alpha ,\sigma )}{\text{e}}^{\lambda (t_0-t_{k+\sigma })}u(t_0)\Bigg ]+T^{k+\sigma }~~~:=\Delta _t^{\alpha ,\lambda }u(t_{k+\sigma})+T^{k+\sigma }, \end{aligned}$$
(20)

where \( T^{k+\sigma }={}_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(t)\big |_{t=t_{k+\sigma }}-\Delta_t^{\alpha,\lambda}u({t_{k+\sigma}}).\) Here, we call this numerical differentiation formula (20) the tempered L2-\(1_{\sigma }\) formula. If we adopt the approximate solution  \(U^{k}\) and set

$$\begin{aligned}&\overline{d}_{s,m}^{(k,\alpha ,\sigma )}=s_{k-m}^{(k,\alpha ,\sigma )}{\text{e}}^{\lambda (t_{m}-t_{k+\sigma })},~m=0,1,\cdots, k, \end{aligned}$$
(21)
$$\begin{aligned}&\widetilde{d}_{s,m}^{(k,\alpha ,\sigma )}=s_{k-m}^{(k,\alpha ,\sigma )}{\text{e}}^{\lambda (t_{m+1}-t_{k+\sigma })},~m=0,1,\cdots, k, \end{aligned}$$
(22)

then the tempered L2-\(1_{\sigma }\) approximation operator \(\Delta _{t}^{\alpha ,\lambda }U^{\overline{k}}\) is equivalent to the form

$$\begin{aligned} \Delta _{t}^{\alpha ,\lambda }U^{\overline{k}}=\frac{1}{\mu }\Bigg[{\widetilde{d}}_{s,k}^{(k,\alpha ,\sigma )}U^{k+1} -\sum _{\ell =0}^{k-1}\left({\overline{d}}_{s,\ell +1}^{(k,\alpha ,\sigma )} -{\widetilde{d}}_{s,\ell }^{(k,\alpha,\sigma )}\right) U^{\ell +1}-{\overline{d}}_{s,0}^{(k,\alpha ,\sigma )}U^0\Bigg ].\end{aligned}$$
(23)

It is clear that \(s_0^{(k,\alpha ,\sigma )}=\sigma ^{1-\alpha }>0\) and \(\overline{d}_{s,0}^{(k,\alpha ,\sigma )}<s_0^{(k,\alpha ,\sigma )}, ~\widetilde{d}_{s,0}^{(k,\alpha ,\sigma )}>s_0^{(k,\alpha ,\sigma )}\) for \(k=0\). And, for \(k\geqslant 1\), with the similar fashion given in [1], we can check that the properties of \(\overline{d}_{s,m}^{(k,\alpha ,\sigma )}\) and \(\widetilde{d}_{s,m}^{(k,\alpha ,\sigma )}\,(1\leqslant m \leqslant k)\) hold the following lemma.

Lemma 6

For any \(\alpha \in (0,1),~k\geqslant 1\), \(s_j^{(k,\alpha ,\sigma )}\,(0\leqslant j \leqslant k)\) defined in Eq. (19) and \(\overline{d}_{s,m}^{(k,\alpha ,\sigma )}\), \(\widetilde{d}_{s,m}^{(k,\alpha ,\sigma )}\) \((0\leqslant m\leqslant k)\) defined in Eqs. (21) and (22), we have

  1. (i)

    \(s_k^{(k,\alpha ,\sigma )}>\frac{1-\alpha }{2}(k+\sigma )^{-\alpha }>0;\)

  2. (ii)

    \(s_0^{(k,\alpha ,\sigma )}>s_1^{(k,\alpha ,\sigma )}>s_2^{(k,\alpha ,\sigma )}>\cdots>s_{k-1}^{(k,\alpha ,\sigma )}>s_k^{(k,\alpha ,\sigma )};\)

  3. (iii)

    \(\overline{d}_{s,m}^{(k,\alpha ,\sigma )}>0,~\widetilde{d}_{s,m}^{(k,\alpha ,\sigma )}>0;\)

  4. (iv)

    \(\overline{d}_{s,m+1}^{(k,\alpha ,\sigma )}>\widetilde{d}_{s,m}^{(k,\alpha ,\sigma )},~0\leqslant m \leqslant k-1;\)

  5. (v)

    \(\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}>s_0^{(k,\alpha ,\sigma )};\)

  6. (vi)

    \(\overline{d}_{s,0}^{(k,\alpha ,\sigma )}<s_k^{(k,\alpha ,\sigma )}.\)

Lemma 7

Suppose that \(u(t)\in C^3[0,t_{k+1}]\,(0\leqslant k \leqslant N-1)\), then the truncation error of the tempered L2-\(1_{\sigma }\) formula gives

$$\begin{aligned} \left| T^{k+\sigma }\right| \leqslant&\frac{1}{3\sigma ^{\alpha }\Gamma {(1-\alpha )}}\Big [\lambda ^3\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_{k+1}}\left| u(t)\right| +3\lambda ^2\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_{k+1}}\left| u'(t)\right| \nonumber \\&+3\lambda \mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_{k+1}}\left| u''(t)\right| +\mathop {\mathrm{max}}_{t_0 \leqslant t \leqslant t_{k+1}}\left| u'''(t)\right| \Big ] \tau ^{3-\alpha }+\mathcal {O}(\tau ^{3-\alpha }). \end{aligned}$$
(24)

Proof

The proof is provided in Appendix F.

3 Implicit Schemes for One-Dimensional Time-Tempered Fractional Diffusion Equation

3.1 Derivation of Difference Schemes

For a given positive integer M, let \(\{x_j\}_{j=0}^{M}\) be a partition of [0, L] with \(x_j=jh_x\) and \(h_x=L/M\). Define a mesh function \(V_h=\{u|u=(u_0,u_1,\cdots, u_M)\}, \mathop {V_h^0}=\{u|u\in V_h,u_0=u_M=0\}\) with the discrete \(L_2\) norm \(\Vert \omega ^k(x)\Vert _2^2=\sum\limits _{j=1}^{M-1}h_x|\omega _j^k|^2\).

Consider the initial boundary value problem as follows:

$$\begin{aligned} \left\{ \begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(x,t)=\frac{\partial ^2u}{\partial x^2}(x,t)+f(x,t),~x\in (0,L),t\in (0,T],\\&u(x,0)=\phi (x),~x\in (0,L),\\&u(0,t)=\psi _1(t),u(L,t)=\psi _2(t),~t\in (0,T], \end{aligned}\right. \end{aligned}$$
(25)

where the functions \(f,\phi ,\psi _1,\psi _2\) are given, and smooth which satisfy our numerical schemes. Denote \(u_j^k=u(x_j,t_k), f_j^k=f(x_j,t_k)\). Here we consider the spatial variable is approximated by the center difference formula \(\delta _x^2u_j^k= \frac{u_{j+1}^k-2u_j^k+u_{j-1}^k}{h_x^2}+\mathcal{O}(h_x^2),\) and the time variable is discretized by tempered L1, L1-2, and L2-\(1_{\sigma }\) formulas, respectively. Then, the first equation of Eq. (25) at the grid points \((x_j,t_k)\) and \((x_j,t_{k+\sigma })\) holds

$$\begin{aligned} \mathbb {D}_{t}^{\alpha ,\lambda }u_j^k=\, & {} \delta _x^2u_j^{k}+f_j^k+R_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(26)
$$\begin{aligned} \partial _{t}^{\alpha ,\lambda }u_j^k=\, & {} \delta _x^2u_j^k+f_j^k+T_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(27)
$$\begin{aligned} \Delta_{t}^{\alpha,\lambda}u_{j}^{\bar{k}}=\, & {} \delta _x^2u_j^{k+\sigma }+f_j^{k+\sigma }+T_j^{k+\sigma },~~1 \leqslant j \leqslant M-1,0 \leqslant k \leqslant N-1, \end{aligned}$$
(28)

where \(f_j^{k+\sigma }=f(x_j,t_{k+\sigma })\) and \(u_j^{k+\sigma }=\Big (\sigma u_j^{k+1}+(1-\sigma )u_j^k\Big )+\mathcal {O}({\tau }^2)\), thus the truncation error

$$\begin{aligned} |R_j^k| \leqslant C_1(\tau ^{2-\alpha }+h_x^2),\quad |T_j^k| \leqslant C_2(\tau ^{3-\alpha }+h_x^2),\quad |T_j^{k+\sigma }| \leqslant C_3(\tau ^{2}+h_x^2). \end{aligned}$$
(29)

The value of the approximation solution to a function u(xt) at the grid point \((x_j,t_k)\) is denoted by \(U_j^k\). If the truncation error is omitted and \(U_j^k\) is adopted, then we have the difference schemes

$$\begin{aligned} \mathbb {D}_{t}^{\alpha ,\lambda }U_j^k=\, & {} \delta _x^2U_j^{k}+f_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(30)
$$\begin{aligned} \partial _{t}^{\alpha ,\lambda }U_j^k=\, & {} \delta _x^2U_j^k+f_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(31)
$$\begin{aligned}\Delta_{t}^{\alpha,\lambda}U_j^{\bar{k}}=\, & {} \delta _x^2U_j^{k+\sigma }+f_j^{k+\sigma },~~1 \leqslant j \leqslant M-1,0 \leqslant k \leqslant N-1, \end{aligned}$$
(32)

where \(U_j^{k+\sigma }=\sigma U_j^{k+1}+(1-\sigma )U_j^k\).

3.2 Stability Analysis

In this subsection, we will analyze the stability of numerical schemes (30) and (32) using the Fourier analysis [3, 6, 20]. Let \(\tilde{U}_j^k\) be the approximate solution of Eqs. (30) and (32). Then, define \(\varepsilon _j^k=U_j^k-\tilde{U}_j^k,~1\leqslant k\leqslant N,~1\leqslant j\leqslant M-1\), and the error vector \(\varepsilon ^k=[\varepsilon _1^k,\varepsilon _2^k,\varepsilon _3^k,\cdots, \varepsilon _{M-1}^k]^{\mathrm {T}}\in V^0_h.\) To begin the error analysis, we define the grid function

$$\begin{aligned} \varepsilon ^k(x)=\left\{ \begin{aligned}&\varepsilon _j^k,~~~~x_j-\frac{h_x}{2}<x \leqslant x_j+\frac{h_x}{2},~1 \leqslant j \leqslant M-1,\\&0,~~~~~~0 \leqslant x \leqslant \frac{h_x}{2}~~\text {and}~~L-\frac{h_x}{2}<x \leqslant L. \end{aligned}\right. \end{aligned}$$

Therefore, \(\varepsilon ^k(x)\) can be expanded by the Fourier series

$$\begin{aligned} \varepsilon ^k(x)=\sum _{m=-\infty }^{+\infty }\xi _m^k{\text{e}}^{\text{{i}}2\pi mx/L},k=1,2,\cdots, N, \end{aligned}$$

where \(\xi _m^k=\frac{1}{L}\int _0^L \varepsilon ^k(x) {\text{e}}^{-{\text{i}}2\pi mx/L}\mathrm{d}x, {\text{i}}=\sqrt{-1}.\) According to the definition of the discrete \(L_2\) norm and Parseval’s equality, there exists

$$\begin{aligned} \Vert \varepsilon ^k\Vert _2^2=\sum _{j=1}^{M-1}h_x|\varepsilon _j^k|^2= \int _0^L|\varepsilon _j^k|^2\mathrm{d}x=\sum _{n=-\infty }^{+\infty }|\xi _m^k|^2. \end{aligned}$$
(33)

From the numerical schemes (30) and (32), we get the following error equations, respectively:

$$\begin{aligned} \widetilde{d}_{a,k}^{(\alpha )}\varepsilon _j^k- \mu \delta _x^2\varepsilon _j^{k}= & {} \sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \varepsilon _j^\ell +\overline{d}_{a,1}^{(\alpha )}\varepsilon _j^0, \end{aligned}$$
(34)
$$\begin{aligned} \widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}\varepsilon _j^{k+1}-\mu {\sigma }\delta _x^2\varepsilon _j^{k+1}= & {} \sum _{\ell =0}^{k-1}\left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \varepsilon _j^{\ell +1}+\overline{d}_{s,0}^{(k,\alpha ,\sigma )}\varepsilon _j^0 +\mu {(1-\sigma )}\delta _x^2\varepsilon _j^{k}. \end{aligned}$$
(35)

Suppose that the solutions of Eqs. (34) and (35) can be written as the following form:

$$\begin{aligned} \varepsilon _j^k=\xi _m^k{\text{e}}^{{\text{i}}\beta j h_x},\,\beta =\frac{2\pi m}{L}. \end{aligned}$$
(36)

The main idea of the Fourier analysis method is to check the propagation of the error \(\varepsilon _j^0\) produced in the initial condition. Since the information is exactly given in boundary conditions, we have \(\varepsilon _0^k=\varepsilon _M^k=0\). Now, we check the propagation of the error with the development of time steps. For the stability of the difference scheme (30), we have

Theorem 1

The difference scheme (30) is unconditionally stable, and we can derive that

$$\begin{aligned} \Vert \varepsilon ^k\Vert _2 \leqslant \Vert \varepsilon ^0\Vert _2,~1\leqslant k\leqslant N. \end{aligned}$$

Proof

Inserting Eq. (36) into Eq. (34), and combining with the Euler formula \({\text{e}}^{{\text{i}}\beta h}=\cos (\beta h)+{\text{i}}\sin (\beta h)\), we arrive at

$$\begin{aligned} \begin{aligned} \Big [\widetilde{d}_{a,k}^{(\alpha )}+\mu \frac{4}{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]\xi _m^k =\sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \xi _m^\ell +\overline{d}_{a,1}^{(\alpha )}\xi _m^0, \end{aligned} \end{aligned}$$
(37)

where \(\widetilde{d}_{a,k}^{(\alpha )}=a_0^{(\alpha )}=1\).

Suppose that \(\xi _m^k(k=1,2,\cdots ,N)\) are the solutions of Eq. (37), we will prove the following inequality by mathematical induction:

$$\begin{aligned} |\xi _m^k| \leqslant |\xi _m^0|, k=1,2,\cdots , N. \end{aligned}$$
(38)

The inequality (38) holds obviously for \(k=1\). Now, we suppose that the inequality (38) is true for \(k=1,2,\cdots, n-1\). Thus, for \(k=n\), using Eq. (37) and (vii), (viii) of Lemma 1, we have

$$\begin{aligned} \Big [1+\mu \frac{4}{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]|\xi _m^n| \leqslant \sum _{\ell =1}^{n-1}\left( a_{n-\ell -1}^{(\alpha )} -a_{n-\ell }^{(\alpha )}\right) |\xi _m^\ell |+a_{n-1}^{(\alpha )}|\xi _m^0| \leqslant |\xi _m^0|, \end{aligned}$$

and it yeilds

$$\begin{aligned} |\xi _m^n| \leqslant |\xi _m^0|,~~\forall n=1,2,\cdots , N, \end{aligned}$$

where the relation \(\sum\limits_{\ell =1}^{n-1}(a_{n-\ell -1}^{(\alpha )}-a_{n-\ell }^{(\alpha )})+a_{n-1}^{(\alpha )}=1\) is used. Applying the definition (33) and the inequality (38), we get

$$\begin{aligned} \Vert \varepsilon ^k\Vert _2^2=\sum _{m=-\infty }^{+\infty }|\xi _m^k|^2 \leqslant \sum _{m=-\infty }^{+\infty }|\xi _m^0|^2=\Vert \varepsilon ^0\Vert _2^2, \end{aligned}$$

which means the difference scheme (30) is unconditionally stable.

With the similar approach, we have the stability of the difference scheme (32).

Theorem 2

The difference scheme (32) is unconditionally stable, and we can derive that

$$\begin{aligned} \Vert \varepsilon ^k\Vert _2 \leqslant \Vert \varepsilon ^0\Vert _2,~1\leqslant k\leqslant N. \end{aligned}$$

Proof

From Eq. (35), we have

$$\begin{aligned} \begin{aligned}&\Big (\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}+\frac{4\mu \sigma }{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big )\xi _m^{k+1}\\& = \sum _{\ell =0}^{k-1}\left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \xi _m^{\ell +1} +\overline{d}_{s,0}^{(k,\alpha ,\sigma )}\xi _m^0-\Big (\frac{4 (1-\sigma )\mu }{h^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big )\xi _m^{k}, \end{aligned} \end{aligned}$$
(39)

where \(\overline{d}_{s,k}^{(k,\alpha ,\sigma )}=s_0^{(k,\alpha ,\sigma )}{\text{e}}^{\lambda (t_k-t_{k+\sigma })}\), \(s_0^{(k,\alpha ,\sigma )}=\sigma ^{1-\alpha } > 0\,(k=0)\), and \(s_0^{(k,\alpha ,\sigma )}=p_0^{(\alpha ,\sigma )}+q_1^{(\alpha ,\sigma )}>0\,(k\geqslant 1)\).

Suppose that \(\xi _m^{k+1}\,(k=0,1,\cdots , N-1)\) are the solutions of the numerical scheme (39), we shall prove that

$$\begin{aligned} |\xi _m^{k+1}| \leqslant |\xi _m^0|, k=0,1,\cdots, N-1. \end{aligned}$$
(40)

For \(k=0\), it holds

$$\begin{aligned} \begin{aligned} \Big (s_0^{(k,\alpha ,\sigma )}+\frac{4\mu \sigma }{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big )\xi _m^{1} \leqslant \Big (s_{0}^{(k,\alpha ,\sigma )}-\frac{4 (1-\sigma )\mu }{h_x^2}\sin ^2\Big(\frac{\beta h}{2}\Big)\Big )\xi _m^0 \leqslant s_{0}^{(k,\alpha ,\sigma )}\xi _m^0, \end{aligned} \end{aligned}$$

and hence

$$\begin{aligned} |\xi _m^1| \leqslant |\xi _m^0|. \end{aligned}$$

Now, we suppose that Eq. (40) is true for \(k=0,1,\cdots , n-1\). Then, according to Eq. (39), for \(k=n\), we have

$$\begin{aligned} \begin{aligned}&\Big (s_0^{(k,\alpha ,\sigma )}+\frac{4\mu \sigma }{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big )|\xi _m^{n+1}|\\& \leqslant \Big [\sum _{\ell =0}^{n-1}\left( s_{n-\ell -1}^{(k,\alpha ,\sigma )} -s_{n-\ell }^{(k,\alpha ,\sigma )}\right) +s_{k}^{(k,\alpha ,\sigma )}-\frac{4 (1-\sigma )\mu }{h_x^2}\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]|\xi _m^{0}| \leqslant s_0^{(k,\alpha ,\sigma )}|\xi _m^{0}|. \end{aligned} \end{aligned}$$

In view of the relation \(\sum\limits_{\ell =0}^{n-1}\Big (s_{n-\ell -1}^{(k,\alpha ,\sigma )}-s_{n-\ell }^{(k,\alpha ,\sigma )}\Big ) =s_0^{(k,\alpha ,\sigma )}-s_n^{(k,\alpha ,\sigma )}\), by simple argument, there exists

$$\begin{aligned} |\xi _m^{n+1}| \leqslant \frac{1}{1+\frac{4\mu \sigma }{s_0^{(k,\alpha ,\sigma )}h_x^2}\sin ^2(\frac{\beta h_x}{2})}|\xi _m^{0}| \leqslant |\xi _m^{0}|,~~\forall n=0,1,\cdots , N-1. \end{aligned}$$

Finally, using Eqs. (33) and (40), we obtain the difference scheme (32) is unconditionally stable.

3.3 Convergence Analysis

In this subsection, we are dedicated in studying the convergence order of the difference schemes. As an example, we give the complete proof with the tempered L1 approximate and the proofs of other difference schemes are omitted with respect to the length of this paper. Define the truncation error \(\rho _j^k=u(x_j,t_k)-U_j^k=u_j^k-U_j^k,~1\leqslant k\leqslant N,~1\leqslant j\leqslant M-1\), and let the error vectors

$$\begin{aligned} \rho ^k=[\rho _1^k,\rho _2^k,\rho _3^k,\cdots ,\rho _{M-1}^k]^{\mathrm {T}},\quad R^k=[R_1^k,R_2^k,R_3^k,\cdots ,R_{M-1}^k]^{\mathrm {T}},\quad 1\leqslant k\leqslant N. \end{aligned}$$

Set the grid functions

$$\begin{aligned} \rho ^k(x)\,=\, & {} \left\{ \begin{aligned}&\rho _j^k,~~~~x_j-\frac{h_x}{2}<x \leqslant x_j+\frac{h_x}{2},~1 \leqslant j \leqslant M-1,\\&0,~~~~~~0 \leqslant x \leqslant \frac{h_x}{2}~~\text {and}~~L-\frac{h_x}{2}<x \leqslant L, \end{aligned}\right. \\ R^k(x)\,=\, & {} \left\{ \begin{aligned}&R_j^k,~~~~x_j-\frac{h_x}{2}<x \leqslant x_j+\frac{h_x}{2},~1 \leqslant j \leqslant M-1,\\&0,~~~~~~0 \leqslant x \leqslant \frac{h_x}{2}~~\text {and}~~L-\frac{h_x}{2}<x \leqslant L. \end{aligned}\right. \end{aligned}$$

And \(\rho ^k(x),R^k(x)\) have the following Fourier series expansions:

$$\begin{aligned} \rho ^k(x)=&\sum _{m=-\infty }^{+\infty }\eta _m^k{\text{e}}^{{\text{i}}2\pi mx/L},k=1,2,\cdots, N,\\ R^k(x)=&\sum _{m=-\infty }^{+\infty }\gamma _m^k{\text{e}}^{{\text{i}}2\pi mx/L},k=1,2,\cdots, N, \\ \end{aligned}$$

where \(\eta _m^k=\frac{1}{L}\int _0^L \rho ^k(x) {\text{e}}^{-{\text{i}}2\pi mx/L}\mathrm{d}x, \gamma _m^k=\frac{1}{L}\int _0^L R^k(x) {\text{e}}^{-{\text{i}}2\pi mx/L}\mathrm{d}x.\) From the definition of the \(L_2\) norm and Parseval’s equality, we can obtain

$$\begin{aligned} \Vert \rho ^k(x)\Vert _2^2=&\sum _{j=1}^{M-1}h_x|\rho _j^k|^2= \int _0^L|\rho _j^k|^2\mathrm{d}x=\sum _{m=-\infty }^{+\infty }|\eta _m^k|^2, \end{aligned}$$
(41)
$$\begin{aligned} \Vert R^k(x)\Vert _2^2=&\sum _{j=1}^{M-1}h_x|R_j^k|^2= \int _0^L|R_j^k|^2\mathrm{d}x=\sum _{m=-\infty }^{+\infty }|\gamma _m^k|^2. \end{aligned}$$
(42)

Subtracting numerical schemes (26) from Eq. (30) and multiplying \(h_x^2\) on both sides of the final error equation, we arrive at

$$\begin{aligned} \Bigg (\frac{h_x^2}{\mu }\widetilde{d}_{a,k}^{(\alpha )}+2\Bigg )\rho _j^k-\rho _{j+1}^k-\rho _{j-1}^k = \frac{h_x^2}{\mu }\Bigg [ \sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \rho _j^\ell +\overline{d}_{a,1}^{(\alpha )}\rho _j^0\Bigg ]+h_x^2 R_j^k, \end{aligned}$$
(43)

where \(\rho _j^0=0,1\leqslant j\leqslant M-1;~\rho _0^k=\rho _M^k,1\leqslant k\leqslant N-1\). Assume that \(\rho _j^k\) and \(R_j^k\) are

$$\begin{aligned} \rho _j^k=\eta _m^k{\text{e}}^{{\text{i}}\beta j h_x},\quad R_j^k=\gamma _m^k{\text{e}}^{{\text{i}}\beta j h_x},~~\beta =\frac{2\pi m}{L}. \end{aligned}$$
(44)

Noticing that \(\rho _j^0=0\), we obtain \(\eta _m^0=0\). And we can deduce the following inequality from Eq. (29) and the first equality of Eq. (42):

$$\begin{aligned} \Vert R^k\Vert _2\leqslant C_1 \sqrt{L}(\tau ^{2-\alpha }+h_x^2). \end{aligned}$$
(45)

And from the convergence of the last series of Eq. (42), there exists a positive constant \(\hat{C}\) such that [20]

$$\begin{aligned} |\gamma _m^k|\leqslant \hat{C}\tau |\gamma _m^1|,~~k=1,2,\cdots , N. \end{aligned}$$
(46)

Lemma 8

There is the following relationship between \(\eta _m^k\) and \(\gamma _m^1\):

$$\begin{aligned} |\eta _m^k| \leqslant (1+\tau )^k|\gamma _m^1|,~~k=1,2,\cdots , N. \end{aligned}$$
(47)

Proof

Inserting Eq. (44) into Eq. (43), we arrive at

$$\begin{aligned} \begin{aligned} \Big [\frac{h_x^2}{\mu }+4\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]\eta _m^k =\frac{h_x^2}{\mu } \sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \eta _m^\ell +h_x^2 \gamma _m^k. \end{aligned} \end{aligned}$$
(48)

As for \(k=1\), there is

$$\begin{aligned} \begin{aligned} \Big [\frac{h_x^2}{\mu }+4\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]\eta _m^1=h_x^2 \gamma _m^1, \end{aligned} \end{aligned}$$

and we can easily come to

$$\begin{aligned} |\eta _m^1| \leqslant \mu |\gamma _m^1| \leqslant |\gamma _m^1| \leqslant \hat{C}(1+\tau )|\gamma _m^1|, \end{aligned}$$

where \(\mu =\tau ^{\alpha }\Gamma {(2-\alpha )}<1\) when \(0<\alpha ,\tau <1\). We suppose that the inequality (47) is true for \(k=1,2,\cdots, n-1\). For \(k=n\), we deduce the following estimate from Eqs. (48) and (46):

$$\begin{aligned} \begin{aligned} \Big [\frac{h_x^2}{\mu }+4\sin ^2\Big(\frac{\beta h_x}{2}\Big)\Big ]|\eta _m^n|\leqslant \frac{h_x^2}{\mu } \sum _{\ell =1}^{n-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) |\eta _m^\ell |+h_x^2 |\gamma _m^n|, \end{aligned} \end{aligned}$$

i.e.,

$$\begin{aligned} \begin{aligned} |\eta _m^n|&\leqslant \sum _{\ell =1}^{n-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) |\eta _m^\ell |+\mu |\gamma _m^n|\\&\leqslant (1+\tau )^{n-1}\hat{C}|\gamma _m^1|\sum _{\ell =1}^{n-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) +\hat{C}\tau |\gamma _m^1|\\&\leqslant (1+\tau )^{n}\hat{C}|\gamma _m^1|. \end{aligned} \end{aligned}$$

Therefore, this lemma is proved.

Let \(C_{x,t}^{4, 2}\) denote the space of function u(xt) which satisfies \(u(x,t)\in C^2[0,t_k]\cap C^4[0,L]\). Then, there exists the following convergence theorem.

Theorem 3

Suppose \(u(x,t)\in C_{x,t}^{4, 2}\), then the difference scheme with the tempered L1 formula (30) is convergent with the convergence order \(\mathcal {O}(\tau ^{2-\alpha }+h_x^2)\).

Proof

Applying the definition (41)–(42), Eq. (45), and Lemma 8, we arrive at

$$\begin{aligned} \Vert \rho ^k\Vert _2\leqslant (1+\tau )^k \hat{C} \Vert R^1\Vert _2 \leqslant {\text{e}}^{k\tau }C_1\hat{C}\sqrt{L}(\tau ^{2-\alpha }+h_x^2)\leqslant \tilde{C}(\tau ^{2-\alpha }+h_x^2), \end{aligned}$$

where \(\tilde{C}={\text{e}}^{T}C_1\hat{C}\sqrt{L}\). Therefore, the difference scheme (30) is \(L_2\) convergent.

The proof of the convergence of the difference scheme with the tempered \({{\rm L}2{\text{-}}1}_{\sigma }\) formula (32) is similar to Theorem 3, so there exists the following result.

Theorem 4

Suppose \(u(x,t)\in C_{x,t}^{4, 3}\), then the difference scheme with the tempered L2-\(1_{\sigma }\) formula (32) is convergent with the convergence order \(\mathcal {O}(\tau ^{2}+h_x^2)\).

4 Implicit ADI Schemes for Two-Dimensional Tempered Fractional Diffusion Equation

In this section, we will discretize the two-dimensional diffusion equation using tempered L1, L1-2, and L2-\(1_{\sigma }\) formulas. From the point of view of computation, we construct ADI schemes by introducing different terms of mixed derivatives similar to [42]. Consider the following two-dimensional initial boundary value problem:

$$\begin{aligned} \left\{ \begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(x,y,t)=\frac{\partial ^2 u}{\partial x^2}(x,y,t)+\frac{\partial ^2 u}{\partial y^2}(x,y,t)+f(x,y,t),~(x,y)\in \varOmega ,t\in (0,T],\\&u(x,y,0)=\phi (x,y),~(x,y)\in \bar{\varOmega },\\&u(x,y,t)=\psi (x,y,t),~(x,y)\in \partial \varOmega ,t\in (0,T], \end{aligned}\right. \end{aligned}$$
(49)

where \(\varOmega =(0,L)\times (0, L)\) and \(\partial \varOmega\) is the boundary of \(\varOmega\). Here, we also assume that functions \(f,\phi ,\psi _1,{\text{and}}\, \psi _2\) are smooth enough for our numerical schemes.

4.1 Construction of Tempered ADI Schemes

For two positive integers \(M_1\) and \(M_2\), denote \(h_x=L/M_1\), \(h_y=L/M_2\) with \(x_j=j h_x\), \(y_m=m h_y\). Let \(\bar{\varOmega }_h=\{(x_j,y_m)| 0 \leqslant j \leqslant M_1, 0 \leqslant m \leqslant M_2\}\), \(\varOmega _h=\bar{\varOmega }_h \cap \varOmega\), \(\varOmega _{\tau }=\{t_k| 0 \leqslant k \leqslant N\}\).

4.1.1 Tempered L1-ADI

For any grid function in \(\bar{\varOmega }_h \times \varOmega _{\tau }\), we define the spatial difference quotients

$$\begin{aligned} \begin{aligned}&\delta _x v_{j+\frac{1}{2},m}^k=\frac{v_{j+1,m}^k-v_{j,m}^k}{h_x},~~~ \delta _x^2 v_{j,m}^k=\frac{\delta _x v_{j+\frac{1}{2},m}^k-\delta _x v_{j-\frac{1}{2},m}^k}{h_x},\\&\delta _x^2\delta _y^2 v_{j,m}^k=\frac{\delta _x (\delta _y^2 v_{j+\frac{1}{2},m}^k)-\delta _x (\delta _y^2 v_{j-\frac{1}{2},m}^k)}{h_x}. \end{aligned} \end{aligned}$$

And denote the grid functions in \(\bar{\varOmega }_h \times \varOmega _{\tau }\), \(u_{j,m}^k=u(x_j,y_m,t_k)\), \(f_{j,m}^k=f(x_j,y_m,t_k),\) \((x_j,y_m)\in \varOmega _h, 0 \leqslant k \leqslant N\). Using the tempered L1 formula (5) to approximate the time derivative in the first equation of Eq. (49) at the grid point \((x_j,y_m,t_k)\), we have

$$\begin{aligned} \mathbb {D}_{t}^{\alpha ,\lambda }u_{j,m}^k=\delta _x^2 u_{j,m}^k+\delta _y^2 u_{j,m}^k+f_{j,m}^k+\hat{R}_{j,m}^k,~(x_j,y_m)\in \varOmega _h,1\leqslant k\leqslant N. \end{aligned}$$
(50)

Using Lemma 2 and the Taylor expansion formula, we get

$$\begin{aligned} \hat{R}_{j,m}^k=\mathcal {O}(\tau ^{2-\alpha }+h_x^2+h_y^2). \end{aligned}$$
(51)

Moreover, add the mixed derivative term \(\mu ^2 {\mathbb {D}_{t}^{\alpha ,\lambda }}\left( \delta _x^2 \delta _y^2 u_{j,m}^k\right)\) to Eq. (50), and there exists

$$\begin{aligned} \mathbb {D}_{t}^{\alpha ,\lambda }\left( u_{j,m}^k+\mu ^2\delta _x^2 \delta _y^2u_{j,m}^k\right) =\delta _x^2 u_{j,m}^k+\delta _y^2 u_{j,m}^k+f_{j,m}^k+(\hat{R}_1)_{j,m}^k, \end{aligned}$$
(52)

where \((\hat{R}_1)_{j,m}^k=\hat{R}_{j,m}^k+\mu ^2 {\mathbb {D}_{t}^{\alpha ,\lambda }}\Big (\delta _x^2 \delta _y^2 u_{j,m}^k\Big ),~(x_j,y_m)\in \varOmega _h,1\leqslant k\leqslant N.\)

Lemma 9

For the truncation error given in Eq. (52), there is

$$\begin{aligned} |(\hat{R}_1)_{j,m}^k|= {\mathcal {O}}(\tau ^{\min\{2\alpha ,2-\alpha \}}+h_x^2+h_y^2). \end{aligned}$$
(53)

Proof

If \(v(x)\in C^2[x-h,x+h]\), the Taylor’s formula with the integral remainder implies

$$\begin{aligned} \frac{v(x+h)-2v(x)+v(x-h)}{h^2}=\int _0^1[v''(x+\xi h)+v''(x-\xi h)](1-\xi ){\text{d}}\xi . \end{aligned}$$

Setting \(\delta _x^2 \delta _y^2u_{j,m}^k=P(x_j,y_m,t_k),\) we have

$$\begin{aligned} \begin{aligned}&P(x,y,t)=\int _0^1\int _0^1\Big [\frac{\partial ^4u}{\partial x^2 \partial y^2}(x-\xi h_x,y-\zeta h_y,t)+\frac{\partial ^4u}{\partial x^2 \partial y^2}(x +\xi h_x,y-\zeta h_y,t)\\&\quad\quad\quad\, \quad+\frac{\partial ^4u}{\partial x^2 \partial y^2} (x-\xi h_x,y+\zeta h_y,t)+\frac{\partial ^4u}{\partial x^2 \partial y^2}(x+\xi h_x,y+\zeta h_y,t) \Big ] (1-\xi ) (1-\zeta ){\text{d}}\xi {\text{d}}\zeta , \end{aligned} \end{aligned}$$

and hence

$$\begin{aligned} \mu ^2 {\mathbb {D}_{t}^{\alpha ,\lambda }}\Big (\delta _x^2 \delta _y^2 u_{j,m}^k\Big )=\mu ^2~\left[ _0^{\text{C}}{} {\text{D}}_t^{\alpha ,\lambda }P(x_j,y_m,t_k)+\mathcal {O}(\tau ^{2-\alpha })\right] =\mathcal {O}(\tau ^{2\alpha }). \end{aligned}$$
(54)

In addition, combining with Eq. (51), Eq. (53) immediately follows.

Letting \(U_{j,m}^k\) be the approximation solution of \(u(x_j,y_m,t_k)\) and omitting the truncation error in Eq. (52), we have

$$\begin{aligned} \left\{ \begin{aligned}&\mathbb {D}_{t}^{\alpha ,\lambda }\Big (U_{j,m}^k+\mu ^2 \delta _x^2 \delta _y^2 U_{j,m}^k\Big )=\delta _x^2 U_{j,m}^k+\delta _y^2 U_{j,m}^k+f_{j,m}^k,~(x_i,y_m)\in \varOmega _h,1\leqslant k\leqslant N,\\&U_{j,m}^0=\phi (x_j,y_m),~~~~~(x_j,y_m)\in \bar{\varOmega }_h,\\&U_{j,m}^k=\psi (x_j,y_m,t_k),~(x_j,y_m)\in \partial \varOmega _h,1\leqslant k\leqslant N. \end{aligned}\right. \end{aligned}$$
(55)

Because \(\mathbb {D}_{t}^{\alpha ,\lambda }\Big (\delta _x^2 \delta _y^2u_{j,m}^k\Big )\) is the tempered L1 operator of \(_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }P(x_j,y_m,t_k)\), we call Eq. (55) the tempered L1-ADI scheme. According to the expression of the tempered L1 approximation operator (9) and noting that \(\widetilde{d}_{a,k}^{(\alpha )}=1\), multiplying \(\mu\) on both sides of Eq. (55) and the first equation of Eq. (55) yields

$$\begin{aligned}&(I-\mu \delta _x^2)(I-\mu \delta _y^2)U_{j,m}^k\nonumber \\& =\sum _{\ell =1}^{k-1} \left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )} \right) \Big ( U_{j,m}^{\ell }+\mu ^2 \delta _x^2 \delta _y^2 U_{j,m}^{\ell } \Big ) +\overline{d}_{a,1}^{(\alpha )} \Big ( U_{j,m}^0+\mu ^2 \delta _x^2 \delta _y^2 U_{j,m}^0\Big )+\mu f_{j,m}^k, \end{aligned}$$
(56)

where I is the identical operator. Let \(U_{j,m}^*=(I-\mu \delta _y^2)U_{j,m}^k,~0 \leqslant j \leqslant M_1,~1 \leqslant m \leqslant M_2-1\). Then, we can rewrite the ADI scheme (55) as the following two steps.

Step 1 For fixed \(m=1,2,\cdots ,M_2-1\), using

$$\begin{aligned} \left\{ \begin{aligned}&(I-\mu \delta _x^2)U_{j,m}^*=\sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \Big (U_{j,m}^{\ell }+\mu ^2 \delta _x^2 \delta _y^2 U_{j,m}^{\ell }\Big )\\&\qquad\qquad\qquad +\overline{d}_{a,1}^{(\alpha )}\Big (U_{j,m}^0+\mu ^2 \delta _x^2 \delta _y^2 U_{j,m}^0\Big )+\mu f_{j,m}^k,~~1 \leqslant j \leqslant M_1-1,\\&U_{0,m}^*=(I-\mu \delta _y^2)U_{0,m}^k,~~~U_{M_1,m}^*=(I-\mu \delta _y^2)U_{M_1,m}^k, \end{aligned}\right. \end{aligned}$$

we get the intermediate variables \(\{U_{j,m}^*\}\).

Step 2 For fixed \(j=1,2,\cdots ,M_1-1\), using

$$\begin{aligned} \left\{ \begin{aligned}&(I-\mu \delta _y^2)U_{j,m}^k=U_{j,m}^*,\quad 1 \leqslant m \leqslant M_2-1,\\&U_{j,0}^k=\psi (x_j,y_0,t_k),~~~U_{j,M_2}^k=\psi (x_j,y_{_{M_2}},t_k), \end{aligned}\right. \end{aligned}$$

we get the numerical solutions \(\{U_{j,m}^k\}, 0\leqslant k\leqslant N\).

4.1.2 Tempered L1-2-ADI

If the time fractional derivative in problem (49) is approximated by the L1-2 formula (12), we have

$$\begin{aligned} \partial _{t}^{\alpha ,\lambda }u_{j,m}^k=\delta _x^2 u_{j,m}^k+\delta _y^2 u_{j,m}^k+f_{j,m}^k+\tilde{R}_{j,m}^k,~(x_j,y_m)\in \varOmega _h,1\leqslant k\leqslant N. \end{aligned}$$
(57)

With the help of Lemma 5 and the Taylor expansion, we have

$$\begin{aligned} \tilde{R}_{j,m}^k=\mathcal {O}(\tau ^{3-\alpha }+h_x^2+h_y^2). \end{aligned}$$

Adding the mixed derivatives term \(\mu ^2({\widetilde{d}_{c,k}^{(k,\alpha )}})^{-2} \partial _{t}^{\alpha ,\lambda }\Big (\delta _x^2 \delta _y^2 u_{j,m}^k\Big )\) to the both sides of Eq. (57), and noticing the fact that \(\widetilde{d}_{c,k}^{(k,\alpha)}=c_0^{(k,\alpha)}\), there is

$$\begin{aligned} \partial _{t}^{\alpha ,\lambda }\Big (u_{j,m}^k+\mu ^2(c_0^{(k,\alpha )})^{-2} \delta _x^2 \delta _y^2u_{j,m}^k\Big )=\delta _x^2 u_{j,m}^k+ \delta _y^2 u_{j,m}^k+f_{j,m}^k+(\hat{R}_2)_{j,m}^k, \end{aligned}$$
(58)

where \((\hat{R}_2)_{j,m}^k=\tilde{R}_{j,m}^k+\mu ^2(c_0^{(k,\alpha )})^{-2} \partial _{t}^{\alpha ,\lambda }\Big (\delta _x^2 \delta _y^2 u_{j,m}^k\Big ),~(x_j,y_m)\in \varOmega _h,1\leqslant k\leqslant N.\) Recalling the truncation error of the small term (54), we deduce that

$$\begin{aligned} |(\hat{R}_2)_{j,m}^k| = \mathcal {O}(\tau ^{2\alpha }+h_x^2+h_y^2). \end{aligned}$$
(59)

Omitting the truncation error in Eq. (58), we have the tempered L1-2-ADI scheme

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}^{\alpha ,\lambda } \Big ( U_{j,m}^k+\mu ^2 ( c_0^{(k,\alpha )}) ^{ -2}\delta _x^2 \delta _y^2 U_{j,m}^k \Big )=\delta _x^2 U_{j,m}^k+\delta _y^2 U_{j,m}^k+f_{j,m}^k,~(x_i,y_m) \in \varOmega _h, 1 \leqslant k \leqslant N,\\&U_{j,m}^0=\phi (x_j,y_m),(x_j,y_m)\in \bar{\varOmega }_h,\\&U_{j,m}^k=\psi (x_j,y_m,t_k),~(x_i,y_m)\in \partial \varOmega _h,1\leqslant k\leqslant N, \end{aligned}\right. \end{aligned}$$

which can be rewritten as

$$\begin{aligned}&\Big (I- \mu (c_0^{(k,\alpha )}) ^{-1}\delta _x^2\Big )\Big (I- \mu (c_0^{(k,\alpha )}) ^{-1}\delta _y^2\Big )U_{j,m}^k\nonumber \\& =(c_0^{(k,\alpha )}) ^{-1}\Big [\sum _{\ell =1}^{k-1}\left( \overline{d}_{c,\ell +1}^{(k,\alpha )} -\widetilde{d}_{c,\ell }^{(k,\alpha )}\right) \Big (U_{j,m}^{\ell }+\mu ^2 (c_0^{(k,\alpha )}) ^{-2}\delta _x^2 \delta _y^2 U_{j,m}^{\ell }\Big )\nonumber \\&\quad +\overline{d}_{c,1}^{(k,\alpha )}\Big (U_{j,m}^0+ \mu ^2 (c_0^{(k,\alpha )}) ^{-2}\delta _x^2 \delta _y^2 U_{j,m}^0\Big )+\mu f_{j,m}^k\Big ]. \end{aligned}$$
(60)

If denote \(U_{j,m}^*=(I-\mu (c_0^{(k,\alpha )})^{-1}\delta _y^2)U_{j,m}^k,~0 \leqslant j \leqslant M_1,~1 \leqslant m \leqslant M_2-1\), then, for the view of computation, it can follow the procedure below.

Step 1 For fixed \(m=1,2,\cdots ,M_2-1\), computing

$$\begin{aligned} \left\{ \begin{aligned}&\Big (I-\mu (c_0^{(k,\alpha )}) ^{-1}\delta _x^2\Big )U_{j,m}^*=(c_0^{(k,\alpha )}) ^{-1}\Big [\overline{d}_{c,1}^{(k,\alpha )}\Big (U_{j,m}^0+\mu ^2(c_0^{(k,\alpha )}) ^{-2} \delta _x^2 \delta _y^2 U_{j,m}^0\Big )\\&\qquad +\sum _{\ell =1}^{k-1}\left( \overline{d}_{c,\ell +1}^{(k,\alpha )} -\widetilde{d}_{c,\ell }^{(k,\alpha )}\right) \Big (U_{j,m}^{\ell }+\mu ^2(c_0^{(k,\alpha )}) ^{-2} \delta _x^2 \delta _y^2 U_{j,m}^{\ell }\Big )+\mu f_{j,m}^k\Big ],~1 \leqslant j \leqslant M_1-1,\\&\quad U_{0,m}^*=\Big (I-\mu (c_0^{(k,\alpha )}) ^{-1}\delta _y^2\Big )U_{0,m}^k,~~~U_{M_1,m}^*=\Big (I-\mu (c_0^{(k,\alpha )}) ^{-1}\delta _y^2\Big )U_{M_1,m}^k, \end{aligned}\right. \end{aligned}$$

we can obtain \(\{U_{j,m}^*\}\).

Step 2 For fixed \(j=1,2,\cdots ,M_1-1\), applying

$$\begin{aligned} \left\{ \begin{aligned}&(I-\mu (c_0^{(k,\alpha )}) ^{-1}\delta _y^2)U_{j,m}^k=U_{j,m}^*,~1 \leqslant m \leqslant M_2-1,\\&U_{j,0}^k=\psi (x_j,y_0,t_k),~~U_{j,M_2}^k=\psi (x_j,y_{_{M_2}},t_k), \end{aligned}\right. \end{aligned}$$

we obtain the numerical solutions \(\{U_{j,m}^k\}, 0 \leqslant k \leqslant N\).

4.1.3 Tempered L2-\(1_{\sigma }\)-ADI

Unlike above two numerical ADI schemes, we consider the numerical method for the first equation in Eq. (49) at the non-integer grid point \((x_j,y_m,t_{k+\sigma })\)

$$\begin{aligned} \begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u_{j,m}^{k+\sigma }=\frac{\partial ^2}{\partial x^2}u_{j,m}^{k+\sigma }&+\frac{\partial ^2}{\partial y^2}u_{j,m}^{k+\sigma }+f_{j,m}^{k+\sigma },~(x_j,y_m)\in \varOmega _h,0 \leqslant k \leqslant N-1, \end{aligned} \end{aligned}$$

where \(u_{j,m}^{k+\sigma }=u(x_j,y_m,t_{k+\sigma })\). Combining with the tempered L2-\(1_{\sigma }\) formula (20), we have

$$\begin{aligned} \Delta _{t}^{\alpha ,\lambda }u_{j,m}^{\bar{k}}=\delta _x^2 u_{j,m}^{k+\sigma }+\delta _y^2 u_{j,m}^{k+\sigma }+f_{j,m}^{k+\sigma }+\hat{R}_{j,m}^{k+\sigma }, ~(x_j,y_m)\in \varOmega _h,0 \leqslant k \leqslant N-1. \end{aligned}$$
(61)

Using the Taylor expansion, we can check that

$$\begin{aligned} u_{j,m}^{k+\sigma }=\sigma u_{j,m}^{k+1}+(1-\sigma )u_{j,m}^{k}+\mathcal {O}{(\tau ^2)}, \end{aligned}$$

which means \(\hat{R}_{j,m}^{k+\sigma }=\mathcal {O}(\tau ^{2}+h_x^2+h_y^2).\)

With the similar method of the tempered L1-ADI and tempered L1-2-ADI schemes, we add another term \(\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}{\Delta _{t}^{\alpha ,\lambda }}\Big (\delta _x^2 \delta _y^2 u_{j,m}^{k+\sigma }\Big )\) to Eq. (61), which yields

$$\begin{aligned} \begin{aligned} {\Delta _{t}^{\alpha ,\lambda }}\Big (u_{j,m}^{\bar{k}}+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}\delta _x^2 \delta _y^2 u_{j,m}^{k+\sigma }\Big )=&\delta _x^2 u_{j,m}^{k+\sigma }+\delta _y^2 u_{j,m}^{k+\sigma }+f_{j,m}^{k+\sigma }+(\hat{R}_3)_{j,m}^{k+\sigma }, (x_j,y_m)\in \varOmega _h,0 \leqslant k \leqslant N-1, \end{aligned} \end{aligned}$$
(62)

where \((\hat{R}_3)_{j,m}^{k+\sigma }=\hat{R}_{j,m}^{k+\sigma }+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}{\Delta_{t}^{\alpha ,\lambda }}\Big (\delta _x^2 \delta _y^2 u_{j,m}^{k+\sigma }\Big )\) with the truncation error

$$\begin{aligned} |(\hat{R}_3)_{j,m}^{k+\sigma }| = \mathcal {O}(\tau ^{2\alpha }+h_x^2+h_y^2). \end{aligned}$$
(63)

Dropping the truncation error (62), we get the tempered L2-\(1_{\sigma }\)-ADI scheme

$$\begin{aligned} \left\{ \begin{aligned}&{\Delta _{t}^{\alpha ,\lambda }}\Big (U_{j,m}^{\bar{k} } +\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2} \delta _x^2 \delta _y^2 U_{j,m}^{k+\sigma }\Big ) -\delta _x^2 U_{j,m}^{k+\sigma }-\delta _y^2 U_{j,m}^{k+\sigma }=f_{j,m}^{k+\sigma },\\&\quad (x_j,y_m)\in \varOmega _h,0 \leqslant k \leqslant N-1,\\& U_{j,m}^0=\phi (x_j,y_m),~~~~~~~~~~~(x_j,y_m)\in \bar{\varOmega }_h,\\& U_{j,m}^{k+\sigma }=\psi (x_j,y_m,t_{k+\sigma }),~~(x_j,y_m)\in \partial \varOmega _h,0 \leqslant k \leqslant N-1. \end{aligned}\right. \end{aligned}$$
(64)

Taking into account the expression of the tempered L2-\(1_{\sigma }\) approximation formula (23), we can rewrite the scheme (64) as follows:

$$\begin{aligned}&\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _x^2\Big )\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _y^2\Big )U_{j,m}^{k+1}\nonumber \\& =({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\Bigg [\sum _{\ell =0}^{k-1} \left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \Big (U_{j,m}^{\ell +1}+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2} \delta _x^2 \delta _y^2 U_{j,m}^{\ell +1}\Big )\nonumber \\&\quad +\overline{d}_{s,0}^{(k,\alpha ,\sigma )}\Big (U_{j,m}^0+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}\delta _x^2 \delta _y^2 U_{j,m}^0\Big )+\mu f_{j,m}^{k+\sigma }\nonumber \\& \quad+\mu (1-\sigma )(\delta _x^2U_{j,m}^k+\delta _y^2U_{j,m}^k)\Bigg ],~(x_j,y_m)\in \varOmega _h,0 \leqslant k \leqslant N-1. \end{aligned}$$
(65)

The tempered L2-\(1_{\sigma }\)-ADI scheme (65) can be summarized briefly in the following procedure.

Step 1 For fixed \(m=1,2,\cdots ,M_2-1\), using

$$\begin{aligned} \left\{ \begin{aligned}&\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _x^2\Big )U_{j,m}^*\\&=(\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )})^{-1}\Bigg [\sum _{\ell =0}^{k-1}\left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \Big (U_{j,m}^{\ell +1}+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(\alpha ,k)}})^{-2} \delta _x^2 \delta _y^2 U_{j,m}^{\ell +1}\Big )\\&\quad +\overline{d}_{s,0}^{(k,\alpha ,\sigma )}\Big (U_{j,m}^0+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(\alpha ,k)}})^{-2}\delta _x^2 \delta _y^2 U_{j,m}^0\Big )+\mu f_{j,m}^{k+\sigma }\\&\quad +\mu (1-\sigma )(\delta _x^2U_{j,m}^k+\delta _y^2U_{j,m}^k)\Bigg ],\quad 1 \leqslant j \leqslant M_1-1.\\& U_{0,m}^*=\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\delta _y^2\Big )U_{0,m}^{k+1},~~U_{M_1,m}^*=\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _y^2\Big )U_{M_1,m}^{k+1}, \end{aligned}\right. \end{aligned}$$

we get the intermediate variables \(U_{j,m}^*=\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _y^2\Big )U_{j,m}^{k+1},~0 \leqslant j \leqslant M_1,~0 \leqslant k \leqslant N-1.\)

Step 2 For fixed \(j=1,2,\cdots ,M_1-1\), using

$$\begin{aligned} \left\{ \begin{aligned}&\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\delta _y^2\Big )U_{j,m}^{k+1}=U_{j,m}^*,\quad 1 \leqslant m \leqslant M_2-1,\\&U_{j,0}^{k+1}=\psi (x_j,y_0,t_{k+1}),~~U_{j,M_2}^{k+1}=\psi (x_j,y_{_{M_2}},t_{k+1}), \end{aligned}\right. \end{aligned}$$

we can get the numerical solutions \(\{U_{j,m}^{k+1}\}, 0 \leqslant k \leqslant N-1\).

4.2 Stability Analysis

Let \(\tilde{U}_j^k\) be the approximate solution of Eqs. (56) and (65). Then, define \(\hat{\varepsilon }_{j,m}^k=U_{j,m}^k-\tilde{U}_{j,m}^k,~1\leqslant k\leqslant N,1\leqslant j\leqslant M_1-1,1 \leqslant m \leqslant M_2-1,\) and error vectors

$$\begin{aligned} \hat{\varepsilon }^k=\big [ \hat{\varepsilon }_{1,1}^k,\hat{\varepsilon }_{1,2}^k,\cdots ,\hat{\varepsilon }_{1,M_2-1}^k,\hat{\varepsilon }_{2,1}^k, \hat{\varepsilon }_{2,2}^k,\cdots ,\hat{\varepsilon }_{2,M_2-1}^k,\cdots , \hat{\varepsilon }_{M_1-1,1}^k,\hat{\varepsilon }_{M_1-1,2}^k,\cdots , \hat{\varepsilon }_{M_1-1,M_2-1}^k\big ]^{\mathrm {T}}. \end{aligned}$$

Similar to the one-dimensional case, define the function \(\hat{\varepsilon }^k(x,y)\) in the domain \(0 \leqslant x,y \leqslant L\) with the node values \(\hat{\varepsilon }_{j,m}^k\) at \((x_j,y_m,t_k)\). This means

$$\begin{aligned} \hat{\varepsilon }^k(x,y)=\left\{ \begin{aligned}&\hat{\varepsilon }_{j,m}^k,~~~~x_j-\frac{h_x}{2}<x \leqslant x_j+\frac{h_x}{2},~y_m-\frac{h_y}{2}<y \leqslant y_m+\frac{h_y}{2},\\&\quad 1 \leqslant j \leqslant M_1-1,~1 \leqslant m \leqslant M_2-1,\\& 0,~~~~~~~~0 \leqslant x \leqslant \frac{h_x}{2}~~{\text{or}}~~L-\frac{h_x}{2}<x \leqslant L,\\& 0 \leqslant y \leqslant \frac{h_y}{2}~~{\text{or}}~~L-\frac{h_y}{2}<y \leqslant L. \end{aligned}\right. \end{aligned}$$

And \(\hat{\varepsilon }^k(x,y)\) can be expanded in the Fourier series

$$\begin{aligned} \hat{\varepsilon }^k(x,y)=\sum _{l_1=-\infty }^{+\infty }\sum _{l_2=-\infty }^{+\infty }\xi _{l_1,l_2}^k{\text{e}}^{{\text{i}}2\pi (l_1x+l_2y)/L},~1 \leqslant k \leqslant N, \end{aligned}$$

where

$$\begin{aligned} \xi _{l_1,l_2}^k=\frac{1}{L^2}\int _0^L\int _0^L \hat{\varepsilon }^k(x,y) {\text{e}}^{-{\text{i}}2\pi (l_1x+l_2y)/L}\mathrm{d}x\mathrm{d}y. \end{aligned}$$

According to the definition of the discrete \(L_2\) norm and Parseval’s equality, there exists

$$\begin{aligned} \Vert \hat{\varepsilon }^k\Vert _2^2=\sum _{j=1}^{M_1-1}\sum _{m=1}^{M_2-1}h_xh_y|\hat{\varepsilon }_{j,m}^k|^2 =\sum _{l_1=-\infty }^{+\infty }\sum _{l_2=-\infty }^{+\infty }|\xi _{l_1,l_2}^k|^2. \end{aligned}$$
(66)

From numerical schemes (56) and (65), we have the related error equations

$$\begin{aligned}&(I-\mu \delta _x^2)(I-\mu \delta _y^2)\hat{\varepsilon }_{j,m}^k\nonumber \\& =\sum _{\ell =1}^{k-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \Big (\hat{\varepsilon }_{j,m}^{\ell }+\mu ^2 \delta _x^2 \delta _y^2 \hat{\varepsilon }_{j,m}^{\ell }\Big )\nonumber \\&\quad +\overline{d}_{a,1}^{(\alpha )}\Big (\hat{\varepsilon }_{j,m}^0+\mu ^2 \delta _x^2 \delta _y^2 \hat{\varepsilon }_{j,m}^0\Big ),~(x_j,y_m)\in \varOmega _h,1 \leqslant k \leqslant N, \end{aligned}$$
(67)
$$\begin{aligned}&\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _x^2\Big )\Big (I-\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1} \delta _y^2\Big )\hat{\varepsilon }_{j,m}^{k+1}\nonumber \\& =(\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )})^{-1}\Bigg [\overline{d}_{s,0}^{(\alpha ,k)}\Big (\hat{\varepsilon }_{j,m}^0+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(\alpha ,k)}})^{-2} \delta _x^2 \delta _y^2 \hat{\varepsilon }_{j,m}^0\Big )\nonumber \\&\quad +\sum _{\ell =0}^{k-1}\left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \Big (\hat{\varepsilon }_{j,m}^{\ell +1}+\mu ^2 \sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2} \delta _x^2 \delta _y^2 \hat{\varepsilon }_{j,m}^{\ell +1}\Big )\nonumber \\&\quad +\mu (1-\sigma )(\delta _x^2\hat{\varepsilon }_{j,m}^k+\delta _y^2\hat{\varepsilon }_{j,m}^k)\Bigg ],~(x_j,y_m)\in \varOmega _h,~0 \leqslant k \leqslant N-1. \end{aligned}$$
(68)

Assume that the solutions of Eqs. (67) and (68) have the following form:

$$\begin{aligned} \hat{\varepsilon }_{j,m}^k=\xi _{l_1,l_2}^k{\text{e}}^{{\text{i}}\beta _1 j h_x+{\text{i}}\beta _2 m h_y}, \end{aligned}$$
(69)

where \(\beta _1=2\pi l_1/L,\beta _2=2\pi l_2/L\), and there are

$$\begin{aligned} \begin{aligned}&\delta _x^2 \hat{\varepsilon }_{j,m}^k=\frac{-4}{h_x^2}\sin ^2\Big(\frac{\beta _1h_x}{2}\Big)\xi _{l_1,l_2}^k{\text{e}}^{{\text{i}}\beta _1 j h_x+{\text{i}}\beta _2 m h_y},\\&\delta _y^2 \hat{\varepsilon }_{j,m}^k=\frac{-4}{h_y^2}\sin ^2\Big(\frac{\beta _2h_y}{2}\Big)\xi _{l_1,l_2}^k{\text{e}}^{{\text{i}}\beta _1 j h_x+{\text{i}}\beta _2 m h_y},\\&\delta _x^2 \delta _y^2 \hat{\varepsilon }_{j,m}^k=\frac{16}{h_x^2h_y^2}\sin ^2\Big(\frac{\beta _1h_x}{2}\Big)\sin ^2\Big(\frac{\beta _2h_y}{2}\Big)\xi _{l_1,l_2}^k {\text{e}}^{{\text{i}}\beta _1 j h_x+{\text{i}}\beta _2 m h_y}. \end{aligned} \end{aligned}$$

For the stability of the tempered L1-ADI scheme, we have

Theorem 5

The tempered L1-ADI scheme (56) is unconditionally stable, and we can obtain

$$\begin{aligned} \Vert \hat{\varepsilon }^k\Vert _2 \leqslant \Vert \hat{\varepsilon }^0\Vert _2,~1\leqslant k\leqslant N. \end{aligned}$$

Proof

Inserting Eq. (69) and the Euler formula into Eq. (67), the error equation (67) can be rewritten as

$$\begin{aligned}&\Big (1+\mu \kappa _1\Big )\Big (1+\mu \kappa _2\Big )\xi _{l_1,l_2}^k \nonumber \\& =\sum _{\ell =1}^{k-1} \left( \overline{d}_{a,\ell +1}^{(\alpha ) } -\widetilde{d}_{a,\ell }^{(\alpha ) } \right) (1+\mu ^2\kappa _1\kappa _2)\xi _{l_1,l_2}^{\ell } +\overline{d}_{a,1}^{(\alpha )} ( 1+\mu ^2\kappa _1\kappa _2)\xi _{l_1,l_2}^0,(x_j,y_m) \in \varOmega _h,1 \leqslant k \leqslant N, \end{aligned}$$
(70)

where \(\kappa _1=\frac{4}{{h_x}^2}\sin ^2{(\frac{\beta _1 h_x}{2})},~~\kappa _2=\frac{4}{{h_y}^2}\sin ^2{(\frac{\beta _2 h_y}{2})}.\) Suppose that \(\xi _{l_1,l_2}^k(k=1,2,\cdots ,N)\) are the solutions of Eq. (70), then we will use the mathematical induction to proof the following inequality:

$$\begin{aligned} |\xi _{l_1,l_2}^k| \leqslant |\xi _{l_1,l_2}^0|,~k=1,2,\cdots ,N. \end{aligned}$$
(71)

For \(k=1\), Eq. (70) clearly deduces that

$$\begin{aligned} |\xi _{l_1,l_2}^1|=\frac{\overline{d}_{a,1}^{(\alpha )}(1+\mu ^2\kappa _1 \kappa _2)}{(1+\mu \kappa _1)(1+\mu \kappa _2)}|\xi _{l_1,l_2}^0| \leqslant |\xi _{l_1,l_2}^0|. \end{aligned}$$

Now, we assume that Eq. (71) is true for \(k=1,2,\cdots ,n-1\). For \(k=n\), there exists

$$\begin{aligned} |\xi _{l_1,l_2}^n|&\leqslant \frac{(1+\mu ^2 \kappa _1 \kappa _2)}{(1+\mu \kappa _1)(1+\mu \kappa _2)}\Bigg [\sum _{\ell =1}^{n-1}\left( \overline{d}_{a,\ell +1}^{(\alpha )} -\widetilde{d}_{a,\ell }^{(\alpha )}\right) \xi _{l_1,l_2}^{\ell }+\overline{d}_{a,1}^{(\alpha )}\xi _{l_1,l_2}^0\Bigg ],\\&\leqslant |\xi _{l_1,l_2}^0|,~(x_j,y_m)\in \varOmega _h,\forall \, n=1,2,\cdots ,N, \end{aligned}$$

where the relation \(\sum\limits_{\ell =1}^{n-1}(a_{n-\ell -1}^{(\alpha )}-a_{n-\ell }^{(\alpha )})+a_{n-1}^{(\alpha )}=1\) is utilized. Thus, Eq. (71) is proved. With the help of Eqs. (66) and (71), we obtain

$$\begin{aligned} \Vert \hat{\varepsilon }^k\Vert _2^2=\sum _{l_1=-\infty }^{+\infty }\sum _{l_2=-\infty }^{+\infty }|\xi _{l_1,l_2}^k|^2 \leqslant \sum _{l_1=-\infty }^{+\infty }\sum _{l_2=-\infty }^{+\infty }|\xi _{l_1,l_2}^0|^2=\Vert \hat{\varepsilon }^0\Vert _2^2, \end{aligned}$$

which indicates that the tempered L1-ADI scheme (56) is unconditionally stable.

For the stability of the L2-\(1_{\sigma }\)-ADI difference scheme (65), we have

Theorem 6

The tempered L2-\(1_{\sigma }\)-ADI scheme (65) is unconditionally stable, and we can obtain

$$\begin{aligned} \Vert \hat{\varepsilon }^{k+1}\Vert _2 \leqslant \Vert \hat{\varepsilon }^0\Vert _2,~0\leqslant k\leqslant N-1. \end{aligned}$$

Proof

Rewriting the error equation (68) as

$$\begin{aligned} \begin{aligned}&(1+\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\kappa _1)(1+\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\kappa _2)\xi _{l_1,l_2}^{k+1}\\& = \frac{1 }{\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}}\Big [(1+\mu ^2\sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}\kappa _1 \kappa _2)\Big (\sum _{\ell =0}^{k-1}\left( \overline{d}_{s,\ell +1}^{(k,\alpha ,\sigma )} -\widetilde{d}_{s,\ell }^{(k,\alpha ,\sigma )}\right) \xi _{l_1,l_2}^{\ell +1}\\&\quad +\overline{d}_{s,0}^{(k,\alpha ,\sigma )}\xi _{l_1,l_2}^0\Big )-\mu (1-\sigma )(\kappa _1+\kappa _2)\xi _{l_1,l_2}^{k}\Big ], ~(x_j,y_m)\in \varOmega _h,0\leqslant k \leqslant N-1. \end{aligned} \end{aligned}$$
(72)

Supposing that \(\xi _{l_1,l_2}^{k+1}(k=0,1,\cdots ,N-1)\) are the solutions of Eq. (72), now we will prove the inequality

$$\begin{aligned} |\xi _{l_1,l_2}^{k+1}| \leqslant |\xi _{l_1,l_2}^0|, k=0,1,\cdots ,N-1. \end{aligned}$$
(73)

For \(k=0\), there is

$$\begin{aligned} |\xi _{l_1,l_2}^1|=\frac{\overline{d}_{s,0}^{(k,\alpha ,\sigma )}(1+\mu ^2\sigma ^2({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-2}\kappa _1 \kappa _2)-\mu (1-\sigma )(\kappa _1+\kappa _2)}{{\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}}(1+\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\kappa _1)(1+\mu \sigma ({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}})^{-1}\kappa _2)}|\xi _{l_1,l_2}^0| \leqslant |\xi _{l_1,l_2}^0|. \end{aligned}$$

Next, we suppose that

$$\begin{aligned} |\xi _{l_1,l_2}^{k+1}| \leqslant |\xi _{l_1,l_2}^0|,~~k=0,1,\cdots ,n-1. \end{aligned}$$

For \(k=n\), using the relation \(\sum\limits_{\ell =0}^{k-1}(s_{k-\ell -1}^{(k,\alpha ,\sigma )}-s_{k-\ell }^{(k,\alpha ,\sigma )})+s_{k}^{(k,\alpha ,\sigma )}={s_0^{(k,\alpha ,\sigma )}}\) and \({\widetilde{d}_{s,k}^{(k,\alpha ,\sigma )}}=s_0^{(k,\alpha ,\sigma )}{\text{e}}^{(\lambda t_{n+1}-t_{n+\sigma })}>s_0^{(k,\alpha ,\sigma )}\), there exists

$$\begin{aligned} \begin{aligned} |\xi _{l_1,l_2}^{n+1}|&\leqslant \frac{(1+\mu ^2\sigma ^2({\widetilde{d}_{s,n}^{(k,\alpha ,\sigma )}})^{-2}\kappa _1 \kappa _2)}{{\widetilde{d}_{s,n}^{(k,\alpha ,\sigma )}} (1+\mu \sigma ({\widetilde{d}_{s,n}^{(k,\alpha ,\sigma )}})^{-1}\kappa _1)(1+\mu \sigma ({\widetilde{d}_{s,n}^{(k,\alpha ,\sigma )}}) ^{-1}\kappa _2)}\\&\quad \times \Big (\sum _{\ell =0}^{n-1}(s_{n-\ell -1}^{(k,\alpha ,\sigma )} -s_{n-\ell }^{(k,\alpha ,\sigma )})+s_{n}^{(k,\alpha ,\sigma )}\Big )|\xi _{l_1,l_2}^0|,\\&\leqslant |\xi _{l_1,l_2}^0|,~(x_i,y_m)\in \varOmega _h,0 \leqslant k \leqslant N. \end{aligned} \end{aligned}$$

Thus, according to Eqs. (73) and (66), we have \(\Vert \hat{\varepsilon }^k\Vert _2^2 \leqslant \Vert \hat{\varepsilon }^0\Vert _2^2.\)

4.3 Convergence Analysis

Just like the one-dimensional case, the convergence analysis of the two-dimensional case can be obtained similarly. Let \(C_{x,y,t}^{4, 4, 2}\) denote the space of function u(xyt) which satisfies \(u(x,y,t)\in C^2[0,t_k]\cap C^4(\bar{\varOmega })\), \(\bar{\varOmega }= [0,L] \times [0,L]\). Then, the corresponding convergence results are given as follows.

Theorem 7

Suppose \(u(x,y,t)\in C_{x,y,t}^{4, 4, 2}\), then the tempered L1-ADI scheme (56) is convergent with the accuracy \(\mathcal {O}(\tau ^{2\alpha }+h_x^2+h_y^2)\) for \(\alpha \in (0,2/3]\), and \(\mathcal {O}(\tau ^{2-\alpha }+h_x^2+h_y^2)\) for \(\alpha \in (2/3,1)\).

Theorem 8

Suppose \(u(x,y,t)\in C_{x,y,t}^{4, 4, 3}\), then the tempered L2-\(1_{\sigma }\)-ADI scheme (65) is convergent with the accuracy \(\mathcal {O}(\tau ^{2\alpha }+h_x^2+h_y^2)\) for \(\alpha \in (0,1)\).

5 Numerical Experiments

5.1 Truncation Error

In this subsection, we present an example to verify the theoretical results of the three proposed tempered formulas.

Example 1

We calculate the Caputo-tempered fractional derivative of function \(u(t)={\text{e}}^{-\lambda {t}}t^{4+\alpha }\) in [0, 1]. Applying the formula [21]

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }({\text{e}}^{-\lambda t}t^{\beta })=\frac{\Gamma (\beta +1)}{\Gamma (\beta +1-\alpha )}{\text{e}}^{-\lambda t}t^{\beta -\alpha }, \end{aligned}$$

the exact solution of u(t) is given by

$$\begin{aligned} _0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }({\text{e}}^{-\lambda t}t^{4+\alpha })\big |_{t=t_k}=\frac{\Gamma {(5+\alpha )}}{24}{\text{e}}^{-\lambda t}t^4\Big |_{t=t_k}. \end{aligned}$$

The numerical errors and the convergence orders are calculated with the different parameters \(\alpha =0.1,0.5,0.9\) and \(\lambda =0,6,20,40\). The pointwise maximum norm error and the corresponding convergence order are measured by \(\text{Error}( \tau )=\max\limits _{0 \leqslant j \leqslant N} \big |u(t_j)-U_j\big |~,~~\text{Order}=\log_2\Big (\frac{\text{Error}(\tau )}{\text{Error}(\tau /2)}\Big ),\) where \(U_j\) is the approximate solution of u(t) at the grid point \(t_j\).

Figures 1, 2, 3, where the time steps are 1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640, 1/1 280, and 1/2 560, give the maximum norm errors and convergence orders for different \(\alpha\), \(\lambda\) of the three presented discretization formulas (9), (16), and (23), respectively. Based on the results displayed in Figs. 1, 2, 3, we can easily observe that the convergence orders of tempered L1-2 and L2-\(1_{\sigma }\) formulas are both \(3-\alpha\), which is higher than \(2-\alpha\) order of the tempered L1 formula. These are in accordance with the theoretical analysis.

Fig. 1
figure 1

The log–log plot of the maximum norm errors versus time-steps for \(\alpha =0.1\)

Fig. 2
figure 2

The log–log plot of the maximum norm errors versus time-steps for \(\alpha =0.5\)

Fig. 3
figure 3

The log–log plot of the maximum norm errors versus time-steps for \(\alpha =0.9\)

5.2 One-Dimensional Problem

To further illustrate the effectiveness of the proposed numerical formulas, we test two kinds of equations. The first equation is the initial boundary value problem of the time-tempered fractional diffusion equation and the second one is the time-tempered fractional Burgers equation.

5.2.1 Caputo-Tempered Fractional Diffusion Equation

Table 1 (Example 2) The maximum norm errors and the corresponding convergence orders of tempered L1, L1-2, and L2-\(1_{\sigma }\) formulas for \(\alpha =0.5\)

Example 2

In this example, we solve problem (25) with \(L=1\) using the proposed numerical schemes (30)–(32). The source term f(xt) was chosen as \(f(x,t)={\text{e}}^{-\lambda t+x}t^{4}\Big [\frac{\Gamma {(5+\alpha )}}{\Gamma {(5)}}-t^{\alpha }\Big ]\) such that the exact solution is \(u(x,t)={\text{e}}^{-\lambda t}{\text{e}}^{x}t^{4+\alpha }\) with \(\phi (x)=0,\psi _1(t)={\text{e}}^{-\lambda t}t^{4+\alpha }\), \(\psi _2(t)={\text{e}}^{-\lambda t+1}t^{4+\alpha }\). The numerical errors can be measured by the maximum norm errors at each discrete point

$$\begin{aligned} \text{Error}=\max _{0 \leqslant k \leqslant N}\left( \max _{0 \leqslant j \leqslant M}\big |u(x_j,t_k)-U_j^k\big |\right) . \end{aligned}$$

To demonstrate the numerical accuracy in time direction with a small spatial step size \(h=1/2\,000\), we list the computed results in Table 1. The orders of convergence are identified with theoretical orders of convergence (abbreviated as TOC) in the last row, and the errors of the tempered L1-2 and L2-\(1_{\sigma }\) formulas are significantly smaller than that of the tempered L1 formula. Owing to the interpolation at the non-grid point \(t_{k+\sigma }\), it should be noted that the order of the tempered L2-\(1_{\sigma }\) formula is \(\mathcal {O}(2)\) rather than \(\mathcal {O}(3-\alpha )\). Moreover, the comparisons of CPU times (in seconds) for different implicit difference schemes are exhibited in Fig. 4 of \(\alpha =0.1\) and \(\lambda =6\). From Fig. 4 we can see that the CPU times are proportional to the time steps, while the L2-\(1_{\sigma }\) formula requires more time for this problem than tempered L1 and L1-2 formulas.

Fig. 4
figure 4

The comparisons of CPU times for different implicit difference schemes with \(\alpha =0.1\) , \(\lambda =6\), \(h=1/2\,000\)

5.2.2 Caputo-Tempered Fractional Burgers Equation

Consider the following time-tempered fractional Burgers equation:

$$\begin{aligned} \left\{ \begin{aligned}&_0^{\text{C}}{}{\text{D}}_t^{\alpha ,\lambda }u(x,t)+u(x,t)\frac{\partial u}{\partial x}(x,t)=\kappa _{\alpha }\frac{\partial ^2u}{\partial x^2}(x,t)+f(x,t),~x\in (0,L),t\in (0,T],\\&u(x,0)=u_0(x),~x\in (0,L),\\&u(0,t)=0,u(L,t)=0,~t\in (0,T], \end{aligned}\right. \end{aligned}$$
(74)

where \(\kappa _{\alpha }\) is a positive constant. And denote the difference operator

$$\begin{aligned} \delta _{\widehat{x}}U_j^k=\frac{U_{j+1}^k-U_{j-1}^k}{2h}. \end{aligned}$$

The time direction is discretized by three proposed difference formulas, and the first and second derivatives of space direction are discretized by central difference. Regarding the nonlinear advection term, we adopt the linearization technique

$$\begin{aligned} u\frac{\partial u}{\partial x}\Big |_{(x,t) =(x_j,t_k)}\approx \frac{1}{3}[2U_j^{k-1}\delta _{\hat{x}}(U_j^k)+U_j^{k}\delta _{\hat{x}}(U_j^{k-1})]:=\mathcal {N}(U_j^k). \end{aligned}$$

Then, the following discretization schemes can be obtained, respectively:

$$\begin{aligned} \mathbb {D}_{t}^{\alpha ,\lambda }U_j^k+\mathcal {N}(U_j^k)\,=\,&\kappa _{\alpha }\delta _x^2U_j^{k}+f_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(75)
$$\begin{aligned} \partial _{t}^{\alpha ,\lambda }U_j^k+\mathcal {N}(U_j^k)\,=\,&\kappa _{\alpha }\delta _x^2U_j^k+f_j^k,~~1 \leqslant j \leqslant M-1,1 \leqslant k \leqslant N, \end{aligned}$$
(76)
$$\begin{aligned} \Delta _{t}^{\alpha ,\lambda }U_j^{\bar{k}}+\mathcal {N}(U_j^{k+\sigma })\,=\,&\kappa _{\alpha }\delta _x^2U_j^{k+\sigma }+f_j^{k+\sigma },~~1 \leqslant j \leqslant M-1,0 \leqslant k \leqslant N-1, \end{aligned}$$
(77)

where \(\mathcal {N}(U_j^{k+\sigma })=\frac{1}{3}[2U_j^{k}\delta _{\hat{x}}(U_j^{k+\sigma })+U_j^{{k+\sigma }}\delta _{\hat{x}}(U_j^{k})]\), and the initial value and boundary condition are discretized as \(U_j^0=u_0(x_j),~U_0^k=0,~U_M^k=0\).

Example 3

We solve the problem (74) using the numerical schemes (75)–(77) with \(L=1\). The source term is determined by the exact solution \(u(x,t)={\text{e}}^{-\lambda t}t^{3+\alpha }x^3(1-x)\), the initial value and boundary value are both 0.

Without loss of generality, we can get the following numerical results with \(\kappa_{\alpha} =1\). We check the numerical results in both time and space directions with \(\lambda =6\). The computational results about time direction are listed in Table 2 with \(h=1/2\,000\), while the corresponding results are listed in Table 3 for space direction with different ways of selecting \(\tau\) of three difference schemes.

Table 2 (Example 3) The maximum norm errors and the corresponding convergence orders of time direction of difference schemes adopting tempered L1, L1-2, and L2-\(1_{\sigma }\) formulas for \(\alpha =0.5\) and \(h=1/2\,000\)
Table 3 (Example 3) The maximum norm errors and the corresponding convergence orders of space direction of difference schemes adopting tempered L1, L1-2, and L2-\(1_{\sigma }\) formulas for \(\alpha =0.5\)

5.3 Two-Dimensional Problem

Example 4

Consider the problem (49) on \(\varOmega =(0,\pi )\times (0,\pi ),\,t\in (0,1/2]\). The exact solution is \(u(x,y,t)={\text{e}}^{-\lambda t}\sin (x)\sin (y)t^2\) with the right source term

$$\begin{aligned} f(x,y,t)={\text{e}}^{-\lambda t}\sin (x)\sin (y)\Big [\frac{2}{\Gamma {(3-\alpha )}}+2t^2\Big ]. \end{aligned}$$

The error in this example is measured by

$$\begin{aligned} \text{Error}=\max _{0 \leqslant k \leqslant N}\Big \{\max _{0 \leqslant j \leqslant M_1}\Big (\max _{0 \leqslant m \leqslant M_2}\big |u(x_j,y_m,t_k)-U_{j,m}^k\big |\Big )\Big \}. \end{aligned}$$

Tables 4 and 5 show the numerical results calculated by the three different implicit ADI schemes with different \(\alpha\) for classic (\(\lambda =0\)) and tempered (\(\lambda =6\)) situation when the spatial step size \(h_x=h_y=\pi /400\) are fixed, respectively. In Fig. 5, we plot the CPU times of the tempered L1-ADI, tempered L1-2-ADI, and tempered L2-\(1_\sigma\)-ADI schemes. From Fig. 5, we observe that the CPU times of L2-\(1_\sigma\)-ADI scheme are bigger than two other schemes, which is almost the same as the one-dimensional case.

Table 4 (Example 4) The maximum norm errors and the numerical convergence orders of tempered L1-ADI, L1-2-ADI, and L2-\(1_{\sigma }\)-ADI approximation with \(\lambda =0\)
Table 5 (Example 4) The maximum norm errors and the numerical convergence orders of tempered L1-ADI, L1-2-ADI, and L2-\(1_{\sigma }\)-ADI approximation with \(\lambda =6\)
Fig. 5
figure 5

The comparisons of CPU times for three different implicit ADI schemes

6 Conclusion

In this paper, we presented and analyzed the efficient difference schemes for diffusion equations with the Caputo-tempered fractional derivative. To design the difference schemes, we first proposed the tempered L1 formula for the Caputo-tempered fractional derivative of the order \(\alpha \in (0,1)\). The tempered L1 formula is constructed by using the piecewise linear interpolation on each small interval with the order \(2-\alpha\). To improve the numerical accuracy, another two fractional numerical quadrature formulas, called tempered L1-2 and L2-\(1_{\sigma }\) formulas with the order \(3-\alpha\) are presented. The tempered L1-2 formula is established by means of the quadratic interpolation approximation on each cell  \([t_{\ell -1},t_\ell ]\,(\ell \geqslant 2)\), while the linear interpolation approximation is applied on the first cell  \([t_0,t_1]\). The tempered L2-\(1_{\sigma }\) formula is developed by using the quadratic interpolation approximation on each cell  \([t_{\ell -1},t_\ell ]\,(1\leqslant \ell \leqslant k)\), while the linear interpolation in the cell \([t_k,t_{k+1}]\) is applied on the last non-integer grid cell  \([t_k,t_{k+\sigma }]\).

We further designed the difference schemes for one- and two-dimensional fractional diffusion equations with the help of the presented interpolation formulas. We checked the stability and convergence of two proposed difference schemes by the Fourier analysis method. The key idea of our method is to examine the weighted coefficients of difference schemes. The analysis shows that the implicit numerical schemes are unconditionally stable and convergent when the tempered L1 formula and L2-\(1_{\sigma }\) formula are used. However, the rigorous theoretical analysis of numerical scheme are not obtained for the tempered L1-2 formula due to the lack of positivity of the weighting coefficients. Finally, several numerical examples are given to validate the theoretical results. As the Caputo fractional derivative, the challenges still exist due to the nonlocal property of tempered fractional derivatives [17]. We expect that a new technique will be needed to construct the fast algorithm for the considered problem.