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Abstract

The tempered fractional calculus has been successfully applied for depicting the time evolu-
tion of a system describing non-Markovian diffusion particles. The related governing equa-
tions are a series of partial differential equations with tempered fractional derivatives. Using
the polynomial interpolation technique, in this paper, we present three efficient numerical
formulas, namely the tempered L1 formula, the tempered L1-2 formula, and the tempered
L2-1, formula, to approximate the Caputo-tempered fractional derivative of order a € (0, 1).
The truncation error of the tempered L1 formula is of order 2—a, and the tempered L1-2 for-
mula and L2-1  formula are of order 3—a. As an application, we construct implicit schemes
and implicit ADI schemes for one-dimensional and two-dimensional time-tempered frac-
tional diffusion equations, respectively. Furthermore, the unconditional stability and con-
vergence of two developed difference schemes with tempered L1 and L2-1, formulas are
proved by the Fourier analysis method. Finally, we provide several numerical examples to
demonstrate the correctness and effectiveness of the theoretical analysis.

Keywords Caputo-tempered fractional derivative - Polynomial interpolation - Implicit ADI
schemes - Stability

Mathematics Subject Classification 65M06

1 Introduction

The tempered fractional calculus is a generalization of the fractional calculus, and the
definition contains both the weak singular kernel and the exponential kernel. It has par-
ticular mathematical properties and plays an important role in the actual mathematical

< Fengqun Zhao
zhaofq@xaut.edu.cn

Le Zhao
Z1_Battery@163.com

Can Li
mathlican @xaut.edu.cn

Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-020-00067-5&domain=pdf

2 Communications on Applied Mathematics and Computation (2021) 3:1-40

physics model. The tempered fractional calculus describes the transition between normal
and anomalous diffusions or some anomalous diffusions in finite time or bounded space
domain. As we know, the anomalous diffusion phenomena can be seen frequently in the
nature world, and the continuous time random walk (CTRW) model has been proved to be
a useful tool that describes this phenomenon well [28]. The process of the CTRW model,
which is non-Markovian is usually depicted by the waiting time probability density func-
tion (PDF) and the jump length PDF. For the CTRW model with tempered power law
waiting time, the PDF of diffusion particles obeys the tempered fractional diffusion equa-
tion [13, 16, 40]

u,(X, 1) = K, (D7 (Au(x, 1)) — Au(x, 1), (1)

where u(x, t) denotes the probability density of searching a particle in position x at time ¢,
d

‘32

p @’d =1,2, and
OD:_’“ (0 < a < 1) represents the Riemann-Liouville tempered fractional derivative oper-
ator. The Riemann-Liouville tempered fractional derivative of order f(n—1 < f < n)

gives [18, 31]

Kk, > 0 is the diffusion coefficient, the standard Laplace operator A = ),

— At n t As
onMu(x, = ——— & fuxs) s
Cn—pg)yde Jo (t—s)l*hn
Using the properties of the fractional derivative [21], Eq. (1) can be rewritten as

oD u(x, 1) = Kk, Au(x, 1), 2)

where gD;””1 denotes the Caputo-tempered fractional derivative [21, 32, 37]

Cryad, oy — € " (eMu(s))
oD; u(t)—r(l_a) N ds, 0 <a <. 3)

The more detailed background and application of model (1), we refer to [16, 28] or Appen-
dix A. For the equivalence of models (1) and (2), see [36].

In this paper, without loss of generality, we consider the following time fractional sub-
diffusion equation:

SD™u(x, ) = Au(x, 1) + f(x,1), X € 2,1 € (0,T]
with the initial condition
u(x,0) = ¢px), x € Q2
and a Dirichlet boundary condition
ux,t) =w(x, 1), x €0Q,t € (0,7T],

where 2 € R? is a bounded domain in R4, d = 1,2 with the boundary 0£2, and f, ¢,y are
given functions.

There are several numerical approaches to the Caputo fractional derivative. The first tech-
nique is the piecewise interpolation polynomials, such as the L1 approximation [10, 11, 23,
29, 35, 42], the L1-2 approximation [14, 20], and the L2-1, approximation [1] and so on.
Another widely used technique is the shifted Griinwald-Letnikov approach [2, 6, 19, 26, 30].
The main idea is to approximate the Riemann—Liouville derivative by the Griinwald-Letnikov
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formula. The third used technique is the so called Lubich’s approach which is introduced by
[25]. The main advantages of above-mentioned approaches are simplicity and efficiency. More
importantly, the error estimates can be analyzed when above-mentioned approaches are used
to approximate the time fractional diffusion equations [22, 38]. More applications of above-
mentioned approaches to solve the various kinds of fractional order partial differential equa-
tions, see [15, 24, 34] and references, therein.

Recently, there has been a vast interest in the numerical solutions of tempered fractional
differential equations due to their wide applications [2, 4, 7, 9, 16, 27, 37, 40, 41]. Several
numerical methods, such as the Griinwald-Letnikov approach and the Lubich’s approach,
have been used to approximate the tempered fractional derivatives. In [2], Baeumera and
Meerschaert presented the finite difference scheme and the particle tracking method for
the space-tempered fractional diffusion equation with drift. Applying the spectral method,
Zayernouri et al. [39] obtained the eigenfunctions of the tempered fractional Sturm-Liou-
ville problem. Based on the weighted and shifted Griinwald difference (WSGD) opera-
tor, Li and Deng [19] constructed a series of high-order numerical forms for the space-
tempered fractional diffusion equation, and proved the stability and convergence by the
matrix analysis. Using the weighted and shifted Lubich difference operator to approximate
the time-tempered fractional derivative, Sun et al. [36] analyzed some local discontinuous
Galerkin schemes for a time-tempered fractional diffusion equation. The implicit numerical
scheme of the tempered fractional Black—Scholes equation is provided by Zhang et al. [43],
and the corresponding theoretical analysis is given. Using the Lubich’s approach for the
time-tempered fractional derivative, Chen and Deng [5] derived a high-order algorithm for
a time—space fractional Feynman—Kac equation. Dehghan et al. [8] proposed a numerical
scheme that is convergent with the second-order accuracy in time for the space—time tem-
pered fractional diffusion—wave equation, and the unconditional stability and convergence
of the developed method are also proved. Deng and Zhang [9] developed the finite differ-
ence/finite element schemes for a time fractional Feynman—Kac equation. Ding and Li [12]
designed a high-order numerical algorithm to solve the space-tempered fractional convec-
tion equation with Riemann—Liouville fractional derivatives, and the rigorous stability and
convergence analysis of the algorithm are also given. So far, the application of the piece-
wise interpolation polynomial technique to solve the tempered fractional diffusion equation
has not been intensively investigated.

In this paper, we are interested in developing efficient and accurate numerical approxi-
mations for the time-tempered fractional diffusion equation. In particular, one of the chal-
lenges of this problem lies in the existence of the singular kernel and the smooth kernel.
To overcome the difficulty, we discrete the tempered Caputo fractional derivative by
transforming it to the conventional Caputo fractional derivative. In Sect. 2, we present
three kinds of quadrature formulas for the Caputo-tempered fractional derivative of order
a € (0,1). The tempered L1 formula with the order 2 — a, the tempered L1-2 and L2-1,
formulas with the order 3 — a. And the corresponding analysis of truncation errors of
three formulas are discussed in detail. The presented discrete formulas are applied to solve
the time-tempered fractional diffusion equations of one dimension and two dimension in
Sects. 3 and 4, respectively. Besides, the unconditional stability and convergence of differ-
ence schemes with tempered L1 and L2-1, formulas are proved by the Fourier method. In
Sect. 5, the numerical results in the examples illustrate the effectiveness of the three pro-
posed discrete methods. Finally, we make a brief conclusion in Sect. 6.
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2 Interpolation Formulas of Caputo-Tempered Fractional Derivative

In this section, we are concerned with the efficient numerical discretization of the Caputo-tem-
pered fractional derivative. For a given positive integer N, let {7, }2’:0 be an equidistant partition
of [0, 7], and denote t;, = kz, 1,1/, = (f + t;41)/2, where T = T /N is the time step size.

2.1 Tempered L1 Formula

To discrete the Caputo-tempered fractional derivative (3), we introduce the following
notations:

V(1) =t ) BiVie ~ 0V
S = — Uy =2
2 T T

then we denote the linear interpolation function of v(¢) as Py ,v(¢) on each small interval
[tp_1:t,1(1 < € <), e,

t,—t t—t,,
PI,KV(I) =v(t,_y) - +v(ty) -

which leads to

(PL,,»V([))’ = w 5[Vf ,

and

”(5/)

V(1) = P pv(t) = A=t )t —1,), tE€[t,_y.t7], &y € (tp_y,tp).
Denoting v(f) = e*u(t) and using the piecewise linear approximation on each cell [t,_1.t0],
then we can get the expression of the tempered L1 formula of the Caputo-tempered frac-
tional derivative, as follows:

e~ Mk

k 1,
oD u@)] ., = Z / (t, — $)7(P ,(s))ds + R*

—Atk
k
F(l— Zévf / (t, —s) “ds+R
k
e—ltkrl—a (a) ‘
= P + R".
By simple calculation, Eq. (4) provides
oD ud) -,
—a k-1
- _° (o) (o) (@ ) Alt,~t) eAllo=1;) k
—m[ao u(tk)—;(ak_f_]—ak_f> TWu(t,) — oWyt | + R
=: D™ u(t,) + R, (5)
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where
RY = (D u(®)| ., — D ulty),
and
¢;“>=g+1)1—a_j1—”, 0<j<k—-1. (6)

We denote y = 7°T'(2 — a), Ur » u(t,) and

—(a)

d,, = a](:)me/l(fm_l—tk), m=1,2,-k, (7
dp = af T m= 1,2, k, (®)

then the tempered L1 approximation operator [D>;M U* can be rewritten as the following
form:

k-1

1|~ —@ o~ —(@)

Arrk (@) 77k (a) (2 0

D;I U = ; [da,kU - Z (da,f+l - dat,lf>U - da,l U ] (9)
=1

. (@), (5@ ~(0) .
For coefficients {aj 1 {d, ), and {d*) }, we can obtain

Lemma 1 For any a € (0,1),k > 1, the coefficients a;“)(O <j<k-1) and Efla:n, fc?;"r)n
(1 £ m < k) defined in Egs. (6), (7), and (8) satisfy

@O a”>0;
i )] (@) (@) (@) .
(i) lI=ay, >a;" >a,” > >a_;
k-1
(i) Y a® =k
=’

(v) d >0, d® > 0;

a,

=@ =@ =@ —()
) da’1 < 0la,2 < da’3 < < da’k;
N @ _ S ) “a).
(vi) da,l < ala,2 < da’3 < < da,k,
.. —(a) ~ ) (
(Vll) da,m+1 - dz(fraz < ajca—m—l - aka—)m’ 1 sms k— 1’

(viii) 4. < a®.
Proof The proof is provided in Appendix B.

Lemma 2 Assume that u(t) € C?|0, t,]. Then, there is the following error estimate:

1 1 a
k| <« 2 2 /
< s/ 5+ I-a0e- a)] [ s o]+ 24 max a0
" 2-a
+ sk [0« (10)

for R~
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Proof We list the proof in Appendix C.

To see the smoothness of the solution more clearly, we also give the asymptotic
expansion formula of the tempered fractional derivative. The asymptotic expansion for-
mula of the tempered L1 approximation is derived from the asymptotic expansion of the
L1 approximation. There is the asymptotic expansion of the L1 approximation of the
order 3 —a [10, 11]

Zw«x) k—¢

H 22
_ Cpa {a—-1) 3 u'(0)
= oDju()|,_, + Tz )( 'z <—F(—a)tk1+“
d2 3—a
— oD _ ) =y o>,

where uf = u(t,), {(s) is the Riemann zeta function, and the L1 approximation has weights

o =1o"=(k-D""—k" ad @ =@E-D"C-20"C+@&+1)' for

1<lk1

The tempered L1 approx1mat10n (9) has welghts d(”) =1, d (“) JetkT,
andd,,_,. — d;“,: ;= (a)/e”’ (A1<<k=-1). By applylng the asymptotlc expan-

sion formula for the functlon e™u(s) and multlplylng by e#&, we obtain the asymptotic
expansion formula of the order 3 — a of the tempered L1 approximation as follows:

k-1
1 (=@ « ~@ ~@Y\, ¢ _F9 0
<da k Z <da,t’+l - daf)u - da,lu

H =1
(4 C(a - 1) ” ' _
= ¢D; 'iu(t)|;=,k + F(Z——a)((uk) + 24"y + 22 )7?
3 e M (Au(0) + o’ (0)) B d? d 2\ 2 .
[ r(—a)tli_m (dl2 + 2/1(‘1 +4 > D u() =i 12 + 0@ ™).

2.2 Tempered L1-2 Formula

To improve the accuracy, we apply the quadratic interpolation P, ,v(f) on each
cell [t,_y,1,1(Z > 2) and the linear interpolation P v(f) = 6,v; , on the first cell [£, 7]
to approximate the function v(¢) like [14]. For the cells [7,_;,?,]1(£ > 2), the quad-
ratic interpolation function P, ,v(¢) with three points (¢,_,,v(t,_5)), (t,_;,v(t,_;)), and
(t,,v(t,)) is employed, i.e.,
w(t,) —v(t,_y)
Py () = (1, ;) + %(r —t,))
3 V(ty) = 2v(t,_ ) +W(tp_y) (t—t,_)(t, — 1)
72 2 ’

and it leads to
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(Pov®) =8, + (Bves)(1=1,0), (a1
and
V,N(ﬂf)
V() = Py pv(t) = T(z —t, ) (t=t,_y)(t=1,), 1€ lto_yit] np € (tp_pity).

By virtue of Eq. (11), we can obtain

Ca.4
OD;I M(t)|t:tk

e~ M h K 12
=— [/ (t = )7 (P () ds + 2 t — s)_"‘(szv(s))'ds] +T*
(1 -a) Ty =271,
e M £ e : 2 te k
= — 1) t, —s)"*d. [ s—t t, —s)"%d T
o ; Voot /IH(,{ 5) v+Z§( ,vf_l)/tm(s -t =) s] +
e—itkTZ—a

@ 52\1,;_' + T*.

— M4
= I]:Df ’/l(tk) + —1"(2 — a) “ (k=£)%1

At

Recalling v = e*u, we have

Cnya,4
oD u@) o,

k—1

L « k.a) k) \ Gt - k) LAty Kk

= ; [CE) Dt)u(tk) — Z (C;c—(;—l - cf{_‘?)e (t, n)u(tf) - Cz_olt el tk)u(to) +T
=1

= 0% tu(t) + T, (12)

where TF = gD‘[”’lu(t)L:tk — 0™*u(t,). For k = 1, there is cg"“) = af)“) =1; for k > 2, the
coefficients are given as

(@) () .
a, + bO , j=0,
(ko) _ (o) (@ _ 7@ . _
G =G b ISjsk=2, (13)
@ _ @ o
a " —b_, j=k-1,

and

() _ 1 . 2—a _ 2-a - 1-a l—a .
b, _—z_a[(;+1) A= s[G+ D+ = 0.

_1
2

We call the fractional numerical differentiation formula (12) the tempered L1-2 formula,

— Al 2-a
which adds a correction term = (zja) fzz bgfi /07 Vv¢_y in the tempered L1 operator D& u(t)

for k > 2. Setting

—(k,a)
dyy = cH0HM =0 = 1,2, (14)

c,m
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Ei.lf,;',’) I((k Dedlly =ty — 1.2 .n K, (15)

the tempered L1-2 approximation operator 9 4 U* can be rewritten as

c,f+1

k-1
, 1 [~wa) —(k,@) ~k,a) —(k,a)
oAUk = . [dak“ U=y (d -d; )Uf d., U°|. (16)

The tempered L1-2 approximation operator (16) reduces to the tempered L1 approximation
operator (9) for k= 1; for k =2, c(k’a) € (1,3/2), c(k’a) IS ( 1/2, 1), then we can obtain

—(k,a) ~
d,, dikl") < cg‘ o _ (lk ). as for k > 3, the properties of d and dif;f” (1 <m<k)can

be derived with the help of properties of c(k @ see [14] .

Lemma 3 For any a € (0,1), k > 3, the coefficients c] )(O <j<k-1) and d(k )
(1 < m < k) defined in Egs. (13), (14), and (15) satisfy

Q ks |c(1k’a) B

0
(ii) c;.k""’ >0, #1;
(i) (Zk,a) (k,a) . ;{k c;)’
(iv) > c(k ),
—(k a)
) dc,m > 0, d“‘,;”) >0, m#k—1;
. —(k,a) a
(vi) dL N
(vii) dchrl d(’”") 1<m<k=1,m#k-2;
(vii) da —dkO <0~ I Km<k—Lm#Ek-2.
It is easy to check that c(k D e (=1/2,1), c(k € (0, 1), the positive and negative of c(k -«
and ¢ (k o _ <k ) change w1th the difference a (0 < a < 1), which are discussed in the follow—
ing lemma

Lemma4 The coefficients of c(lk’a) and c(lk’a) - c(zk’a) for different k and a € (0, 1) satisfy

. —(k,a)

(i) c(lk’a) >0,d, la < c(lk’a),for any a € (0,a,), a; ~ 0.6736 when k = 2;

.. —(k,a) ~r

(ii) c(lk’”) - c(k’a) >0,d,, - d(]”’a) < c(lk’a) - c(zk‘a), forany a € (0,y), @, = 0.3909, k = 3;

) —(k, )
1) dc k"l —d%?, < =, for any a € (0, 03), a3 % 03739, k> 3;

: (k) (ko)
iv) eV =y, < 5
Proof The proof is provided in Appendix D.
Lemma 5 Suppose that u(t) € C3[0,t,], and for the truncation error T¥, we can derive that

'T1| < m A2 t(l)’l\l?\)z lu(t)| + 24 max |’ ()] + max |u"(z)|] , a7
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‘ ? ! " _ i y-a—1_3
|T ‘ ST = a){ [’1 [max lu)] + 24 [oax | (@) + max |u (t)l](tk 1)
12 5 A 0| +34 f
+[12+3(1—(x)(2—a)<2+3_a mfgjkW()l Jlnax o @)
m 3—a
+3/lt§1<1;a<)§k |u” (1) + max |u (t)|]r } k>2. as)

Proof The proof is provided in Appendix E.

2.3 Tempered L2-1, Formula

By Alikhanov’s work [1], letting 6 =1 —a/2, we discuss the discretization of the
tempered fractional derivative at f,, (k=0,1,.--,N —1). The interpolation polyno-
mial based on the quadratic interpolation on each interval [¢,_,2,](1 < ¢ < k) is con-
structed to approximate v(f) = e*u(r) using the three points (t,_;, v(t,_,)), (¢,, v(t,)), and
((ZIR(FI8)) B N

I, (1) = W(1,) — o) ~ Vlig-1) _Tv(tf_l)(tf gy W) 2vr(if) W) G = t)(; le),
leading to
T, (1)) = Bve_1 + (87v )t — te1),
and

v(t) — I, ,v(t) =

/1
v (Yf)
g =ty A —t,)t—tp1), tE[ty_y,1,], 7, € (Lp_y, Toyy).

For the last small interval [z, f,, ], we use the linear interpolation in the cell [#, 7] at
non-equidistant subdivision points #;, ;, ;, and #;. ;. To sum up, we have

Cnya, 4

ODt u(t)|t=tk+g

e : e V(s)ds e~ Miro fee Y (s)ds
- &=/, o= Td-a) ), (e —9"

—4 c+o
e~ Aiso / e (I, 4v(s))'ds N e 5tvk+% /fm ds i
F(l - (X) 7 (txpo — ) 'l —a) t (o — )"
e Mo v OVe_ : +(5 Vs =1, 1)ds e Mo p1—a ~ .
+ 810 T

) a) (g — 5)° T2 —-a) ;

e Mozl (@0) (@0) kto
- r2-a Z (pk 10Ve- 3 +qk /+1(6 Vf+ 5:‘7—%)) +py 6 Vk+% +T

e Mo T Y (ae) ( > k
= S Y D () — vt ) + T

T2 —a) Lp:OS Wtppy) — V(i)
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where

pE)ao') 1 a, pj(ao-) 0+0-)1 a_(i_1+o-)l_a’j> 19

q"" = —2_a[(j+6)2_"—(j— 140)"7] - %[(j+6)1_"+(i— 1+0)™],j>1

And for k = 0, we have s(()k’“"’) p(()“ ) = g1=% for k > 1, we have

e 4 j=0,
(ka,0) _ (a,0) (a,0) _  (@,0) . _
5; =37 tay —q . 1Sj<k=1, (19)
(D! o) ql((a ,0) , j - k
Moreover, recalling v = e’u, we have
Cnya,A
ODz M(t)lr:tA+
a k=1
_ T M1 ~tiro) (K0,0) _ (ka,0) _ (ka.0) \ LAt —tips)
= —]"(2 ~5 [e o ~haa) g u(ty,1) fgo <sk—f71 S,y )e 1yt )
_ S]((k,a,o‘)el(t(,—tkw)u(to)] + Tk .= A;”’lu(tkﬂ,) + Tk+6, (20)

where T = ng"’lu(t)| =, T Af"’l u(t,,). Here, we call this numerical differentiation
formula (20) the tempered L.2-1, formula. If we adopt the approximate solution U* and set

—(k,a,a) (k a,0) e n=lus) i =0.1. . k (1)
sm Sk—m ’ [

Tko,0) — (Ke0) LAy —liss) =

dg, 7 =82 et Ted, m = 0,1, - k, (22)

then the tempered L2-1 approximation operator Af"’l U* is equivalent to the form

k=1
Ak — (k,0) 1 et 1 i (R RS i G )
AUt = [d‘ oyt _ Y <de+1 S a0 @3
It is clear that sg‘”) ¢!'7% >0 and d g“w) d(k”) > s(k‘w) for k = 0. And, for
k > 1, with the similar fashlon given in [1] we can check that the properties of d_, ~ and
d(" %) (1 € m < k) hold the following lemma.

Lemma 6 For any a € (0,1), k> 1, s]("“) (0 <j < k) defined in Eq. (19) and d
d(’““’) (0 < m < k) defined in Egs. (21) and (22), we have

i) sEr > Shk+ o) > 0;

(“) (()ka(r) > (lkaﬂ) >s(kao‘) S > ;(/u:n) >S§Ck’aﬁ);
... —kao)

(i) 4, >0, d(k""") > 0;

. —(k,a,0)

(v) d, ., >d% 0<m<k-1;

~(k,a,0) (k,a,0) .
W) ds,k > 5,70
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.. —kao) (k,a,0)
i) d, <s, o),

Lemma 7 Suppose that u(t) € C*[0, 4110 < k <N — 1), then the truncation error of the
tempered L2-1 ; formula gives

|Tk+" <;[/13 max |u(®)| + 34> max | ()|

S36e0(1 — @)

1) SIS 4y SISy

+34 max |u"(t)|+ max |u”'(t)|]r3_“ + O, (24)

1y SISty 1) SISty

Proof The proof is provided in Appendix F.

3 Implicit Schemes for One-Dimensional Time-Tempered Fractional
Diffusion Equation

3.1 Derivation of Difference Schemes

For a given positive integer M, let {xj}j}'i o be a partition of [0, L] with x; = jh, and

h, = L/M. Define a mesh function V,, = {ulu = (uy, u;. -, up)}, V) = {ulu € Vj,uy = uy, = 0}

M-1
with the discrete L, norm [|o*()||3 = X hxla)]’f |
j=1

Consider the initial boundary value E)roblem as follows:

2
D, 1) = L 1)+ f(x. 1), x € (0.L).1 € (0.T],
0x2

u(x,0) = ¢p(x), x € (0, L), (25)
u(0,1) =y (), u(L, 1) =y, (1), t € (0, T],

where the functions f,¢,y,,y, are given, and smooth which satisfy our numerical

schemes. Denote ujk = u(x;, 1), ];k =f(x;.1,). Here we consider the spatial variable is
' ' Y,

approximated by the center difference formula 6}% Jk = u’“h# + (’)(hi), and the time

variable is discretized by tempered L1, L1-2, and L2-1 forrﬁulas, respectively. Then, the

first equation of Eq. (25) at the grid points (x;, #;,) and (x;, #;., ;) holds

Dl =80 +fE+ R, 1<j<M—=1,1<k<N, (26)
Ak <2k k k .
o uj—éxuj+.];.+Tj, 1<j<M-1,1<k<N, 27
A,k _ 2 k+o k+oc k+o .
A ; —5x”j+ +]§.+ +Tj+, 1<jSM-1,0<k<N-1, (28)

where ];"J’” = f(x;, t;y,) and uj’.‘“’ = (ouj’f“ +(1 - a)uj’.‘) + O(z?), thus the truncation error

IR <O\ +h), TS GE ™ +1), ITHI<SGE +RE).  (29)
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The value of the approximation solution to a function u(x, 1) at the grid point (x;, %) is
denoted by U" If the truncation error is omitted and Uk is adopted, then we have the dlffer—
ence schemes

ID;:,AL/J/{=5§[]]]<+]3", ]<J<M—1,1<k<Na (30)
a;l,A.Ulk=5§Ulk+fj‘k’ 1<J<M—1,1<k<N, (31)
A?’Al]]]}=5fl]]k+a+f]k+o', 1<j<M—l,0<k<N_la (32)

where Uj’,‘” = o—Uf“ +(1 - a)Uf.

3.2 Stability Analysis

In this subsection, we will analyze the stilbility of numerical schemes (30) and (32)
using the Fourier analysis [3, 6, 20]. Let U;‘ be the approximate solution of Egs. (30)
and (32). Then define ¥ =U*—U*, 1 <k<N,1<j<M-1, and the error vector

: j .
[61 , e eg, , j(VI—l Te V;l) To begin the error analysis, we define the grid function
k —}i< < +}&1<'<M—1
€ X > XXX R SYA s

e = h h
0, osxszx and L—7x<x<L.

Therefore, £X(x) can be expanded by the Fourier series

+oo
= ) e/l k=1,2, N

m=—oo

where g’y; = 1% /0 L e*(x)e=2mm/Ldx,i = v/—1. According to the definition of the discrete L,
norm and Parseval’s equality, there exists

et = zhw /|sk|2dx T I 33

n=-—00
From the numerical schemes (30) and (32), we get the following error equations,
respectively:
-1

@ gk 2k _ 79 (@) il &0,
dak j ﬂéx j ( a,l+1 _daf) +dal j° (34)
=1

k—1
ko) k1 2 _k+1 _ 759 _Hkao)) 41 L g0 o 2 k
e — pogtel ™ = 3 (A - Ak el ) + (1 - )%l
=0
(35)

Suppose that the solutions of Egs. (34) and (35) can be written as the following form:
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2rm

k _ gk SiBih, 5 _
ej—ﬁme , P = T

(36)

The main idea of the Fourier analysis method is to check the propagation of the error 60

produced in the 1n1t1a1 condition. Since the information is exactly given in boundary COIldl—
k _

tions, we have g = X v = 0. Now, we check the propagation of the error with the develop-

ment of time steps. For the stability of the difference scheme (30), we have

Theorem 1 The difference scheme (30) is unconditionally stable, and we can derive that
el < N1e%ll, 1 S k< N.

Proof Inserting Eq. (36) into Eq. (34), and combining with the Euler formula
el = cos(ph) + isin(fh), we arrive at

k-1
a 4 a
| >+;4h sin ( )] = (40, -39 +d,\8, 37)
£=1
where 2((1“1: = ag’) =1
Suppose that §fn (k=1,2,---,N) are the solutions of Eq. (37), we will prove the follow-
ing inequality by mathematical induction:

The inequality (38) holds obviously for k = 1. Now, we suppose that the inequality (38) is
true for k = 1,2, .-+ ,n — 1. Thus, for k = n, using Eq. (37) and (vii), (viii) of Lemma 1, we
have

n—1

4 n a a a
[1+/4h—281n< ignr < X (a2, = a2, )ig ] +a, 1) < 1201,

x =1

and it yeilds

|§:1| < |§,(,),|, Vn=1,2,--,N,

n—1

where the relation Y (a(”’)

(a)

(”) ;) +a, , =1lisused. Applying the definition (33) and

-1
=)
the inequality (38), we get

14113 = 2 [ISARRS Z 12012 = 11°113,

m=—oo m=—oo0

which means the difference scheme (30) is unconditionally stable.

With the similar approach, we have the stability of the difference scheme (32).

Theorem 2 The difference scheme (32) is unconditionally stable, and we can derive that
el < 11, 1 <k <N

Proof From Egq. (35), we have
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o) A4uc ., (ph
(@ 57 (7))a

k-1
—(kaa) ~hao —(kaa) 40 -o)u . , (Bh,
- Z( s,0+1 dE{;’ ))frtr)l-'—l 50 ( h2 SlIl2< 2 )) sz’ (39)
£=0

where ds’,;a’a) = sf)k"””>e’1(’k"*+ﬂ), si)k’“’g) =6!"*>0(k=0), and sg‘"’"’) = po” 9 4 q(" >0k 1)
Suppose that ffn“ (k=0,1,--,N —1) are the solutions of the numerical scheme (39),
we shall prove that

| <10 k=0,1,- ,N =1 (40)

For k = 0, it holds

o 4 ﬂh a,0 41l-0o . h a0
(ng’ R S ( 2 ))‘f':ls (S(Ok’ - 2 = 1n2<ﬁ7)>§2<s(0k’ "

X

and hence
1 0
&1 <18 ]

Now, we suppose that Eq. (40) is true for k =0, 1, ---,n — 1. Then, according to Eq. (39),
for k = n, we have

h
e (2

h2
s 41 — o) ph,
k. k. k - . k.
< X (st =) e - TThsin? () |160) <61
=0 hx
'S [ o) (ko) _ (ko)
. . L®,0 a,0 _ ,®,0 ko, o
In view of the relation fgo (sn_ v =5 > =5, 7 = sth®2), by simple argument, there
exists
| o 1 0 0 _ N
|§ | 4/40' .2 ﬂh,( |‘§m| < |§m|$ Vn_oa 13 ’N 1
1 + (erzr)hz 1n (7)

Finally, using Egs. (33) and (40), we obtain the difference scheme (32) is unconditionally
stable.

3.3 Convergence Analysis

In this subsection, we are dedicated in studying the convergence order of the difference
schemes. As an example, we give the complete proof with the tempered L1 approximate and
the proofs of other difference schemes are omitted with respect to the length of this paper.
Define the truncation error pj’? = u(x;, 1) — U;‘ = uj’.‘ - U}‘, 1<k<N, 1<j<M-1, and
let the error vectors
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o =100k o b 1T RE=[RERERE, - R, TT, 1

VA
>~
N
=

Set the grid functions

k hx hx .
. P xj—E<x<xj+?,1<1<M—l,
pr(x) =13 h h
0, O<x<7x andL—Ex<x<L,
( k hx hx .
R, x/-——<x<xj+—,1<]<M—l,
Rk(x)=< ! ‘ 2 A 2h
0, 0<x<7x andL—Ex<x<L.

And p*(x), R¥(x) have the following Fourier series expansions:

+0o0
Prw= Y ke k=12, N,

m=—0oo

+o0
R = Y 7kl k=1,2,- N,
where n* = % fOL ph e i2mme/ Ly, yk = % fOL RF(x)e~27mx/Ldx. From the definition of the
L, norm and Parseval’s equality, we can obtain

M-1 L +o0

IR = Xl = [ 1oPa= 3 P, @
Jj=1 m=—o0
M-1 L +o00

IR = X nIRE = [IRPa= 3 AP @)
Jj=1 m=—co

Subtracting numerical schemes (26) from Eq. (30) and multiplying h)% on both sides of the
final error equation, we arrive at

1

h: RIQ ~a  ~ —@
x (a) k k kK _ _x (@) \ ¢ 0 2 pk
<_da,k + 2) Pp =P — P T [Z (du,zf’+1 - da,f)‘oj + da,lpj] +RhR;, (43)
H [ R
wherep? =0,1<j<SM-1py=p}, 1 <k<N-1. Assumethatp;‘andR;‘are

_ 2zm

k _ ok .ipjh, k _ .k .ipjh,
p; =m,e™, Ry =y, T

(44)

Noticing that p;’ = 0, we obtain '731 = 0. And we can deduce the following inequality from
Eq. (29) and the first equality of Eq. (42):

IR, < C,VLE + 1), (45)

And from the convergence of the last series of Eq. (42), there exists a positive constant
such that [20]
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|ym| C1|y| k=12, ,N. (46)

Lemma 8 There is the following relationship between nfn and y’L:
Iyl < L+ 2y, |, k=1,2,-.N. 47)

Proof Inserting Eq. (44) into Eq. (43), we arrive at

n; ph WS~
X 2 (P kX @) 2,k
[/4 + 4sin ( 2 )]nm . ;(daﬂl d, )17 + Ry, (48)

As for k = 1, there is

and we can easily come to
Inh | < ulyhl < lrkl < CA+olyll,

where u = 7°I'(2 — a) < 1 when 0 < @, 7 < 1. We suppose that the inequality (47) is true
fork=1,2,---,n— 1. For k = n, we deduce the following estimate from Eqs. (48) and (46):

h; —@ o~
[7’“+4sin2( )]|"|\— (duf+1—d;’;)|nri|+h§|y;’l|,

i.e.,

n—1

il < Y (A =2 g + wly

=1

AN

<U+01ey) | 2 ( o d;”;) +Crly)|
<A +0)Clyll.
Therefore, this lemma is proved.

Let C}7 denote the space of function u(x, r) which satisfies u(x, 1) € C[0,£,] n C*[0, L].
Then, there exists the following convergence theorem.

Theorem 3 Suppose u(x,t) € Cf 7, then the difference scheme with the tempered L1 for-

mula (30) is convergent with the convergence order O(z>~* + hi).

Proof Applying the definition (41)—(42), Eq. (45), and Lemma 8, we arrive at
1711, < (1 + D CIR'L, < 7CEVLE + 1) < E + 1),

where C = e’ C,C \/Z Therefore, the difference scheme (30) is L, convergent.

@ Springer



Communications on Applied Mathematics and Computation (2021) 3:1-40 17

The proof of the convergence of the difference scheme with the tempered L2-1 for-
mula (32) is similar to Theorem 3, so there exists the following result.

Theorem 4 Suppose u(x,t) € Cf ,3 , then the difference scheme with the tempered L2-1, for-

mula (32) is convergent with the convergence order O(z* + h)zc).

4 Implicit ADI Schemes for Two-Dimensional Tempered Fractional
Diffusion Equation

In this section, we will discretize the two-dimensional diffusion equation using tempered
L1, L1-2, and L2-1, formulas. From the point of view of computation, we construct ADI
schemes by introducing different terms of mixed derivatives similar to [42]. Consider the
following two-dimensional initial boundary value problem:

Cra.l 0214 6214
oD ulx,y, ) = — (6 y, 0+ — 5,0 + (60,0, (x,y) € 2,1 € (0,T],
0x? 0y?

u(x.y.0) = $(x.y). (x.y) € O, “9)

u(x,y,t) =wx,y,1), (x,y) € 002,t € (0, T],

where £ = (0,L) X (0, L) and 942 is the boundary of £. Here, we also assume that func-
tions f, ¢, y;, and y, are smooth enough for our numerical schemes.

4.1 Construction of Tempered ADI Schemes

For two positive integers M, and Mz, denote h, = L/M,, h, = L/M, with x; = jh,, y,, = mh
Let Q, = {(x,y)I0<j<SM,0<Sm <My}, 2,=2,n2,Q, —{tk|0<k<N}

'y

4.1.1 Tempered L1-ADI

For any grid function in £, X £2,, we define the spatial difference quotients

Kk sk =8k
Vk _jtlm Jom 52 Ko Jt3.m J=5.m
xV. 1 - - 7 > - - 5 >
Jgm h, xVim h,
8,81 | )=68.(8MF )
S262 K Y skam Y mam
X"y jm - h

X

And denote the grid functions in €, x Q,, u]km = u(X Yo 1) f = F s Yo B)s
(X Ym) € £2;,,0 <k < N. Using the tempered L1 formula (5) to approx1mate the time
derivative in the first equation of Eq. (49) at the grid point (x;, y,,, f), we have

DA, = 60ul, + Sl +fE RS (0, ),) € 2, 1 kSN, (50)

x]m vzm

Using Lemma 2 and the Taylor expansion formula, we get
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f?J’im =0+ 1 + hﬁ). (51)

Moreover, add the mixed derivative term u ID“ A (6262 K ) to Eq. (50), and there exists

Xy jm
D?’A( jﬂ’l + 'uzé)%ayz jkl1’l> = 6}% ]km 5y2 ]km +]3km +( 1)km’ (52)

where (R))¥, = R, + D“(5252 ; ) (7)€ 2,1 Sk SN,

X7y jm
Lemma 9 For the truncation error given in Eq. (52), there is
7 \k in{2a,2—a 2,72
|(R1)j,m| = O™ h+ he + hy). (53)
Proof If v(x) € C?[x — h,x + h], the Taylor’s formula with the integral remainder implies

vix + h) = 2v(x) + v(x — h)
h2

1
= / V' (x + &h) +V"(x = EMI(1 — §)dE.
0

Setting 67871, = P(x;,,, 1;), we have

P(xy,n—/ / [Maz(x Eh,y — gh),z>+6262<x+§hv,y Chy.1)

—C (= Sy Ty S5 (et By + Oy 0] (1= £ = OdEdE,

6262 6202

and hence

w20 (8262, ) = i [SDEAP(. 3,00 1) + O] = O™, (54)

xy]m

In addition, combining with Eq. (51), Eq. (53) immediately follows.

Letting Uk be the approximation solution of u(x;, y,,, ;) and omitting the truncation
error in Eq. (52) we have

a,A k 2e2c2717k 2717k 27171k k
Dt (UL, + 128282UL, ) = B2UL, + 82U%, + £ (3,) € @ | <K SN,

U= 053m)s (5 00) € £ (55)
Uj’.jm =Y, Y )s (4.3,,) € 02, 1 <k N.

Because D™ (556314/"”[) is the tempered L1 operator of {D**P(x;,y,,. 1), we call Eq. (55)

the tempered L1-ADI scheme. According to the expression of the tempered L1 approxima-
tion operator (9) and noting that dg’z = 1, multiplying 4 on both sides of Eq. (55) and the
first equation of Eq. (55) yields

(I = us)(I = ps)Uy,

7 (@) ¢ 2520277 =@ (0 25252710
- Z( a,f+1 _dal’><U +H 6 o Ujm)+da,1<U +H 5 5 Ujm)+ﬂjm’ (56)
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where [ is the identical operator. Let U*n ad- ;452)U" 0<jsM,1<m<M, -1
Then, we can rewrite the ADI scheme (55) as the followmg two steps.
Step 1 For fixedm = 1,2, ---,M, — 1, using

k-1
2y _ (@ (@ y 2526277
(- 'Méx)Uj,m - Z (da,f+l daaf><U tu 5X6ijm)
£=1
+d" (Uon+#25§5y2UJom>+m;m, <j<M, -1,
Uy, == DU, Uy = —us)Uy,

we get the intermediate variables {U;‘m 2
Step 2 For fixed j = 1,2, ,M, — 1, using

I —usHU;, =U;, . 1<m<My—1,
Uy = vy, 1) Uly = wixy, .10,

we get the numerical solutions {Ufm LOLSESN

4.1.2 Tempered L1-2-ADI

If the time fractional derivative in problem (49) is approximated by the L1-2 formula
(12), we have

Ak = §2uk 2,k ko pk
07" u U =o.u i 5y ,m"'f +ij,(j,ym)GQh,1<k<N. (57)
With the help of Lemma 5 and the Taylor expansion, we have
R, =OG "+ 1} + k).

Adding the mixed derivatives term HZ(EEk];a))—Za;U (5353ufm) to the both sides of Eq. (57),
and noticing the fact that Eik,;“) = cf)k’“), there is

a, (k,a)
0 (ul, + 4P Y2825, ) = 62, + S, £+ (R (58)

Jm Xy jm

where (R, = R\ + 12(ci ) 20“(5252 k ) (% ¥) € 2,,1 <k < N. Recalling the

truncation error of the small term (54), we deduce that
|(IA€2)_ﬁm| = 0> +h2 + hi). (59)

Omitting the truncation error in Eq. (58), we have the tempered L1-2-ADI scheme
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a, _kﬂ) -
o (UL, + Wy ) 2BE UL, ) = B2UL, + 52U, + £ (53,) € @ | KN,
Uy = 6052 9): (53.3,) € 2y
Uy = W Y 1) (6, ¥,) € 02, 1 SN,

which can be rewritten as
(1= mef7132) (1= w57 ),
k-1 k)
= @ X (@0 -3 (uf, + ey, )
£=1

—(k,a) o
+d, (U0, + iSRS, ) + | 60)
If denote U7, = (I - () 16U, 0<j <My, 1 <m<M,— 1, then, for the view of
computatlon it can follow the procedure below.

Step 1 For fixedm = 1,2, .-+, M, — 1, computing

( k,
(1= w1 Uy, = iy |4 (08, + i ey, )

k) a « _
3 +Z< e _dikf))<Uﬁn+” (282520, >+;4];.’fm], 1<j<M, -1,

Uppn = (1= (&) UL o Uy = (1= ()82 ) UL

we can obtain {U* I3
Step 2 For fixed. j=12,- — 1, applying

- y(cgk’”)—l(sz)uk =U,, 1<m<M,—1,
= w (X, Yo, i), UM =y(x;, k)
we obtain the numerical solutions { U;fm LO<LSEKELN.
4.1.3 Tempered L2-1,-ADI

Unlike above two numerical ADI schemes, we consider the numerical method for the first
equation in Eq. (49) at the non-integer grid point (x;, y,,,, fx4.,)

2 2
Cpi ko — 0 ke, O SO 4 e
DI = S5 S T () € Q0 SKSN -1,

where ujk:rn" = u(X;, Ypy» by40)- Combining with the tempered L2-1,, formula (20), we have
AP, = ST ST 5 L R (x,y,) € 2,0 SASN =1 (61)

Using the Taylor expansion, we can check that
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k+o _ k+1 _ k 2
ws’ = ou ¢! a)uj’m + O(r9),

which means Ri** = O(z? + h2 + h2).
With the similar method of the tempered L1-ADI and tempered L1-2-ADI schemes, we
add another term /420'2(Eg‘]f"’r))‘zA;”"l (5353»{}";") to Eq. (61), which yields

a,A k 2 2/ kao)N-2¢2¢2 k+o \ _ 2. k+o 2 k+oc k+o D \kto
APk, + WP PG ) = ST 4 ST 4 A+ Ry,

X"y jm X j,m y jm
(xjvynz)egh’0<k<N_ 1’ (62)
B \k+o _ pk+o 2 2 Gkao)\ 2 @A c2 62 kto : :
where (R3)j’m = Rj’m + uc (ds,k )74, (5}( 6y U >w1th the truncation error
D \kto| _ 2a 2 2
Ry ) = O + 12 + 1), 63)

Dropping the truncation error (62), we get the tempered L2-1_-ADI scheme

a7k 2 2 Hkao)\=2 22 rkto \ _ s2pjk+o _ s2yjkdo _ rkto
At <Uj,m Tuo (ds,k ) 5x6y U]m > 5)( U/m 5}' U/m “Jjm
(xj,ym) € Qh,o <ks<N-1,
l]_gm = d)(xj’ym)’ (x]’ym) € ‘Qh’

Uih? = WX Vs liwo)s (X V) € 02,0 Sk SN = 1.

(64)

L

Taking into account the expression of the tempered L2-1 approximation formula (23), we
can rewrite the scheme (64) as follows:

(1= wo@ie52) (1= mo@ie 7 U

k-1

_ (fkao)y-1 ko) ~ao) 41 4 2 2 o)\ =252 52 7 £+1
=) [;—}) (ds,f+1 —d, )(U/; +utoT(d )T UL )
—(k,2,0) ~ _ -
4y (U + 0P, ) +
+u(l = 0) S U, + 5}%U}jm)], (V) € 2,,0< k<N -1 (65)

The tempered L2-1,-ADI scheme (65) can be summarized briefly in the following
procedure.
Step 1 For fixedm = 1,2, --- , M, — 1, using
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(1= wo@iroyer)ur,

k=1
_ ko)1 —k:0)  ~(ka,0) £l 2 2 @kN=2 £2 2 7 16+
- (ds,k ) [Z <ds,f+l - ds,f Uj,m + Ho (ds,k ) 5x6y Uj,m
=0
—tkao) (g 2 2 J(@k)N—252 52770 kto
) + ds,() (Uj,m + Ho (ds,k ) 6x 5}' Uj,m) + ij,m

X Jm y jm

+ u(1 — 6)(82U* + 82U* )], 1<j<M —1.

— Hlka.0)\—1 62\ 7 7k+1 - Hlka.0)\—1 62\ 7 7k+1
Usp = (1= no@ 182 Uik, Uy, = (1= no@) 182 Uit

we get the intermediate variables U¥ = ([ - ya(ﬁik,f’"’))‘lé}?)ljj’.‘;‘, 0<j<M,0<k<N-1.
Step 2 For fixed j = 1,2, -+ ,M, — 1, using

(1= ho@ie 8 Ul = U, 1 <m< My =1,

Jom®

k+1 _ k+1 _
Uj,O = llf(xj’yo, i1 UJ-’M2 = W(xj,yMz, e1)s
we can get the numerical solutions { Uf;] LOLSESN-1

4.2 Stability Analysis

Let U;‘ be the approximate solution of Eqs. (56) and (65). Then, define é;‘m = U;‘m — U;‘m,
I1<kSN,1LKj<M,—1,1<m<M,—1,and error vectors ' ' '

sk ~k ~k ]T

gk — [Ak
& =|¢ Em—1,17 M, -12 " Epy—1 My —1

ok ok ok pk ok
L& 1 8210 8000 T S -1 T

Similar to the one-dimensional case, define the function £%(x, y) in the domain 0 < x,y < L

with the node values é;‘m at (xj, V> ). This means
~k hx hx hy h)"
€ mo xj—?<x<xj+?, Ym ?<y<ym+—,
1<jsM -1, 1<m<M,—1,
é(x,y) = 4 h, h,
0, OSXS? OI‘L—E<X<L,
h, hy,
0<y<3‘ or L—E<y<L

And £X(x, y) can be expanded in the Fourier series

+o0

+0o0
ék(x,y) - Z Z glkl’lzeiZIK(llx+lzy)/L’ 1 S k < N,

lj=—c0 l,=—0

where
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L L
1 ; )
ko _ 1 2k -2z (l,x+1,y)/L
f/1712 - L2 A A € (x’ y)e o dxdy

According to the definition of the discrete L, norm and Parseval’s equality, there exists

M,—1 My—1

18412 = ZZ hy&s, I = Z Zw, L (66)

ly=—00 l,=—00
From numerical schemes (56) and (65), we have the related error equations

(I = us)I = pué))e,,

k—1
_ 7 (@) 12626227
- ( af+l_daf>< 6}(5) jm)
=1
—(a) (.
+%JG£ 2%%;@>(rhﬂegwl<k<N’ (67

(1= no@e182) (1= uo @182 et

Jj.m

xvlm

~ —(@k)
= @5y [dsf‘o (sfm + ulo?(d5 ) 26262E) )

k-1
N Z (E(k,a,a) _ gik}aﬁ)>< s+l p O_z(d(k a a)) 25252 Af+1>

s,f+1 x "y jm
=0

+u(l — o) (528 Jk 5fsjkm)], (V) € 2, 0K kSN - L. (68)
Assume that the solutions of Egs. (67) and (68) have the following form:

J.m

ek = ‘flkl B eIl Hifomh, ©9)
where g, = 2xl, /L, p, = 2xl, /L, and there are

§2ek — = sin (ﬂl x) gk i, +ipymh,
X

X jm

2k -4 . bahy i Fipsmh,
6€ B sin < )gl L ;
5

sro2et = 10 sin2<ﬁlhx>sin

ﬂz ey Qg elbih+ipymhy,
X"y jm hyzch% 2 I 12

2

For the stability of the tempered L1-ADI scheme, we have

Theorem 5 The tempered L1-ADI scheme (56) is unconditionally stable, and we can obtain
401, < €Ny, 1<k <N.

Proof Inserting Eq. (69) and the Euler formula into Eq. (67), the error equation (67) can be
rewritten as
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<l + /uq)(l + ;41(2>§lk]’12

-1

=~

7 ~(@) 2 N 2 0
(dory 30N+ k)], + 0+ P KDED . (3,) € 2T SN,
=1

(70)
4 Byh
h — sin? (2 ’) Suppose that :l 0 (k=1,2,---,N) are the
solutions of Eq (70), then we will use the mathematlcal induction to proof the following
inequality:

/31 h,

n?
where k| = W 2 sin?(

&) 1 <1g) L k=12, N 71)

For k = 1, Eq. (70) clearly deduces that

—(w)
d, (1 + pK K5)
(1 + prc )1 + pxy)

&l 1=

0
0 1< 18,1

Now, we assume that Eq. (71) is true for k = 1,2, --- ,n — 1. For k = n, there exists

n—1
. (1 + pPxxy) —(@) @\ o7 (@) ¢
1570, 1 < (A + pr)(1 + pxy) ; <da,f+1 - daf)‘fll,l2 +d, 8,0,

< |§2,[2|’ (xj’ym) € 'Qhavn = 1’27 ’N

n—1

where the relation Z(a;"_) = (0’) )+ a(”) = 1is utilized. Thus, Eq. (71) is proved. With

/=1
the help of Egs. (66) and (71), we obtain

&3 = 2 Z & 1P < 2 Z &) 17 = 1111,

lj=—00 [,=—00 lj=—00 [,=—00

which indicates that the tempered L1-ADI scheme (56) is unconditionally stable.
For the stability of the L2-1_-ADI difference scheme (65), we have

Theorem 6 The tempered L2-1 -ADI scheme (65) is unconditionally stable, and we can obtain
1, < 11E%,, OS kSN -1
Proof Rewriting the error equation (68) as

(L4 uo @G k(1 + po @ ) iep)e ),
- (k )
_ ~(k,a,0) &0, (k,a,0) £+1
= [0+ @y m)(Z(;m—dM )&
d’k =0

(kao')
&) = u =0 + ket | (v € @0<k<N=1. (72)

Supposing that fl "*k=0,1,- — 1) are the solutions of Eq. (72), now we will prove
the inequality
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|§lk1-;i| < |§2,lzl’k=0’la”',N—l. 3

For k = 0, there is

47+ 1202 @) 2 ) — u(1 = o)y +

dﬁf‘,;“"”(l + ya(dfk'“"”)—lxl)(l + W(d;f;as'”)—l

1 —
|§ZIJZ| |§ll 12| =X |§ll ]2|

Next, we suppose that

k+1 0
|§Z:lz| < |§]1’ZZ|’ k= 0, 1’ e, n = L.

Z (S(k a,0) (k a, o’)) +5 (k a. o‘) (k,a,o’)

k=1 So and

For k=mn, wusing the relation

Egk]f"’) = sf)k’“"")e“’w1 fura) > s(k 9 there ex1sts
(1 + po*(d% )2k Ky)

A"+ po (@) )1+ uo(dy, )1 x)

s,n

n—1
(k,a.0) (k a,0) (k,a,0) 0
x (Z(Sn—f—l rL 4 )+sn >|§ll,lzl’
£=0

< |§27[2|7 (X,',ym) (S erpo < k < N

1
CHE

Thus, according to Egs. (73) and (66), we have ||z§"||2 ||.s°||2

4.3 Convergence Analysis

Just like the one-dimensional case, the convergence analysis of the two-dimensional case
can be obtained similarly. Let C4 4 denote the space of function u(x, y, f) which satis-
fies u(x,y, 1) € C?[0,1,] N C*Q), Q [0, L] x [0, L]. Then, the corresponding convergence
results are given as follows.

Theorem 7 Suppose u(x,y,t) € C442, then the tempered L1-ADI scheme (56) is con-
vergent with the accuracy O(z>* + h2 hi) for a € (0,2/3], and O(z** + hf + hz) for
a € (2/3,1). ’

Theorem 8 Suppose u(x,y,t) € CH3  then the tempered L2-1_-ADI scheme (65) is conver-

Xyt

gent with the accuracy O(z2* + h2 hz)fora € (0,1).

5 Numerical Experiments
5.1 Truncation Error

In this subsection, we present an example to verify the theoretical results of the three pro-
posed tempered formulas.
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Example 1 We calculate the Caputo-tempered fractional derivative of function
u(t) = e+ in [0, 1]. Applying the formula [21]

Cya. A=At fy
CD* (e 1) =

the exact solution of u(¢) is given by

CNYA o= At Ata
ODz (e 4 )|t=lk

PG+ _hipa
TG +1—-a :
TG +a) 44
— e 't:,k'

The numerical errors and the convergence orders are calculated with the different
parameters « = 0.1,0.5,0.9 and A = 0, 6,20, 40. The pointwise maximum norm error and

the corresponding
Error(z) = omg,i)zil |u(z) = U,| , Order = log, (

solution of u(r) at the grid point #;.

convergence

order
Error(r)
Error(z/2)

are

measured

by

), where U; is the approximate

Figures 1, 2, 3, where the time steps are 1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640,
1/1 280, and 1/2 560, give the maximum norm errors and convergence orders for differ-
ent a, A of the three presented discretization formulas (9), (16), and (23), respectively.
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Fig. 1 The log—log plot of the maximum norm errors versus time-steps for a = 0.1
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Fig.2 The log-log plot of the maximum norm errors versus time-steps for « = 0.5

Based on the results displayed in Figs. 1, 2, 3, we can easily observe that the conver-
gence orders of tempered L1-2 and L2-1, formulas are both 3 — «, which is higher than
2 — a order of the tempered L1 formula. These are in accordance with the theoretical
analysis.

5.2 One-Dimensional Problem

To further illustrate the effectiveness of the proposed numerical formulas, we test two
kinds of equations. The first equation is the initial boundary value problem of the time-
tempered fractional diffusion equation and the second one is the time-tempered fractional
Burgers equation.

5.2.1 Caputo-Tempered Fractional Diffusion Equation

Example 2 In this example, we solve problem (25) with L = 1 using the proposed numeri-

cal schemes (30)—(32). The source term f(x, 1) was chosen as f(x, f) = e~ #+<* [% -t
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Fig.3 The log-log plot of the maximum norm errors versus time-steps for a = 0.9

such that the exact solution is u(x,?) =e e’ r*+* with ¢(x) =0,y (f) = e ¥+,
W, (t) = e~ #*1¢4*+¢ The numerical errors can be measured by the maximum norm errors at
each discrete point

Error = [nax <or2ji)1f4 |utx;, 1) = Ujk|>
To demonstrate the numerical accuracy in time direction with a small spatial step size
h =1/2000, we list the computed results in Table 1. The orders of convergence are identi-
fied with theoretical orders of convergence (abbreviated as TOC) in the last row, and the
errors of the tempered L1-2 and L2-1, formulas are significantly smaller than that of the
tempered L1 formula. Owing to the interpolation at the non-grid point f,, ., it should be
noted that the order of the tempered L2-1 , formula is O(2) rather than O(3 — ). Moreover,
the comparisons of CPU times (in seconds) for different implicit difference schemes are
exhibited in Fig. 4 of « = 0.1 and A = 6. From Fig. 4 we can see that the CPU times are
proportional to the time steps, while the L2-1 , formula requires more time for this problem
than tempered L1 and L1-2 formulas.
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Table 1 (Example 2) The maximum norm errors and the corresponding convergence orders of tempered
L1, L1-2, and L2-1, formulas for a = 0.5

T

Tempered L1 formula

Tempered L1-2 formula

Tempered L2-1,, formula

Error Order Error Order Error Order
A=20 1/10 2.886 8E—06  — 2203 1IE-06 - 8.4954E-07 -
1/20 1.536 8E-06  0.909 6 7.204 6E-07 1.6125 2.220 9E-07 1.9356
1/40 6.580 2E—07 1.2237 1.972 8E-07 1.868 7 4.9332E-08 2.1705
1/80 2.631 7TE-07 1.3221 4363 7TE-08  2.176 6 1.048 3E—08  2.234 4
1/160 1.005 5E—07 1.3880 8.760 6E-09  2.3165 2.1458E-09 2.2885
1/320 3.736 8E—08 1.428 1 1.667 3E-09  2.3935 4369 4E-10  2.296 0
1/640 1.365 6E—08 14522 3.078 1IE-10 24374 9.034 7E—-11 22739
1/1 280 4.936 6E—09 1.468 0 5.588 7TE—11 24614 1.916 3E—11 22372
1/2 560 1.771 9E—-09 1.478 2 1.0053E-11  2.4749 4.164 5E-12  2.2021
TOC 1.5 2.5 2.0
Fig.4 The comparisons of CPU 700 T T
times for different implicit dif- [ tempered L1
ference schemes witha = 0.1, 00l I tempered L1-2
A=6,h=1/2000 [ tempered L2-1;
500
% 400
£
2
& 300
200
100

110 120  1/40

5.2.2 Caputo-Tempered Fractional Burgers Equation

1/80

1/160 1/320 1/640 1/1280
Time steps

Consider the following time-tempered fractional Burgers equation:

2
DI (e, + 158 5, 1) = 5, T2 ) +£(5,0), ¥ € (O.L).1 € (O.T]
X X

u(x,0) = ug(x), x € (0, L),
u0,t) =0,u(L,t) =0, t € (0,T1],

where «, is a positive constant. And denote the difference operator

8.UF =

J

ko _ gk
Uy = U

2h

(74)
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The time direction is discretized by three proposed difference formulas, and the first and
second derivatives of space direction are discretized by central difference. Regarding the
nonlinear advection term, we adopt the linearization technique

ou

|- k ks (qk-1 k
— ~ =[2U 6. (U To.(U} = ).
u— ) 3[ U™ 6,(Up) + Ui6(U;7)] /\/(UJ)
Then, the following discretization schemes can be obtained, respectively:

Dy US + MUY =k, 8;UF +ff, 1<j<M=1,1<k<N, (75)
UL+ MUY =k, 60Uf +ff, 1<j<M=1,1<k<N, (76)

AaAUk +N(Uk+o') _K.a52Uk+(r +fj“k+6’ 1 <]<M— 1,0<k<N— 1’ (77)

where MU**°) = [2U"5 (Uk+") + Ur*os, (Uk)], and the initial value and boundary con-
dition are discretized as U0 = uo(x) Ui =0, Uk =0.

Example 3 We solve the problem (74) using the numerical schemes (75)—(77) with L = 1.
The source term is determined by the exact solution u(x, 1) = e~ #3*%x3(1 — x), the initial
value and boundary value are both 0.

Without loss of generality, we can get the following numerical results with k, = 1. We
check the numerical results in both time and space directions with 4 = 6. The computa-
tional results about time direction are listed in Table 2 with 2 = 1/2 000, while the corre-
sponding results are listed in Table 3 for space direction with different ways of selecting =
of three difference schemes.

5.3 Two-Dimensional Problem

Example 4 Consider the problem (49) on 22 = (0, z) X (0, ), t € (0, 1/2]. The exact solu-
tion is u(x, y, f) = e~* sin(x) sin(y)#? with the right source term

@y, 1) = e sin(x) sin(y) | ==—— F(3 > + 2t2].

Table2 (Example 3) The maximum norm errors and the corresponding convergence orders of time direc-
tion of difference schemes adopting tempered L1, L1-2, and L2-1, formulas for « = 0.5 and 4 = 1/2 000

T Tempered L1 formula Tempered L1-2 formula Tempered L2-1 , formula
Error Order Error Order Error Order
A=6 1/10 7.303 8E-06 - 3.051 SE-06 - 6.898 4E—06 -

1720 2.991 1E-06 1.2880 7.072 3E-07 2.109 2 1.912 7E-06 1.850 6
1/40 1.157 7E-06 1.369 4 1.453 2E-07 2.2830 4.828 8E-07 1.9859
1/80 4.341 5E-07 14150 2.798 8E-08 23763 1.186 8E-07 2.0247
1/160  1.594 2E-07 1.4453 5.211 5E-09 24251 2.949 3E-08 2.008 6
1/320  5.777 OE-08 1.464 5 9.462 5E—-10 24614 7.496 6E—09 1.976 1
TOC 1.5 25 2.0
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Table 3 (Example 3) The maximum norm errors and the corresponding convergence orders of space direc-
tion of difference schemes adopting tempered L1, L1-2, and L2-1 formulas for a = 0.5

h Tempered L1 formula Tempered L1-2 formula Tempered L2-1, formula
T =h T =h t=h
Error Order Error Order Error Order
A=6 1/10 7777 4E-06 - 6.829 6E—06 - 1.365 SE—04 -
1/20 1.922 4E—-06 2.016 4 2.203 7TE—-06 1.6319 5.341 3E-05 1.354 1
1/40 4.789 3E-07 2.0050 7.240 2E-07 1.605 8 1.537 1E-05 1.7970
1/80 1.193 3E-07 2.004 9 2.148 6E-07 1.7526 4.070 1IE-06 19171

1/160 2.977 3E-08 2.0029 5.884 4E—-08 1.868 5 1.045 3E-06 1.9612
17320 7.434 TE-09 2.001 6 1.565 6E—08 19102 2.648 3E-07 1.980 7
TOC 2.0 2.0 2.0

The error in this example is measured by

— _ Ik
error = o, { may, (o, 140510 = Uil ) }
Tables 4 and 5 show the numerical results calculated by the three different implicit ADI
schemes with different « for classic (4 = 0) and tempered (4 = 6) situation when the spa-
tial step size h, = h, = x /400 are fixed, respectively. In Fig. 5, we plot the CPU times

Table 4 (Example 4) The maximum norm errors and the numerical convergence orders of tempered
L1-ADI, L1-2-ADI, and L2-1_-ADI approximation with A = 0

a T Tempered L1-ADI Tempered L1-2-ADI Tempered L2-1_-ADI
Error Order Error Order Error Order
12 1/10  3.493 0E-03 - 3.849 4E-03 - 4.078 6E-03 -

1/20 1.992 5E-03 0.809 9 1.910 6E-03 1.0105 1.953 8E-03 1.061 8
1/40  1.084 1E-03 0.878 0 9.538 4E—-04 1.002 3 9.573 8E-04 1.029 1
1/80  5.731 5E-04 0.919 6 4.766 TE—04 1.000 7 4.738 8E-04 1.014 6
1/160  2.974 2E—-04 0.946 4 2.381 0E—-04 1.001 4 2.355 5SE-04 1.008 4
TOC 1 1 1
2/3 1710 2.091 9E-03 - 2.092 0E-03 - 1.694 1E-03 -
1720 8.748 8E—-04 1.2577 6.066 1E-04 1.786 0 5.985 3E-04 1.5010
1740 3.5753E-04 1.2910 2.308 0OE-04 1.394 2 2.203 7E-04 14415
1780  1.443 3E-04 1.308 7 8.944 OE-05 1.367 6 8.317 OE-05 1.405 8
17160  5.789 6E—-05 1.317 8 3.482 4E-05 1.360 9 3.174 3E-05 1.3896
TOC 1.33 1.33 1.33
3/4 1/10  3.869 8E—03 - 2.362 5E-03 - 1.186 2E—03 -
1720 1.754 5E-03 1.1411 6.189 4E—-04 1.9325 3.622 1E-04 1.7115
1/40  7.812 5E-04 1.167 3 1.595 5E-04 1.9558 1.146 7TE—-04 1.6593
1/80  3.430 7TE—04 1.1873 4.119 7TE-05 19534 3.716 3E-05 1.6256
1/160  1.493 3E-04 1.200 0 1.375 1E-05 1.5830 1.121 OE-05 1.6189
TOC 1.25 1.5 1.5

@ Springer



32 Communications on Applied Mathematics and Computation (2021) 3:1-40

Table5 (Example 4) The maximum norm errors and the numerical convergence orders of tempered
L1-ADI, L1-2-AD], and L2-1_-ADI approximation with A = 6

a T Tempered L1-ADI Tempered L1-2-ADI Tempered L2-1_-ADI
Error Order Error Order Error Order
172 1/10 3.793 TE—-04 - 8.745 3E-04 - 2.418 2E—-04 -

1720 1.546 4E-04 1.2947 3.032 4E-04 1.528 1 1.103 SE-04 1.1318
1/40  6.130 OE—05 1.3349 9.084 9E—-05 1.7389 5.859 3E-05 09133
1/80  3.375 5E—05 0.860 8 3.193 4E-05 1.508 4 3.026 3E-05 09531
1/160  1.809 6E—05 0.899 5 1.591 8E-05 1.004 4 1.538 OE—05 0.976 5
TOC 1 1 1
2/3 1710  8.315 5E-04 - 1.148 1E-03 - 1.518 3E-04 -
1720 3.634 4E-04 1.194 1 4.067 SE-04 1.4970 6.366 2E—05 1.2549
1/40  1.543 2E-04 1.2358 1.224 OE-04 1.732 6 1.906 2E-05 1.738 8
1/80  6.359 4E-05 1.2790 3.379 TE-05 1.856 6 5.205 4E-06 1.8726
17160  2.579 6E—05 1.301 8 8.916 1E-06 1.9224 1.937 1IE-06 1.426 1
TOC 1.33 1.33 1.33
3/4 1/10  1.130 6E-03 - 1.296 6E—03 - 1.228 OE—-04 -
1720 5.183 1E-04 1.1252 4.585 2E-04 1.499 6 5.304 3E-05 1.2111
1/40  2.293 7TE-04 1.176 1 1.373 3E-04 1.739 4 1.639 4E—05 1.694 0
1/80  9.937 OE-05 1.206 8 3.772 TE-05 1.863 9 4.533 3E-06 1.854 5
1/160  4.253 6E—-05 1.224 1 9.909 6E-06 1.928 7 1.178 2E-06 1.944 0
TOC 1.25 1.5 1.5

of the tempered L1-ADI, tempered L1-2-ADI, and tempered L2-1_-ADI schemes. From
Fig. 5, we observe that the CPU times of L2-1_-ADI scheme are bigger than two other
schemes, which is almost the same as the one-dimensional case.

1500 T T T T T
[ tempered L1-ADI

I tempered L1-2-ADI
I tempered L2-1 -ADI

1000 - b

CPU time/s

500 b

_Dllﬂll

110 1/20 1/40 1/80 1/160
Time steps

o

Fig.5 The comparisons of CPU times for three different implicit ADI schemes
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6 Conclusion

In this paper, we presented and analyzed the efficient difference schemes for diffu-
sion equations with the Caputo-tempered fractional derivative. To design the difference
schemes, we first proposed the tempered L1 formula for the Caputo-tempered fractional
derivative of the order @ € (0, 1). The tempered L1 formula is constructed by using the
piecewise linear interpolation on each small interval with the order 2 — «. To improve the
numerical accuracy, another two fractional numerical quadrature formulas, called tem-
pered L1-2 and L2-1, formulas with the order 3 — a are presented. The tempered L1-2
formula is established by means of the quadratic interpolation approximation on each
cell [t,_;,t,]1(¢ > 2), while the linear interpolation approximation is applied on the first
cell [ty,t]. The tempered L2-1, formula is developed by using the quadratic interpolation
approximation on each cell [z,_,,7,] (1 < ¢ < k), while the linear interpolation in the cell
[#;. ;41 ]1s applied on the last non-integer grid cell [z, 7, ]

We further designed the difference schemes for one- and two-dimensional fractional dif-
fusion equations with the help of the presented interpolation formulas. We checked the sta-
bility and convergence of two proposed difference schemes by the Fourier analysis method.
The key idea of our method is to examine the weighted coefficients of difference schemes.
The analysis shows that the implicit numerical schemes are unconditionally stable and con-
vergent when the tempered L1 formula and L.2-1 formula are used. However, the rigorous
theoretical analysis of numerical scheme are not obtained for the tempered L1-2 formula
due to the lack of positivity of the weighting coefficients. Finally, several numerical exam-
ples are given to validate the theoretical results. As the Caputo fractional derivative, the
challenges still exist due to the nonlocal property of tempered fractional derivatives [17].
We expect that a new technique will be needed to construct the fast algorithm for the con-
sidered problem.
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Appendix A: Background of Eq. (1)

In particle motion, sometimes the waiting time of particles is too long, however, too long
waiting time may not be appropriate for some physical process, therefore, we need to con-
trol the waiting time of particles in the finite time domain. To overcome this shortcoming,
the PDFs which are exponentially tempered power law are put forward [13, 21]. There-
fore, the tempered power law waiting time leads to the time-tempered fractional deriva-
tives, which have proved available in geophysics. And the purpose of tempered fractional
differential equations is to more accurately describe the motion behavior of particles in
complex dynamic systems. The CTRW model is based on the idea that the length of a
given jump, as well as the waiting time elapsing between two successive jumps is drawn
from a pdf w(x, ) which will be referred to as the jump pdf. For w(x, f), the jump length
pdf gives @(x) = [, w(x,1)dz, and the waiting time pdf obeys w(t) = [,, w(x, ndx. Thus,
@(x)dx produces the probability for a jump length in the interval (x,x + dx) and w(#)dr the
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probability for a waiting time in the interval (¢, ¢ + d¢). If the jump length and waiting time
are independent random variables, one finds the decoupled form y(x, t) = @(x)w(?) for the
jump pdf w(x, f). The probability density function n(x, t) of the positions x of the particle,
which have just made a jump at time ¢ can be described through an appropriate generalized
master equation [16, 33]

nx, 1 = / ) n(x', ey (x — X', t — £)dx'd’ + u(x, 0)5(2).
R
The pdf u(x, t) of particle being in x at time ¢ is given by
u(x,f) = /0 t n(x, e =Op (i — dr,
where P(¢ — ') is the probability of staying at site x for a time 7 — ¢ after a jump
Pi)=1- /0 t w()dr' .

The pdf u(x, ) in the Fourier—Laplace space takes the form

1 —W(s+4) u(k,0)

ulk,s) = s+ A 1—w(s+ ﬂ)(/ﬁ(k)’

(AD)

where the Laplace and Fourier transforms are defined, respectively, by L(u(r)) = ii(s) =
f()°° u(H)e™'dt, s € C,Re(s) > 0, and F(u(x)) = u(k) = ﬁ Jer e ux)dx, k = (ky, ky, - k) € RY.
In the Fourier space, the jump length distribution behaved [28]

Pk) =e"® ~ 1+ AK), k| = 0,

where A(k) is the characteristic exponent of @(x), the probability distribution
for jumps. Taking A(k) = —C”|k|2, and a waiting time pdf of a Pareto type [28]
w(s) ~ 1 -T(1 —a)7%*,0 < a < 1, Eq. (A1) can be rewritten in the following form:

sit(k, s) — sii(k, 0) = —(s + A)I*“F(Ii—';ﬁa|k|ﬂﬁ(k, 5) — Aui(k, 5), (A2)

Introducing the Riemann-Liouville tempered fractional derivative operator [18, 31]

e d [ eMu(x,s)

Dl—a,}. )= e
oD, ux. 1) C(a) dr fo (z—s)!-

s

and the Fourier transform of the standard Laplace operator is F (Au(x)) = —|k|?Fu(x)),
after inverting the Fourier—Laplace transform on both sides of Eq. (A2), we get that the pdf
of diffusion particles obeys the tempered fractional diffusion equation [16]

u (X, 1) = K, (D" (Aux, 1)) — Au(x, 1).
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Appendix B: Proof of Lemma 1

For the proof of (i), (ii), and (iii), see the references [23, 35].

(iv) According to (i) and the definition of Egs. (7) and (8), it is easy to see that (iv) is
true.

(v) Let g(x) = [(k — x + 1)U~ — (k — x)!=%]e*-1=%)_ Then, there is

¢ (x) = eAo1-hr [M((k x4+ D) (k- x)l-“) +(a— 1)<(k X+ 1) — (k- x)-“)] >0,
which represents that d ., 1S monotone increasing about m.
(vi) d("’) is also monotone increasing with the same fashion of (v).
~w — (@ @ oAt~ @ @ _
a,m+1 _dsfn)l - ( k —m—1 ak—m>e o 1e) < ak—m—l ak—m’ 1 < m < k L.

— @ LAt-1,) (a)
(viii) da’1 =a,_ e’ La .

(vii) d

Appendix C: Proof of Lemma 2

By simple calculation, we have the truncation error as follows:

—At k 4 ’
s ﬁ ; /tf—l [v(s) = Py v()] (1 — 5)™dis
ae k le
e A CCETPC RNt
,/{Ik k
F(l gr= /tf SVIENS = te)ltp = 9t =977 ds, &, € (tpmysty), (CD
and it yields

* < i ,<,k|V”<f>l2 Gt -9 = e (@)

On the other hand, for the integral of the right term, we have

k ty

> [ =t - ) — s s

=1 tt’_l

k—
Z (s—zf Dty = s)(t, —5)™ 1ds+/ (s = f_y)(t, — 5)™%ds

with

T

_ te ol 2 k-l Iy e 1 5
Z (s—t, )ty —5)t —5)" ds < Z Z ,/tf—l([k —85) s < ET ’, (C3)

r=171~1 £=1
and
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Iy T 2—a
(s—t_)(z—s)*“ds=/(r— woody= — - ca
/tk1 k=1 ; Yy “dy I-0)2-a) (C4)
Recalling v(f) = e*u(t), we have
max [v/(1)] < e [/12 max Ju(o)| +24 max. [u/()] + max |u”(t)|] C5)
1o <1<t 10 <1<ty
Combining Egs. (C3)—(C5) with Eq. (C2) we arrive at Eq. (10).
Appendix D: Proof of Lemma 4
—(k,a
() Fork=2,d., = et and
a a a 1 1
C(lk’) () b() —m—z,ae(o,l),

which is strictly monotone decreasing, so c(lk”’) € (-1/2,1). Moreover, a; = 0.673 6 is the
unique zero point for & € (0, 1), which means

*a) >0, ifa € (0,a)),
1\ <0, ifa € e, 1).

—(ka) .
Thus, d < c(k’ ) fora € O, ay).

—(ka,0)  ~
(i) For k=3, 457 A = (- D )errm1) and (5 - 0 = G 421

—b(oa) (a) Moreover the zero point of c(k ) _ c(zk’a) showed in Fig. 6ais a, ~ 0.3909, i.e.,

e _ ke >0, ifa € (0, ),
: 2 <0, ifa € [ay, 1).

—(h@)  ~
Thusd,, —d*” < = fora € (0. ).

—k, > ~
(iii) For k>34, Y- d(k’“) = (c(l"“”) - c“‘"’”) =t < (0 — &9 for a € (0, a3), where

the zero point a; is about 0.373 9 in Fig. 6b and c(k o« C(Zk’“) = a(la) + Zb(l“) - bg)’) (a) b(“)

(iv) The computed numerically as in the Flg 6.

Appendix E: Proof of Lemma 5

For k = 1, we find that Eq. (12) actually is the tempered L1 formula of the Caputo-tem-
pered fractional derivative and its numerical accuracy is O(z>7%), i.e.,

|

e~ ,
[v(s) = Py v(s)] (1, — )" "ds

Ira-a)

ae—/lt,
2F(3 — ) H< t<t|

"= Rz

|v//(t)|,l.2 a’

thus Eq. (17) is established.
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For k > 2, we get

’ [v(s) - szv(s)] ,(tk - s)_“ds}

e

—At, f ,
"= a){ / [V() = PLyv(@)] (= 9)7"ds + 2

—aqe—Mi 1
:F((;e_ a { /t0 [V(S) - P1,1V(S)] (tk _ s)_a_lds
+ Z ’ [v(s) =Py ()|t — )" ds}, o

In [14] there exist

h
—a—1 1 —a—1_3
/to [v(6) = Pyv(©)] (4 =977 ds| < 15 max PO - )™ (B2)
—a—1 1 " 3-a
. [V(S) =Py v =97 ds| < o max PO (E3)

/ [v(s) P, kv(s)](tk—s) —lds| <

1 1 1 1 " 3—a

1 1 NEE
S3a —a)(Z—a)(Z + 3_a)r£l§’étkv 0z

(E4)

and we have

max |v"'(1)] < el [A3 max |u(f)| + 34% max |/ ()] + 34 max |u”(r)| + max |u"’(t)|].
fo<I<ty fo<I<ty 1o<I<ty 11 11

(ES)
The substitution of Egs. (E2)—(ES) into Eq. (E1) can lead to Eq. (18).
0.2 T T T T 0.2
01 0.4
0 0
B 01 B 01
? P
o 3o
o -0.2 o -0.2
0.3 -0.3
-04 -0.4
-05 : : : : -05 : : : :
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
o o
(a)k=3 (b)k>3
Fig.6 The curves with c(k -2) c(zk’") with different k
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Appendix F: Proof of Lemma 7

The error estimate is
Tk+a = Tk + T]l;+a' (Fl)

Similarly to [1], we have

k
e"“ﬂa fe -
T = | —— Z/ [v(s) = I, pv(5)) (tyy, — 5)~"ds
F(l - a) =171
(F2)
e ax Pl
S 360 (1 — @) (<1<, |
and
k+o e Mo o -«
e MoV (6, 1) pi, (S=1,1)
_ 3 / 2 ds + O(T37a), (F3)
rd-a) v (yo =9

where another term in (F3) besides O(z37%) is zero due to the special choice of
o =1—a/2, so the order of truncation error Tk i3 — o. At the same time, there exists

max V(0] < |2 max u@]+32 max |0
INNEY

19 SISty 1o SISty 0SS gt
+32 max |u’ ()| + max |u"(f ]
A/ | ( )| A/ | ( )l (F4)

Then substituting Eqs. (F2)—(F4) into Eq. (F1), we have

|Tk+o' ei(l—o‘)‘r [ 3

= 30°T(1 — @)
+34 max '@+ max "] |7+ 0,

1o SISty 19 SISty

max |u(f)| +34* max |u'(D)]
A/ 1o SISty

and using the Taylor expansion

(ei(l—u)‘r)// (5) 12

=07 = 1 1 A1 - o)t + 5

)

thus Eq. (24) is proved.
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