1 Introduction and basic assumptions

In this note we will prove an existence of a renormalized solutions for the following nonlinear boundary value problem :

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle B(u)-div\Big (F(x,u)\Big ) =\nu &{}\ \ \text{ in }\ \Omega \\ \displaystyle u =0 &{}\ \ \text{ on }\ {\partial \Omega }, \end{array} \right. \end{aligned}$$
(1.1)

where \(\Omega\) is a bounded domain of \({\mathbb {R}}^{N}, N \ge 2,\ B(u)=-{\text {div}}(b(x, u, \nabla u))\) is a Leray-Lions operator defined from the space \(W_{0}^{1} L_{\varphi }(\Omega )\) into its dual \(W^{-1} L_{\overline{\varphi }}(\Omega ),\) with \(\varphi\) and \(\overline{\varphi }\) are two complementary Musielak-Orlicz functions and where b is a function satisfying the following conditions:

$$\begin{aligned} b: \Omega \times {\mathbb {R}} \times {\mathbb {R}}^{N} \longrightarrow {\mathbb {R}}^{N} \text{ is } \text{ a } \text{ Carath }\acute{\mathrm{e}}\text {odory function. } \end{aligned}$$
(1.2)

There exist two Musielak-Orlicz functions \(\varphi\) and P such that \(P \prec \prec \varphi ,\) a positive function \(d(x) \in E_{\overline{\varphi }}(\Omega ),\ \alpha >0\) and \(k_{i}>0\) for \(i=1,\cdots ,4\), such that for a.e. \(x \in \Omega\) and all \(s \in {\mathbb {R}}\) and all \(\xi ,\ \xi ' \in {\mathbb {R}}^{N},\ \xi \not =\xi '\):

$$\begin{aligned} |b(x, s, \xi )|\le & {} k_{1}\Big (d(x)+\overline{\varphi }_{x}^{-1}\left( P\left( x, k_{2}|s|\right) \right) +\overline{\varphi }_{x}^{-1}\left( \varphi \left( x, k_{3}|\xi |\right) \right) \Big ) \end{aligned}$$
(1.3)
$$\begin{aligned} \left( b(x, s, \xi )-b\left( x, s, \xi ^{\prime }\right) \right) \left( \xi -\xi ^{\prime }\right)> & {} 0, \end{aligned}$$
(1.4)
$$\begin{aligned} b(x, s, \xi ) . \xi\ge & {} \alpha \varphi (x,|\xi |). \end{aligned}$$
(1.5)

The lower order term F is a Carathéodory function satisfying, for a.e. \(x \in \Omega\) and for all \(s \in {\mathbb {R}},\) the following condition:

$$\begin{aligned} |F(x, s)| \le c(x) \overline{\varphi }_{x}^{-1} \varphi (x, \alpha _{0}|s|), \end{aligned}$$
(1.6)

where \(c(.) \in L^{\infty }(\Omega )\) such that

$$\begin{aligned} \Vert c(.)\Vert _{L^{\infty }} \le \min \left( \frac{\alpha }{\alpha _{0}+1} ; \frac{\alpha }{2\left( \alpha _{0} +1\right) }\right) \text{ and } 0<\alpha _{0}<1. \end{aligned}$$
(1.7)

The right hand side of (1.1) is assumed to satisfy

$$\begin{aligned} \nu \in L^{1}(\Omega )+W^{-1} E_{\overline{\varphi }}(\Omega ):\ \nu =f-{\text {div}}(\phi ) \text{ with } f \in L^{1}(\Omega )\text{ and } \phi \in \left( E_{\overline{\varphi }}(\Omega )\right) ^{N}. \end{aligned}$$
(1.8)

In the usual Sobolev spaces, the concept of renormalized solutions was introduced by Diperna and Lions in [22] for the study of the Boltzmann equations, this notion of solutions was then adapted to the study of the problem (1.1) by Boccardo et al. in [21] when the right hand side is in \(W^{-1, p^{\prime }}(\Omega )\) and in the case where the nonlinearity g depends only on x and u,  this work was then studied by Rakotoson in [31] when the right hand side is in \(L^{1}(\Omega ),\) and finally by DalMaso et al. in [23] for the case in which the right hand side is general measure data.

On Orlicz-Sobolev spaces and in variational case, Benkirane and Bennouna have studied in [8] the problem (1.1) where \(\Phi (x,u)\equiv \Phi (u),\) and the nonlinearity g depends only on x and u under the restriction that the N-function satisfies the \(\Delta _{2}\)-condition, this work was then extended in [4] by Aharouch, Bennouna and Touzani for N-function not satisfying necessarily the \(\Delta _{2}\)-condition and \(\Phi (x,u)\equiv \Phi (u)\). If g depends also on \(\nabla u,\) the problem (1.1) has been solved by Aissaoui Fqayeh, Benkirane, El Moumni and Youssfi in [5] where \(\Phi (x,u)\equiv \Phi (u)\), and without assuming the \(\Delta _{2}\)-condition on the N-function.

In the framework of variable exponent Sobolev spaces, Bendahmane and Wittbold have treated in [7] the nonlinear elliptic equation (1.1) where \(a(x,u,\nabla u)=|\nabla u|^{p(x)-2} \nabla u,\ \Phi \equiv 0,\ g\equiv 0\) and where \(f\in L^1(\Omega )\), they proved the existence and uniqueness of a renormalized solution in Sobolev space with variable exponents \(W_{0}^{1, p(x)}(\Omega ).\)

In the variational case of Musielak-Orlicz spaces and in the case where \(g \equiv 0\) and \(\Phi \equiv 0,\) an existence result for (1.1) has been proved by Benkirane and Sidi El Vally in [10] a when the non-linearity g depends only on x and u. If g depends also on \(\nabla u,\) the problem (1.1) has recently been solved by N. El Amarty, B. El Haji and M. El Moumni in [18] where \(\Phi (x,u)\equiv \Phi (u).\)

and several researches deals with the existence solutions of elliptic and parabolic problems under various assumptions and in different contexts (see [6, 11,12,13,14,15,16, 18,19,20] for more details).

The paper is organized as follows: In Sect. 2, we give some preliminaries and background. Section 3 is devoted to some technical lemmas which can be used to our result. In Sect. 4, we state our main result and in Sect. 5 we give the proof of an existence solution .

2 Some preliminaries and background

Here we give some definitions and properties that concern Musielak-Orlicz spaces (see [17]). Let \(\Omega\) be an open subset of \({\mathbb {R}}^{N}\), a Musielak-Orlicz function \(\varphi\) is a real-valued function defined in \(\Omega \times {\mathbb {R}}^{+}\) such that

a) \(\varphi (x, .)\) is an N-function for all \(x\in \Omega\) (i.e. convex, nondecreasing, continuous, \(\varphi (x, 0)=0,\ \varphi (x, t)>0\) for all \(t>0\) and \(\displaystyle \lim _{t \rightarrow 0} \sup _{x \in \Omega } \frac{\varphi (x, t)}{t}=0\) and \(\displaystyle \lim _{t \rightarrow \infty } \inf _{x \in \Omega } \frac{\varphi (x, t)}{t}=\infty\)).

b) \(\varphi (., t)\) is a measurable function for all \(t \ge 0\).

For a Musielak–Orlicz function \(\varphi\), let \(\varphi _{x}(t)=\varphi (x, t)\) and let \(\varphi _{x}^{-1}\) be the nonnegative reciprocal function with respect to t,  i.e. the function that satisfies

$$\begin{aligned} \displaystyle \varphi _{x}^{-1}(\varphi (x, t))=\varphi \left( x, \varphi _{x}^{-1}(t)\right) =t. \end{aligned}$$

The Musielak–Orlicz function \(\varphi\) is said to satisfy the \(\Delta _{2}\) -condition if for some \(k>0,\) and a nonnegative function h,  integrable in \(\Omega ,\) we have

$$\begin{aligned} \varphi (x, 2 t) \le k \varphi (x, t)+h(x) \text{ for } \text{ all } x \in \Omega \text{ and } t \ge 0. \end{aligned}$$
(2.1)

When (2.1) holds only for \(t \ge t_{0}>0,\) then \(\varphi\) is said to satisfy the \(\Delta _{2}\)-condition near infinity. Let \(\varphi\) and \(\gamma\) be two Musielak–Orlicz functions, we say that \(\varphi\) dominate \(\gamma\) and we write \(\gamma \prec \varphi ,\) near infinity (resp. globally) if there exist two positive constants c and \(t_{0}\) such that for a.e. \(x \in \Omega :\)

$$\begin{aligned} \gamma (x, t) \le \varphi (x, c t)\ \text {for all}\ t \ge t_{0},\ \text {(resp. for all }~{t \ge 0}~\text { i.e. }~{t_{0}=0)}. \end{aligned}$$

We say that \(\gamma\) grows essentially less rapidly than \(\varphi\) at 0 (resp. near infinity) and we write \(\gamma \prec \prec \varphi\) if for every positive constant c we have

$$\begin{aligned} \lim _{t \rightarrow 0}\left( \sup _{x \in \Omega } \frac{\gamma (x, c t)}{\varphi (x, t)}\right) =0, \quad (\text {resp. } \lim _{t \rightarrow \infty }\left( \sup _{x \in \Omega } \frac{\gamma (x, c t)}{\varphi (x, t)}\right) =0). \end{aligned}$$

Remark 1

(see [33]) If \(\gamma \prec \prec \varphi\) near infinity, then \(\forall \varepsilon >0\) there exists a nonnegative integrable function h,  such that

$$\begin{aligned} \gamma (x, t) \le \varphi (x, \varepsilon t)+h(x)\quad \text{ for } \text{ all } t \ge 0\ \text {and for a.e.}\ x \in \Omega . \end{aligned}$$
(2.2)

For a Musielak-Orlicz function \(\varphi\) and a measurable function \(u: \Omega \longrightarrow {\mathbb {R}},\) we define the functional

$$\begin{aligned} \rho _{\varphi , \Omega }(u)=\int _{\Omega } \varphi (x,|u(x)|) \,dx. \end{aligned}$$

The set \(K_{\varphi }(\Omega )=\Big \{u: \Omega \longrightarrow {\mathbb {R}}\ \text{ measurable/ }\ \rho _{\varphi , \Omega }(u)<\infty \Big \}\) is called the Musielak-Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces) \(L_{\varphi }(\Omega )\) is the vector space generated by \(K_{\varphi }(\Omega ),\) that is, \(L_{\varphi }(\Omega )\) is the smallest linear space containing the set \(K_{\varphi }(\Omega ) .\) Equivalently

$$\begin{aligned} L_{\varphi }(\Omega )=\left\{ u: \Omega \longrightarrow {\mathbb {R}} \text{ measurable/ }\ \rho _{\varphi , \Omega }\left( \frac{u}{\lambda }\right) <\infty , \text{ for } \text{ some } \lambda >0\right\} \end{aligned}$$

For a Musielak-Orlicz function \(\varphi\) we put:

$$\begin{aligned} \overline{\varphi }(x, s)=\displaystyle \sup _{t>0}\{s t-\varphi (x, t)\}, \end{aligned}$$

Note that \(\overline{\varphi }\) is the Musielak-Orlicz function complementary to \(\varphi\) (or conjugate of \(\varphi\)) in the sense of Young with respect to the variable s. In the space \(L_{\varphi }(\Omega )\) we define the following two norms:

$$\begin{aligned} \Vert u\Vert _{\varphi , \Omega }=\inf \left\{ \lambda >0 / \int _{\Omega } \varphi \left( x, \frac{|u(x)|}{\lambda }\right) \,dx \le 1\right\} \end{aligned}$$

which is called the Luxemburg norm and the so-called Orlicz norm by:

$$\begin{aligned} \Vert |u|\Vert _{\varphi , \Omega }=\sup _{\Vert v\Vert _{\overline{\varphi }} \le 1} \int _{\Omega }|u(x) v(x)| \,dx \end{aligned}$$

where \(\overline{\varphi }\) is the Musielak-Orlicz function complementary to \(\varphi .\) These two norms are equivalent (see [17]). The closure in \(L_{\varphi }(\Omega )\) of the bounded measurable functions with compact support in \(\overline{\Omega }\) is denoted by \(E_{\varphi }(\Omega )\), It is a separable space (see [17], Theorem 7.10).

We say that sequence of functions \(u_{n} \in L_{\varphi }(\Omega )\) is modular convergent to \(u \in\) \(L_{\varphi }(\Omega )\) if there exists a constant \(\lambda >0\) such that

$$\begin{aligned} \lim _{n \rightarrow \infty } \rho _{\varphi , \Omega }\left( \frac{u_{n}-u}{\lambda }\right) =0. \end{aligned}$$

For any fixed nonnegative integer m we define

$$\begin{aligned} W^{m} L_{\varphi }(\Omega )=\Big \{u \in L_{\varphi }(\Omega )/\ \forall |\alpha | \le m, D^{\alpha } u \in L_{\varphi }(\Omega )\Big \} \end{aligned}$$

and

$$\begin{aligned} W^{m} E_{\varphi }(\Omega )=\Big \{u \in E_{\varphi }(\Omega )/\ \forall |\alpha | \le m, D^{\alpha } u \in E_{\varphi }(\Omega )\Big \} \end{aligned}$$

where \(\alpha =\left( \alpha _{1}, \ldots , \alpha _{n}\right)\) with nonnegative integers \(\alpha _{i},|\alpha |=\left| \alpha _{1}\right| +\ldots +\left| \alpha _{n}\right|\) and \(D^{\alpha } u\) denote the distributional derivatives. The space \(W^{m} L_{\varphi }(\Omega )\) is called the Musielak-Orlicz Sobolev space. Let for \(u \in W^{m} L_{\varphi }(\Omega ):\)

$$\begin{aligned} \overline{\rho }_{\varphi , \Omega }(u)=\sum _{|\alpha | \le m} \rho _{\varphi , \Omega }\left( D^{\alpha } u\right) \text{ and } \Vert u\Vert _{\varphi , \Omega }^{m}=\inf \left\{ \lambda >0/\ \overline{\rho }_{\varphi , \Omega }\left( \frac{u}{\lambda }\right) \le 1\right\} \end{aligned}$$

these functionals are a convex modular and a norm on \(W^{m} L_{\varphi }(\Omega ),\) respectively, and the pair \(\left( W^{m} L_{\varphi }(\Omega ),\Vert .\Vert _{\varphi , \Omega }^{m}\right)\) is a Banach space if \(\varphi\) satisfies the following condition (see [17]):

$$\begin{aligned} \text{ There } \text{ exist } \text{ a } \text{ constant } c_{0}>0 \text{ such } \text{ that } \inf _{x \in \Omega } \varphi (x, 1) \ge c_{0}. \end{aligned}$$
(2.3)

The space \(W^{m} L_{\varphi }(\Omega )\) will always be identified to a subspace of the product \(\displaystyle \prod _{|\alpha | \le m} L_{\varphi }(\Omega )=\Pi L_{\varphi },\) this subspace is \(\sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right)\) closed.

The space \(W_{0}^{m} L_{\varphi }(\Omega )\) is defined as the \(\sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right)\) closure of \({\mathcal {D}}(\Omega )\) in \(W^{m} L_{\varphi }(\Omega ),\) and the space \(W_{0}^{m} E_{\varphi }(\Omega )\) as the closure of the Schwartz space \({\mathcal {D}}(\Omega )\) in \(W^{m} L_{\varphi }(\Omega ).\)

Let \(W_{0}^{m} L_{\varphi }(\Omega )\) be the \(\sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right)\) closure of \({\mathcal {D}}(\Omega )\) in \(W^{m} L_{\varphi }(\Omega ).\) The following spaces of distributions will also be used:

$$\begin{aligned} W^{-m} L_{\overline{\varphi }}(\Omega )=\Big \{f \in {\mathcal {D}}^{\prime }(\Omega )/\ f=\sum _{|\alpha | \le m}(-1)^{|\alpha |} D^{\alpha } f_{\alpha } \text{ with } f_{\alpha } \in L_{{\varphi }}(\Omega )\Big \} \end{aligned}$$

and

$$\begin{aligned} W^{-m} E_{\overline{\varphi }}(\Omega )=\Big \{f \in {\mathcal {D}}^{\prime }(\Omega )/\ f=\sum _{|\alpha | \le m}(-1)^{|\alpha |} D^{\alpha } f_{\alpha } \text{ with } f_{\alpha } \in E_{{\varphi }}(\Omega )\Big \}. \end{aligned}$$

We say that a sequence of functions \(u_{n} \in W^{m} L_{\varphi }(\Omega )\) is modular convergent to \(u \in W^{m} L_{\varphi }(\Omega )\) if there exists a constant \(k>0\) such that

$$\begin{aligned} \lim _{n \rightarrow \infty } \overline{\rho }_{\varphi , \Omega }\left( \frac{u_{n}-u}{k}\right) =0. \end{aligned}$$

We recall that

$$\begin{aligned} \varphi (x,t) \le t \overline{\varphi }^{-1}(\varphi (x,t)) \le 2 \varphi (x,t) \quad \text{ for } \text{ all } t \ge 0. \end{aligned}$$
(2.4)

For \(\varphi\) and her complementary function \(\overline{\varphi },\) the following inequality is called the Young inequality (see [17]):

$$\begin{aligned} t s \le \varphi (x, t)+\overline{\varphi }(x, s), \quad \forall t, s \ge 0,\ \text {a.e.}\ x \in \Omega . \end{aligned}$$
(2.5)

This inequality implies that

$$\begin{aligned} \Vert u\Vert _{\varphi , \Omega } \le \rho _{\varphi , \Omega }(u)+1 \end{aligned}$$
(2.6)

In \(L_{\varphi }(\Omega )\) we have the relation between the norm and the modular

$$\begin{aligned} {\Vert u\Vert _{\varphi , \Omega } \le \rho _{\varphi , \Omega }(u)\quad \text{ if } \Vert u\Vert _{\varphi , \Omega }>1} \end{aligned}$$
(2.7)

and

$$\begin{aligned} {\Vert u\Vert _{\varphi , \Omega } \ge \rho _{\varphi , \Omega }(u)\quad \text{ if } \Vert u\Vert _{\varphi , \Omega } \le 1} \end{aligned}$$
(2.8)

For two complementary Musielak-Orlicz functions \(\varphi\) and \(\overline{\varphi },\) let \(u \in L_{\varphi }(\Omega )\) and \(v \in L_{\overline{\varphi }}(\Omega ),\) then we have the Hölder inequality (see [17]):

$$\begin{aligned} \displaystyle {\left| \int _{\Omega } u(x) v(x) \,dx\right| \le \Vert u\Vert _{\varphi , \Omega }\Vert |v|\Vert _{\overline{\varphi }, \Omega }}. \end{aligned}$$
(2.9)

3 Some technical lemmas

This section concern some technical lemmas that will be used in our main result.

Definition 3.1

We say that a Musielak function \(\varphi\) verifies the log-Hölder continuity hypothesis on \(\Omega\) if there exists \(A>0\) such that

$$\begin{aligned} \frac{\varphi (x, t)}{\varphi (y, t)} \le t\left( \frac{A}{\log \left( \frac{1}{|x-y|}\right) }\right) \end{aligned}$$

\(\forall t \ge 1\) and \(\forall x, y \in \Omega\) with \(|x-y| \le \frac{1}{2}\)

Lemma 3.1

[2] Let \(\Omega\) be a bounded Lipschitz domain in \({\mathbb {R}}^N(N \ge 2)\) and let \(\varphi\) be a Musielak function verifying the log-Hölder continuity such that

$$\begin{aligned} {\bar{\varphi }}(x, 1) \le c_{1} \quad \text { a.e in } \Omega \text { for some } c_{1}>0 \end{aligned}$$
(3.1)

Then \({\mathfrak {D}}(\Omega )\) is dense in \(L_{\varphi }(\Omega )\) and in \(W_{0}^{1} L_{\varphi }(\Omega )\) for the modular convergence.

Remark 2

Note that if \(\lim _{t \rightarrow \infty } \inf _{x \in \Omega } \frac{\varphi (x, t)}{t}=\infty ,\) then (3.1) holds (see [2]).

Example 3.1

Let \(p \in P(\Omega )\) a bounded variable exponent on \(\Omega ,\) such that there exists a constant \(A>0\) such that for all points \(x, y \in \Omega\) with \(|x-y|<\frac{1}{2},\) we have the inequality

$$\begin{aligned} |p(x)-p(y)| \le \frac{A}{\log \left( \frac{1}{|x-y|}\right) } \end{aligned}$$

We can show that the Musielak function defined by \(\varphi (x, t)=t^{p(x)} \log (1+t)\) satisfies the hypothesis of Lemma 3.1.

Proof

(see [2]). \(\square\)

Lemma 3.2

[2] (Poincare’s inequality: Integral form) Let \(\Omega\) be a bounded Lipschitz domain of \(R ^{N}(N \ge 2)\) and let \(\varphi\) be a Musielak function satisfying the hypothesis of Lemma 3.1. Then there exists \(\beta , \eta > 0\) and \(\lambda > 0\) depending only on \(\Omega\) and \(\varphi\) such that

$$\begin{aligned} \int _{\Omega } \varphi (x,|v|) d x \le \beta +\eta \int _{\Omega } \varphi (x, \lambda |\nabla v|) d x \text{ for } \text{ all } v \in W_{0}^{1} L_{\varphi }(\Omega ). \end{aligned}$$
(3.2)

\(\square\)

Corollary 3.3

[2] (Poincare’s inequality) Let \(\Omega\) be a bounded Lipchitz domain of \({\mathbb {R}}^N(N \ge 2)\) and let \(\varphi\) be a Musielak function satisfying the same hypothesis of Lemma 3.2. Then there exists \(C>0\) such that

$$\begin{aligned} \Vert v\Vert _{\varphi } \le C\Vert \nabla v\Vert _{\varphi } \quad \forall v \in W_{0}^{1} L_{\varphi }(\Omega ). \end{aligned}$$

Lemma 3.4

( [30]) Let \(F: {\mathbb {R}} \longrightarrow {\mathbb {R}}\) be uniformly Lipschitzian, with \(F(0)=0 .\) Let \(\varphi\) be a Musielak-Orlicz function and let \(u \in W_{0}^{1} L_{\varphi }(\Omega ) .\) Then \(F(u) \in W_{0}^{1} L_{\varphi }(\Omega )\).

Hawever, if the set D of discontinuity points of \(F^{\prime }\) is finite, we obtain

$$\begin{aligned} \frac{\partial F(u)}{\partial x_{i}} =\left\{ \begin{array}{cc} {F^{\prime }(u) \frac{\partial u}{\partial x_{i}}\qquad \text{ a.e. } \text{ in }\ \{x \in \Omega : u(x) \in D\}} \\ 0 \qquad \qquad \quad {\text{ a.e. } \text{ in }\ \{x \in \Omega : u(x) \notin D\}}. \end{array}\right. \end{aligned}$$

Lemma 3.5

[1] (Poincare’s inequality). Let \(\varphi\) a Musielak-Orlicz function which satisfies the hypothesis of Lemma 3.1, let \(\varphi (x, t)\) decreases with respect of one of coordinate of x, then, that exists \(c>0\) depends only of \(\Omega\) such that

$$\begin{aligned} \int _{\Omega } \varphi (x,|v|) \,dx \le \int _{\Omega } \varphi (x, c|\nabla v|) \,dx \quad \forall u \in W_{0}^{1} L_{\varphi }(\Omega ). \end{aligned}$$

Lemma 3.6

[9] Let \(\Omega\) satisfies the segment property and suppose that \(u \in\) \(W_{0}^{1} L_{\varphi }(\Omega ) .\) Then, there exists a sequence \(\left( u_{n}\right) \subset {\mathcal {D}}(\Omega )\) such that

$$\begin{aligned} u_{n} \rightarrow u \text{ for } \text{ modular } \text{ convergence } \text{ in } W_{0}^{1} L_{\varphi }(\Omega ). \end{aligned}$$

In addition to this, if \(u \in W_{0}^{1} L_{\varphi }(\Omega ) \cap L^{\infty }(\Omega )\) then \(\left\| u_{n}\right\| _{\infty } \le (N+1)\Vert u\Vert _{\infty }\).

Lemma 3.7

Suppose that \(\left( g_{n}\right) ,\ g \in L^{1}(\Omega )\) such that

(i) \(g_{n} \ge 0\) a.e in \(\Omega ,\)

(ii) \(g_{n} \longrightarrow g\) a.e in \(\Omega ,\)

(iii) \(\displaystyle \int _{\Omega } g_{n}(x) \,dx \longrightarrow \displaystyle \int _{\Omega } g(x) \,dx.\)

Then \(g_{n} \longrightarrow g\) strongly in \(L^{1}(\Omega ).\)

Lemma 3.8

[10] If a sequence \(h_{n} \in L_{\varphi }(\Omega )\) converges in measure to a measurable function h and if \(h_{n}\) remains bounded in \(L_{\varphi }(\Omega ),\) then \(h \in L_{\varphi }(\Omega )\) and \(h_{n} \rightharpoonup h\) for \(\sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right)\).

Lemma 3.9

[10] Let \(v_{n},\ v \in L_{\varphi }(\Omega ).\) If \(v_{n} \rightarrow v\) with respect to the modular convergence, then \(v_{n} \rightarrow v\) for \(\sigma \left( L_{\varphi }(\Omega ), L_{\overline{\varphi }}(\Omega )\right) .\)

Lemma 3.10

[25] If \(\gamma \prec \varphi\) and \(u_{n} \rightarrow u\) for the modular convergence in \(L_{\varphi }(\Omega )\) then \(u_{n} \rightarrow u\) strongly in \(E_{\gamma }(\Omega )\).

Lemma 3.11

(The Nemytskii Operator). Suppose that \(\Omega\) be an open subset of \({\mathbb {R}}^{N}\) with finite measure and let \(\varphi\) and \(\psi\) be two Musielak Orlicz functions. Suppose that \(g: \Omega \times {\mathbb {R}}^{p} \longrightarrow {\mathbb {R}}^{q}\) be a Carathéodory function such that for a.e. \(x \in \Omega\) and all \(s \in {\mathbb {R}}^{p}:\)

$$\begin{aligned} |g(x, s)| \le c(x)+k_{1} \psi _{x}^{-1} \varphi \left( x, k_{2}|s|\right) \end{aligned}$$

where \(k_{1}\) and \(k_{2}\) are real positives constants and \(c(.) \in E_{\psi }(\Omega )\). Then the Nemytskii Operator \(N_{g}\) defined by \(N_{g}(u)(x)=g(x, u(x))\) is continuous from

$$\begin{aligned} {\mathcal {P}}\left( E_{M}(\Omega ), \frac{1}{k_{2}}\right) ^{p}=\prod \left\{ u \in L_{M}(\Omega ): d\left( u, E_{M}(\Omega )\right) <\frac{1}{k_{2}}\right\} \end{aligned}$$

into \(\left( L_{\psi }(\Omega )\right) ^{q}\) for the modular convergence. However if \(c(\cdot ) \in E_{\gamma }(\Omega )\) and \(\gamma \prec \prec \psi\) then \(N_{g}\) is strongly continuous from \({\mathcal {P}}\left( E_{M}(\Omega ), \frac{1}{k_{2}}\right) ^{p}\) to \(\left( E_{\gamma }(\Omega )\right) ^{q}\).

4 Main result

We now give the definition of a renormalized solution of (1.1).

Definition 4.1

A measurable function \(u: \Omega \rightarrow {\mathbb {R}}\) is called a renormalized solution of (1.1) if:

$$\begin{aligned} T_{k}(u) \in W_{0}^{1} L_{\varphi }(\Omega ) \quad \text {and} \quad b(x, u, \nabla u) \in \left( L_{\overline{\varphi }}(\Omega )\right) ^{N}, \end{aligned}$$
(4.1)
$$\begin{aligned} \displaystyle \lim _{m \rightarrow +\infty } \int _{\{x \in \Omega :\ \ m \le |u(x)| \le m+1\}} b(x, u, \nabla u) \nabla u \,dx=0, \end{aligned}$$
(4.2)

and for every function \(h \in C_{c}^{1}({\mathbb {R}})\) such that

$$\begin{aligned} -{\text {div}}\Big ( b(x, u, \nabla u) h(u)\Big ) -{\text {div}}\Big (F(x,u) h(u)\Big )+h^{\prime }(u) F(x,u) \nabla u \end{aligned}$$
(4.3)
$$\begin{aligned} =f h(u)-{\text {div}}(\phi h(u))+h^{\prime }(u) \phi \nabla u \quad \text{ in } {\mathcal {D}}^{\prime }(\Omega ). \end{aligned}$$

Remark 3

Every term in equation (4.3) is meaningful in the distributional sense. Indeed, for \(h \in C_{c}^{1}({\mathbb {R}})\) and \(u\in W_{0}^{1} L_{\varphi }(\Omega ),\) then \(h(u)\in W^{1} L_{\varphi }(\Omega )\) and for V in \({\mathcal {D}}(\Omega )\) the function \(V h(u)\in W_{0}^{1} L_{\varphi }(\Omega ).\) Since \({\text {div}} \Big (b(x, u, \nabla u)\Big ) \in W^{-1} L_{\overline{\varphi }}(\Omega ),\) we have for every \(V \in {\mathcal {D}}(\Omega )\):

$$\begin{aligned} \Big \langle {\text {div}}\Big (b(x, u, \nabla u)\Big )h(u)\ ;\ V\Big \rangle _{{\mathcal {D}}^{\prime }(\Omega ), {\mathcal {D}}(\Omega )} =\Big \langle {\text {div}}\Big (b(x, u, \nabla u)\Big )\ ;\ V h(u)\Big \rangle _{W^{-1} L_{\overline{\varphi }}(\Omega ), W_{0}^{1} L_{\varphi }(\Omega )} \end{aligned}$$

Finally, \(F(x,u) h(u)\in \left( L^{\infty }(\Omega )\right) ^{N},\ F(x,u) h^{\prime }(u)\in \left( L^{\infty }(\Omega )\right) ^{N},\ {\text {div}}\Big (F(x,u) h(u)\Big ) \in W^{-1} L_{\overline{\varphi }}(\Omega )\) and \(F(x,u) h^{\prime }(u)\nabla u \in L_{\varphi }(\Omega ).\)

Our main result is the following

Theorem 4.1

Under assumptions (1.2)-(1.8) there exists at least a renormalized solution of Problem (1.1).

Remark 4

Actually the original equation (1.1) will be recovered whenever \(h(u) \equiv 1\) but unfortunately this cannot happen in general strong additional requirements on u. Therefore, (4.3) is to be viewed as a weaker form of (1.1).

Remark 5

Generalized Orlicz spaces (Musielak-Orlicz-sobolev spaces), Orlicz spaces and \(L^{p(\cdot )}\)-spaces have different nature, and neither of them is a subset of the other.

Let us list some techniques from the classical case which do not work in \(L^{p(\cdot )}{ }_{-}\) spaces and some additional ones that do not work in the generalized Orlicz case. Orlicz spaces are similar to \(L^p\)-spaces in many regards, but some differences exist.

  • Exponents cannot be moved outside the \(\Phi\)-function, i.e. \(\varphi \left( t^\gamma \right) \ne \varphi (t)^\gamma\) in general.

  • The formula \(\varphi ^{-1}\left( \int _{\Omega } \varphi (|f|) d x\right)\) does not define a norm. Techniques which do not work in \(L^{p(\cdot )}\)-spaces (from [24], pp. 9–10]):

  • The space \(L^{p(\cdot )}\) is not rearrangement invariant; the translation operator \(T_h\) : \(L^{p(\cdot )} \rightarrow L^{p(\cdot )}, T_h f(x):=f(x+h)\) is not bounded; Young’s convolution inequality \(\Vert f * g\Vert _{p(\cdot )} \leqslant c\Vert f\Vert _1\Vert g\Vert _{p(\cdot )}\) does not hold [24], Section 3.6].

  • The formula

    $$\begin{aligned} \int _{\Omega }|f(x)|^p d x=p \int _0^{\infty } t^{p-1}|\{x \in \Omega :|f(x)|>t\}| d t \end{aligned}$$

    has no variable exponent analogue.

  • Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular form. For instance, A. Lerner showed that the inequality

    $$\begin{aligned} \int _{{\mathbb {R}}^n}|M f|^{p(x)} d x \leqslant c \int _{{\mathbb {R}}^n}|f|^{p(x)} d x \end{aligned}$$

    holds if and only if \(p \in (1, \infty )\) is constant [29], Theorem 1.1]. For the Poincaré inequality see [24], Example 8.2.7] and the discussion after it.

  • Interpolation is not so useful, since variable exponent spaces never result as an interpolant of constant exponent spaces (see Sect. 5.5).

  • Solutions of the \(p(\cdot )\)-Laplace equation are not scalable, i.e. \(\lambda u\) need not be a solution even if u is [24], Example 13.1.9]. New obstructions in generalized Orlicz spaces:

  • We cannot estimate \(\varphi (x, t) \lesssim \varphi (y, t)^{1+\varepsilon }+1\) even when \(|x-y|\) is small, because of lack of polynomial growth. This complicates e.g. the use of higher integrability in PDE proofs.

  • It is not always the case that \(\chi _E \in L^{\varphi }(\Omega )\) when \(|E|<\infty\).

5 Proof of Theorem 4.1

Throughout the paper, \(T_{k}\) denotes the truncation function at height \(k\ge 0:\)

$$\begin{aligned} T_{k}(s)=\max (-k, \min (k, s)) \end{aligned}$$

5.1 Approximate problem

For \(n \in {\mathbb {N}}^*,\) let define the following approximations of \(f\) and \(\Phi .\) Let \(f_{n}\) be a sequence of \(L^{\infty }(\Omega )\) functions that converge strongly to f in \(L^{1}(\Omega ),\) and \(\left\| f_{n}\right\| _{L^{1}} \le\) \(\Vert f\Vert _{L^{1}}.\) Let \(F_{n}\left( x, s\right) =F\left( x, T_{n}\left( s\right) \right)\). Then we consider the approximate Eq. (1.1) for \(n\ge 1:\ u_{n} \in W_{0}^{1} L_{\varphi }(\Omega )\)

$$\begin{aligned} -{\text {div}}\Big ( b\left( x, u_{n}, \nabla u_{n}\right) \Big )+{\text {div}}\Big ( F_{n}\left( x,u_{n}\right) \Big ) =f_{n}-{\text {div}}(\phi ) \quad {\text {in}} {\mathcal {D}}^{\prime }(\Omega ). \end{aligned}$$
(5.1)

there exists at last one solution \(u_{n} \in\) \(W_{0}^{1} L_{\varphi }(\Omega )\) of (5.1) (see [26]).

5.2 A priori estimates

Choosing \(T_{k}(u_{n})\) as a test function in (5.1), we get

$$\begin{aligned} \begin{array}{clll} &{}\displaystyle \int _{\Omega } b_{n}(x, u_{n}, \nabla u_{n}) \nabla T_{k}\left( u_{n}\right) \,dx +\int _{\Omega } F_{n}(x, u_{n}) \nabla T_{k}\left( u_{n}\right) \,dx\\ &{}\quad \le k \left\| f_{n}\right\| _{L^{1}(\Omega )}+\displaystyle \int _{\Omega } \phi \nabla T_{k}(u_{n}) \,dx. \end{array} \end{aligned}$$
(5.2)

By (1.6), Lemma 3.5 and Young inequality, we obtain:

$$\begin{aligned} \begin{array}{cll} &{}\displaystyle { \int _{\Omega } F_{n}(x, u_{n}) \nabla T_{k}\left( u_{n}\right) \,dx } \\ &{}\quad \displaystyle { \le \Vert c(.)\Vert _{L^{\infty }(\Omega )}\left[ \alpha _{0} \int _{\Omega } \varphi \left( x, u_{n}\right) T_{k}\left( u_{n}\right) \,dx\right. } +\displaystyle \left. \int _{\Omega } \varphi \left( x,\left| \nabla u_{n}\right| \right) T_{k}\left( u_{n}\right) d x\right] . \\ &{}\quad \displaystyle {} \le \Vert c(.)\Vert _{L^{\infty }}\left( \alpha _{0} +1\right) \int _{Q_{\tau }} \varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) d x d t.\end{array} \end{aligned}$$
(5.3)

Recall that

$$\begin{aligned} \begin{array}{c}\displaystyle { \int _{\Omega } \phi \nabla T_{k}\left( u_{n}\right) \,dx \le \frac{\alpha }{2} \int _{\Omega } \varphi \left( x,\left| \nabla T_{k}(u_{n})\right| \right) \,dx}+c(\Omega,N,\alpha,\phi) . \end{array} \end{aligned}$$
(5.4)

return to (5.2) and using (5.3) and (5.4) we get

$$\begin{aligned} \begin{array}{clll} &{}\displaystyle {} \int _{\Omega } b_{n}\left( x,u_{n}, \nabla u_{n}\right) \nabla T_{k}\left( u_{n}\right) d x d t \displaystyle {} \le k \left\| f_{n}\right\| _{L^{1}(\Omega )}+\left[ \Vert c(.)\Vert _{L^{\infty }}\left( \alpha _{0} +1\right) + \frac{\alpha }{2} \right] \\ &{}\quad \int _{\Omega } \varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) d x d t \end{array} \end{aligned}$$
(5.5)

by using (1.5) we get

$$\begin{aligned} \begin{aligned}&\int _{\Omega } b_{n}\left( x,u_{n}, \nabla u_{n}\right) \nabla T_{k}\left( u_{n}\right) d x d t \le \frac{\left[ \Vert c(.)\Vert _{L^{\infty }}\left( \alpha _{0} +1\right) + \frac{\alpha }{2} \right] }{\alpha }\\&\quad \int _{\Omega } b_{n}\left( x,u_{n}, \nabla u_{n}\right) \nabla T_{k}\left( u_{n}\right) d x d t +k\left\| f_{n}\right\| _{L^{1}\left( \Omega \right) }, \end{aligned} \end{aligned}$$

thus

$$\begin{aligned} \left[ \frac{1}{2}-\frac{\left[ \Vert c(.)\Vert _{L^{\infty }}\left( \alpha _{0} +1\right) \right] }{\alpha }\right] \int _{\Omega } b\left( x, u_{n}, \nabla u_{n}\right) \nabla \left( T_{k}\left( u_{n}\right) \right) \,dx \begin{aligned}&\le k c_{1}, \end{aligned} \end{aligned}$$

We take \(\displaystyle \frac{1}{c_{2}}=\left[ \frac{1}{2}-\frac{\left[ \Vert c(.)\Vert _{L^{\infty }}\left( \alpha _{0} +1\right) \right] }{\alpha }\right] .\) Then we deduce that

By (1.7) we have \(c_{2}>0\) where \(C=c_{1} c_{2} .\) And by (1.5) we have

$$\begin{aligned} \displaystyle { \int _{\Omega } \varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) d x \le k C. } \end{aligned}$$
(5.6)

So it follows that \(\left( T_{k}\left( u_{n}\right) \right) _{n} is \text{ bounded } \text{ in } W_{0}^{1} L_{\varphi }(\Omega ),\) then there exists some \(v_{k} \in W_{0}^{1} L_{\varphi }(\Omega )\) such that

$$\begin{aligned} \left\{ \begin{aligned} T_{k}\left( u_{n}\right) \rightharpoonup v_{k} \quad \text{ weakly } \text{ in } W_{0}^{1} L_{\varphi }(\Omega ) \text { for } \sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right) \\ T_{k}\left( u_{n}\right) \longrightarrow v_{k} \qquad \text{ strongly } \text{ in } E_{\overline{\varphi }}(\Omega ). \qquad \qquad \quad \qquad \end{aligned}\right. \end{aligned}$$
(5.7)

On the other hand, using (5.6), we have

$$\begin{aligned}&\displaystyle \inf _{x \in \Omega } \varphi \left( x, \frac{k}{\delta }\right) {\text {meas}}\left\{ \left| u_{n}\right|>k\right\} \le \int _{\left\{ \left| u_{n}\right| >k\right\} } \varphi \left( x, \frac{\left| T_{k}\left( u_{n}\right) \right| }{\delta }\right) \,dx\\&\quad \le \int _{\Omega } \varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) \,dx \le k C. \end{aligned}$$

Then

$$\begin{aligned} {\text {meas}}\left\{ \left| u_{n}\right| >k\right\} \le \frac{ k C}{\inf _{x \in \Omega } \varphi \left( x, \frac{k}{\delta }\right) } \end{aligned}$$

for all \(n\ge 1\) and for all \(k\ge 1\). Assuming that there exists a positive function \(\overline{\varphi }\) such that \(\displaystyle \lim _{t \rightarrow \infty } \frac{\overline{\varphi }(t)}{t}=+\infty\) and \(\overline{\varphi }(t) \le ess\inf _{x \in \Omega } \varphi (x, t),\ \forall t \ge 0.\) Thus, we get

$$\begin{aligned} \lim _{k \rightarrow \infty } {\text {meas}}\left\{ \left| u_{n}\right| >k\right\} =0. \end{aligned}$$
(5.8)

Let \(\eta >0\) and \(\epsilon >0\) then

$$\begin{aligned} {\text {meas}}\left\{ \left| u_{n}-u_{m}\right|>\eta \right\} \le {\text {meas}}\left\{ \left| u_{n}\right|>k\right\} +{\text {meas}}\left\{ \left| u_{m}\right|>k\right\} +{\text {meas}}\left\{ \left| T_{k}\left( u_{n}\right) -T_{k}\left( u_{m}\right) \right| >\eta \right\} \end{aligned}$$

then, by using (5.7) one suppose that \(\left( T_{k}\left( u_{n}\right) \right) _{n}\) is a Cauchy sequence in measure in \(\Omega\), Let \(\varepsilon >0,\) then by (5.8) there exists some \(k=k(\varepsilon )>0\) such that

$$\begin{aligned} {\text {meas}}\left\{ \left| u_{n}-u_{m}\right| >\eta \right\} <\varepsilon , \quad \text{ for } \text{ all } n,\ m\ \ge h_{0}(k(\varepsilon ), \eta ), \end{aligned}$$

which means that \(\left( u_{n}\right) _{n}\) is a Cauchy sequence in measure in \(\Omega ,\) thus converge almost every where to u. Consequently

$$\begin{aligned} \left\{ \begin{aligned} {u_{n} \rightharpoonup u}&\text{ weakly } \text{ in } W_{0}^{1} L_{\varphi }(\Omega ) \text{ for } \sigma \left( \Pi L_{\varphi }, \Pi E_{\overline{\varphi }}\right) \\ {u_{n} \longrightarrow u}&\text{ strongly } \text{ in } E_{\overline{\varphi }}(\Omega ). \end{aligned}\right. \end{aligned}$$
(5.9)

5.3 Boundedness of \(\left( b\left( x, u_{n}, \nabla u_{n}\right) \right) _{n}\) in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N}\)

Let \(\vartheta \in \left( E_{\varphi }(\Omega )\right) ^{N}\) such that

\(\Vert \vartheta \Vert _{\varphi , \Omega }=1,\) we have

$$\begin{aligned} \int _{\Omega }\left[ b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \right] \left[ \nabla T_{k}\left( u_{n}\right) -\frac{\vartheta }{k_{3}}\right] \,dx \ge 0. \end{aligned}$$

This implies that

$$\begin{aligned}&\displaystyle \int _{\Omega } \frac{1}{k_{3}} b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \vartheta \,dx \nonumber \\&\quad \le \int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \nabla T_{k}\left( u_{n}\right) \,dx -\int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \left( \nabla T_{k}\left( u_{n}\right) -\frac{\vartheta }{k_{3}}\right) \,dx \nonumber \\&\quad \le k C_{1}+C_{2}-\int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \nabla T_{k}\left( u_{n}\right) \,dx +\frac{1}{k_{3}} \int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \vartheta \,dx. \end{aligned}$$
(5.10)

By using Young’s inequality in the last two terms of the last side and (5.6) we get

$$\begin{aligned}&\displaystyle \int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \vartheta \,dx \nonumber \\&\quad \displaystyle \le k_{3}(k C_{1}+C_{2}) +3 k_{1}\left( 1+k_{3}\right) \int _{\Omega } \overline{\varphi }\left( x, \frac{\left| b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \right| }{3 k_{1}}\right) \,dx \nonumber \\&\qquad \displaystyle +3 k_{1} k_{3} \int _{\Omega } \varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) d x+3 k_{1} \int _{\Omega } \varphi (x,|\vartheta |) \,dx \nonumber \\&\quad \le k_{3}(k C_{1}+C_{2}) +3 k_{1} k_{3} (k C_{1}+C_{2}) +3 k_{1} \displaystyle +3 k_{1}\left( 1+k_{3}\right) \int _{\Omega } \overline{\varphi }\left( x, \frac{\left| b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \right| }{3 k_{1}}\right) \,dx \end{aligned}$$
(5.11)

Now, by using (1.3) and the convexity of \(\overline{\varphi }\) we get

$$\begin{aligned} \overline{\varphi }\left( x, \frac{\left| b\left( x, T_{k}\left( u_{n}\right) , \frac{\vartheta }{k_{3}}\right) \right| }{3 k_{1}}\right) \le \frac{1}{3}\Big (\overline{\varphi }(x, d(x))+P\left( x, k_{2}\left| T_{k}\left( u_{n}\right) \right| \right) +\varphi (x,|\vartheta |)\Big ) \end{aligned}$$
(5.12)

Thanks to Remark 1 there exists \(h \in L^{1}(\Omega )\) such that

$$\begin{aligned} P\left( x, k_{2}\left| T_{k}\left( u_{n}\right) \right| \right) \le P\left( x, k_{2} k\right) \le \varphi (x, 1)+h(x) \end{aligned}$$

then by integrating over \(\Omega\) we deduce that

$$\begin{aligned}&\displaystyle \int _{\Omega } \overline{\varphi }\left( x, \frac{\left| b\left( x, T_{k}\left( u_{n}\right) , \frac{v}{k_{3}}\right) \right| }{3 k_{1}}\right) \,dx \nonumber \\&\quad \displaystyle \le \frac{1}{3}\left( \int _{\Omega } \overline{\varphi }(x, c(x)) \,dx +\int _{\Omega } h(x) \,dx +\int _{\Omega } \varphi (x, 1) \,dx+\int _{\Omega } \varphi (x,|\vartheta |) \,dx\right) \le c_{k}', \end{aligned}$$
(5.13)

where \(c_{k}'\) is a constant depending on k,  then \(\forall \vartheta \in \left( E_{\varphi }(\Omega )\right) ^{N}\) with \(\Vert \vartheta \Vert _{\varphi , \Omega }=1\) we have \(\displaystyle \int _{\Omega } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \vartheta d x \le c_{k}',\) and thus \(\left\| b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \right\| _{\overline{\varphi }, \Omega } \le c_{k}',\) which implies that

$$\begin{aligned} \Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \Big )_{n} \text { is bounded in } L_{\overline{\varphi }}(\Omega )^{N}. \end{aligned}$$
(5.14)

5.4 Renormalization identity for the approximate solutions

Consider the function \(Z_{m}\left( u_{n}\right) =T_{1}\left( u_{n}-T_{m}\left( u_{n}\right) \right)\) and by taking \(Z_{m}\left( u_{n}\right)\) as test function in (5.1) we obtain

$$\begin{aligned}&\displaystyle \int _{\Omega } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \nabla Z_{m}\left( u_{n}\right) \,dx \displaystyle +\int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla Z_{m}\left( u_{n}\right) \,dx \nonumber \\&\quad \displaystyle =\int _{\Omega } f_{n} Z_{m}\left( u_{n}\right) d x+\int _{\Omega } \phi \nabla Z_{m}\left( u_{n}\right) \,dx. \end{aligned}$$
(5.15)

By the same argument used in a priori estimates, we get

$$\begin{aligned}&\displaystyle \int _{\Omega } \varphi \left( x,\left| \nabla Z_{m}\left( u_{n}\right) \right| \right) \,dx \displaystyle \le C\left[ \int _{\Omega } f_{n} Z_{m}\left( u_{n}\right) d x\right. \left. + \int _{\Omega } \overline{\varphi }\left( x, \frac{|\phi |}{\epsilon _{1}}\right) Z_{m}\left( u_{n}\right) d x\right] \nonumber \\&\quad \displaystyle + C \int _{\left\{ m \le u_{n} \le m+1 \right\} } \overline{\varphi }\left( x, \frac{|\phi |}{\epsilon _{1}}\right) \,dx \end{aligned}$$
(5.16)

where \(\displaystyle \frac{1}{C}=\left[ \frac{1}{2}-\left( \frac{\Vert c(\cdot )\Vert _{L^{\infty }(\Omega )}+\epsilon _{1}}{\alpha }\right) \right] .\) In order to pass to the limit in (5.16) as \(n \rightarrow +\infty ,\) we use the pointwise convergence of \(u_{n}\) and strongly convergence in \(L^{1}(\Omega )\) of \(f_{n},\) we get

$$\begin{aligned}&\displaystyle \lim _{n \rightarrow +\infty } \int _{\Omega } \varphi \left( x,\left| \nabla Z_{m}\left( u_{n}\right) \right| \right) \,dx \le C\left[ \int _{\Omega } f Z_{m}(u) d x\right. \left. + \int _{\Omega } \overline{\varphi }\left( x, \frac{|\phi |}{\epsilon _{1}}\right) Z_{m}(u) d x\right] \nonumber \\&\quad \displaystyle C \int _{\{m \le u \le m+1 \}} \overline{\varphi }\left( x, \frac{|\phi |}{\epsilon _{1}}\right) \,dx \end{aligned}$$
(5.17)

Thanks to Lebesgue’s theorem and passing to the limit as \(m \rightarrow +\infty ,\) in every term of the right-hand side of the previous inequalities, we obtain

$$\begin{aligned} \lim _{m \rightarrow +\infty } \lim _{n \rightarrow +\infty } \int _{\Omega } \varphi \Big (x,\left| \nabla Z_{m}\left( u_{n}\right) \right| \Big ) \,dx=0. \end{aligned}$$
(5.18)

Using (1.6) and Young inequality, for \(n>m+1\) we have

$$\begin{aligned}&\displaystyle { \int _{\Omega }\left| F_{n}\left( x, u_{n}\right) \nabla Z_{m}\left( u_{n}\right) \right| d x \le \int _{\left\{ m \le u_{n} \le m+1\right\} } \varphi \left( x, \alpha _{0}\left| T_{m+1}\left( u_{n}\right) \right| \right) d x } \nonumber \\&\quad \displaystyle { +\int _{\Omega } \varphi \left( x,\left| \nabla Z_{m}\left( u_{n}\right) \right| \right) d x}. \end{aligned}$$
(5.19)

Thanks to Lebesgue’s theorem, and by the pointwise convergence of \(u_{n}\) we can have

$$\begin{aligned}&\displaystyle \lim _{n \rightarrow +\infty } \int _{\Omega }\Big |F_{n}\left( x, u_{n}\right) \nabla Z_{m}\left( u_{n}\right) \Big | \,dx \le \int _{\{ m \le u \le m+1\}} \varphi \left( x, \alpha _{0}\left| T_{m+1}(u)\right| \right) d x\nonumber \\&\quad \displaystyle { +\lim _{n \rightarrow +\infty } \int _{\Omega } \varphi \left( x,\left| \nabla Z_{m}\left( u\right) \right| \right) \,dx}. \end{aligned}$$
(5.20)

Passing to the limit in (5.20) as \(m \rightarrow +\infty ,\) we obtain

$$\begin{aligned} \lim _{m \rightarrow +\infty } \lim _{n \rightarrow +\infty } \int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla Z_{m}\left( u_{n}\right) \,dx=0. \end{aligned}$$

Finally passing to the limit in (5.16), we get

$$\begin{aligned} \lim _{m \rightarrow +\infty } \lim _{n \rightarrow +\infty } \int _{\left\{ m \le u_{n} \le m+1 \right\} } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \,dx=0. \end{aligned}$$
(5.21)

5.5 Almost everywhere convergence of the gradients

Let \(v_{j} \in {\mathcal {D}}(\Omega )\) be a sequence such that \(v_{j} \rightarrow u\) in \(W_{0}^{1} L_{\varphi }(\Omega )\) for the modular convergence. For \(m \ge k,\) we define the function \(\varrho _{m}\) by

$$\begin{aligned} \varrho _{m}(s)=\left\{ \begin{array}{lll} 1 &{} \text{ if } &{} |s| \le m \\ m+1-|s| &{} \text{ if } &{} m \le |s| \le m+1 \\ 0 &{} \text{ if } &{} |s| \ge m+1 \end{array}\right. \end{aligned}$$

We denote by \(\epsilon (n, \eta , j, m)\) all quantities (possibly different) such that

$$\begin{aligned} \lim _{m \rightarrow +\infty } \lim _{j \rightarrow +\infty } \lim _{\eta \rightarrow +\infty } \lim _{n \rightarrow +\infty } \epsilon (n, \eta , j, m)=0. \end{aligned}$$

For fixed \(k \ge 0,\) let \(W_{\eta }^{n, j}=T_{\eta }\left( T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right)\) and \(W_{\eta }^{j}=T_{\eta }\left( T_{k}(u)-T_{k}\left( v_{j}\right) \right) .\) Multiplying the approximating equation by \(W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right)\), we obtain

$$\begin{aligned}&\displaystyle \int _{\Omega } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \nabla W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right) \,dx-\int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right) \,dx \nonumber \\&\quad \displaystyle \le \int _{\Omega } f_{n} W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right) d x+\int _{\Omega }\phi \nabla W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right) d x. \end{aligned}$$
(5.22)

Remark that if we take \(n>m+1,\) we obtain

$$\begin{aligned} F_{n}\left( x, u_{n}\right) \varrho _{m}\left( u_{n}\right) =F\left( x, T_{m+1}\left( u_{n}\right) \right) \varrho _{m}\left( T_{m+1}\left( u_{n}\right) \right) , \end{aligned}$$

then \(F_{n}\left( x, u_{n}\right)\) is bounded in \(L_{\overline{\varphi }}(\Omega ),\) thus, by using the pointwise convergence of \(u_{n}\) and Lebesgue’s theorem we obtain \(F_{n}\left( x, u_{n}\right)\) converges to F(xu) with the modular convergence as \(n \rightarrow +\infty ,\) then

$$\begin{aligned} F_{n}\left( x, u_{n}\right) \varrho _{m}\left( u_{n}\right) \longrightarrow F(x, u) \varrho _{m}\left( u\right) \text { for } \sigma \left( \Pi L_{\varphi }, \Pi L_{\varphi }\right) . \end{aligned}$$

In the other hand for \(0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta\) then \(\nabla W_{\eta }^{n, j}=\nabla \Big (T_{k}(u_{n})-T_{k}(v_{j})\Big )\) converges to \(\nabla \Big (T_{k}(u)- T_{k}(v_{j})\Big )\) weakly in \(\left( L_{\varphi }(\Omega )\right) ^{N}\) as n tends to \(+\infty\), then

$$\begin{aligned} \displaystyle \lim _{n\rightarrow +\infty }\int _{\Omega } F_{n}\left( x, u_{n}\right) \varrho _{m}\left( u_{n}\right) \nabla W_{\eta }^{n, j} \,dx =\int _{\Omega } F(x, u) \varrho _{m}\left( u\right) \nabla W_{\eta }^{j} \,dx. \end{aligned}$$

By using the modular convergence of \(W_{\eta }^{j}\) as \(j \rightarrow +\infty\) and letting \(\mu\) tends to infinity, we get

$$\begin{aligned} \int _{\Omega } F_{n}\left( x, u_{n}\right) \varrho _{m}\left( u_{n}\right) \nabla W_{\eta }^{n, j} \,dx=\epsilon (n, j) \quad \text{ for } \text{ any } m \ge 1. \end{aligned}$$
(5.23)

In the other hand for \(n>m+1>k,\) we have \(\nabla u_{n}\varrho ^{'}_{m}\left( u_{n}\right) =\nabla T_{m+1}\left( u_{n}\right)\) a.e. in \(\Omega .\) By the almost every where convergence of \(u_{n}\) we have \(W_{\eta }^{n, j} \rightarrow W_{\eta }^{j}\) in \(L^{\infty }(\Omega )\) weak- \(^{*}\) and since the sequence \(\left( F_{n}\left( x, T_{m+1}\left( u_{n}\right) \right) \right) _{n}\) converge strongly \({\text {in}} E_{\overline{\varphi }}(\Omega )\) then

$$\begin{aligned} F_{n}\left( x, T_{m+1}\left( u_{n}\right) \right) W_{\eta }^{n, j} \rightarrow F\left( x, T_{m+1}(u)\right) W_{\eta }^{j} \end{aligned}$$

converge strongly in \(E_{\overline{\varphi }}(\Omega )\) as \(n \rightarrow +\infty .\) By virtue of \(\nabla T_{m+1}\left( u_{n}\right) \rightarrow \nabla T_{m+1}(u)\) weakly in \(\left( L_{\varphi }(\Omega )\right) ^{N}\) as \(n \rightarrow +\infty\) we have

$$\begin{aligned}&\displaystyle \lim _{n\rightarrow +\infty } \int _{\{m \le |u_{n}| \le m+1 \}} F_{n}(x, T_{m+1}(u_{n})) \nabla u_{n}\varrho ^{'}_{m}\left( u_{n}\right) W_{\eta }^{n, j} \,dx\displaystyle \nonumber \\&\quad =\int _{\{m \le |u| \le m+1\}} F(x, u) \nabla u \varrho ^{'}_{m}\left( u \right) W_{\eta }^{j} \,dx \end{aligned}$$
(5.24)

with the modular convergence of \(W_{\eta }^{j}\) as \(j \rightarrow +\infty\), we get

$$\begin{aligned} \int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla u_{n} \varrho ^{'}_{m}\left( u_{n}\right) W_{\eta }^{n, j} \,dx=\epsilon (n, j) \quad \text{ for } \text{ any } m \ge 1 \end{aligned}$$
(5.25)

Concerning the first term of (5.22) we have

$$\begin{aligned}&\displaystyle \int _{\Omega } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho ^{'}_{m}\left( u_{n}\right) W_{\eta }^{n, j} \,dx=\int _{\left\{ m \le \left| u_{n}\right| \le m+1\right\} } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho ^{'}_{m}\left( u_{n}\right) \nabla u_{n} W_{\eta }^{n, j} \,dx \nonumber \\&\quad \le \eta C \int _{\left\{ m \le \left| u_{n}\right| \le m+1\right\} } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \,dx, \end{aligned}$$
(5.26)

thus

$$\begin{aligned} \int _{\Omega } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho ^{'}_{m}\left( u_{n}\right) W_{\eta }^{n, j} d x \le \epsilon (n, m). \end{aligned}$$
(5.27)

The weakly convergence of \(T_{k}\left( u_{n}\right)\) to \(T_{k}\left( v_{j}\right)\) in \(W^{0,1} L_{\varphi }(\Omega )\) as n tends to \(+\infty\), the bounded character of \(W_{\eta }^{n, j}\), we obtain

$$\begin{aligned} \displaystyle \int _{\Omega } f_{n} \varrho _{m}\left( u_{n}\right) W_{\eta }^{n, j} \,dx = \epsilon (n, \eta ), \end{aligned}$$
(5.28)

and

$$\begin{aligned} \displaystyle \int _{\Omega } \phi \nabla W_{\eta }^{n, j}\varrho _{m}\left( u_{n}\right) \,dx = \epsilon (n,\eta ). \end{aligned}$$
(5.29)

Appealing now (1.5), we get

$$\begin{aligned}&\displaystyle \Big |\int _{\Omega } \phi \nabla u_{n} \varrho ^{'}_{m}\left( u_{n}\right) W_{\eta }^{n, j} \,dx\Big |\displaystyle \le \epsilon _{1} \nonumber \\&\quad \int _{\Omega } \overline{\varphi }\left( x, \frac{\phi }{\epsilon _{1}}\right) W_{\eta }^{n, j} \,dx+\epsilon _{1} \eta \int _{\{m \le \left| u_{n}\right| \le m+1\}} b_{n}\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \le \epsilon (n, m, j, \eta ). \end{aligned}$$
(5.30)

In the other hand we have

$$\begin{aligned}&\displaystyle \int _{\Omega } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho _{m}\left( u_{n}\right) \nabla W_{\eta }^{n, j} \,dx \nonumber \\&\quad \displaystyle =\int _{\left. \left\{ \left| u_{n}\right| \le k\right\} \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \le \eta \right\} } b_{n}\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \varrho _{m}\left( u_{n}\right) \nonumber \\&\quad \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \right) \,dx \nonumber \\&\quad \displaystyle { -\int _{\left. \left\{ \left| u_{n}\right| >k\right\} \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \le \eta \right\} } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho _{m}\left( u_{n}\right) \nabla T_{k}\left( v_{j}\right) \,dx.} \end{aligned}$$
(5.31)

Since \(b_{n}\left( x, T_{k+\eta }\left( u_{n}\right) , \nabla T_{k+\eta }\left( u_{n}\right) \right)\) is bounded in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N},\) there exist some \(\varpi _{k+\eta } \in \left( L_{\overline{\varphi }}(\Omega )\right) ^{N}\) such that \(b_{n}\left( x, T_{k+\eta }\left( u_{n}\right) , \nabla T_{k+\eta }\left( u_{n}\right) \right) \rightharpoonup \varpi _{k+\eta }\) weakly in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N}.\) Thus:

$$\begin{aligned} \begin{array}{l}\displaystyle { \int _{\left. \left\{ \left| u_{n}\right|>k\right\} \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \le \eta \right\} } b_{n}\left( x, u_{n}, \nabla u_{n}\right) \varrho _{m}\left( u_{n}\right) \nabla T_{k}\left( v_{j}\right) \,dx } \\ \displaystyle { =\int _{\left. \{|u|>k\} \cap \left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \right) \le \eta \right\} } \varrho _{m}(u) \varpi _{k+\eta }\nabla T_{k}\left( v_{j}\right) \,dx+\epsilon (n)}, \end{array} \end{aligned}$$
(5.32)

By letting \(j \rightarrow +\infty ,\) we get

$$\begin{aligned} \displaystyle \int _{\left. \{|u|>k\} \cap \left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \right) \le \eta \right\} } \varrho _{m}(u) \nabla T_{k}\left( v_{j}\right) \varpi _{k+\eta } \,dx \displaystyle =\int _{\left. \{|u|>k\}\right\} } \varrho _{m}(u) \nabla T_{k}(u) \varpi _{k+\eta } d x+\epsilon (n, j) =\epsilon (n, j). \end{aligned}$$
(5.33)

Thanks to (5.23)–(5.33), one has

$$\begin{aligned}&\int _{\left. \left\{ \left| u_{n}\right| \le k\right\} \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \le \eta \right\} } b_{n}\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \varrho _{m}\left( u_{n}\right) \nonumber \\&\quad \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \right) \,dx \le C \eta +\epsilon (n, j, m). \end{aligned}$$
(5.34)

Since \(\exp \left( G\left( u_{n}\right) \right) \ge 1\) and \(\varrho _{m}\left( u_{n}\right) =1\) for \(\left| u_{n}\right| \le k\) then

$$\begin{aligned}&\displaystyle \int _{ \{|u_{n}| \le k\} \cap \{0 \le T_{k}(u_{n})-T_{k}(v_{j}) \le \eta \}} b_{n}\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \right) \,dx \nonumber \\&\quad \le C \eta +\epsilon (n, j, m). \end{aligned}$$
(5.35)

Finally we show that,

$$\begin{aligned} \displaystyle { \int _{\Omega }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \Big )\Big (\nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\Big ) \,dx \rightarrow 0.} \end{aligned}$$
(5.36)

For \(s>0,\) denoting by \(\Omega ^{s}=\left\{ x \in \Omega :\left| \nabla T_{k}(u)\right| \le s\right\}\) and \(\Omega _{j}^{s}=\left\{ x \in \Omega :\left| \nabla T_{k}\left( v_{j}\right) \right| \le \right.\) \(s\}\) then by \(\chi ^{s}\) and \(\chi _{j}^{s}\) the characteristic functions of \(\Omega ^{s}\) and \(\Omega _{j}^{s}\) respectively, letting \(0<\delta <1\), define

$$\begin{aligned} \Theta _{n, k}=\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \Big )\Big (\nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\Big ). \end{aligned}$$

For \(s>0,\) we have

$$\begin{aligned} 0 \le \int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \,dx=\int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } d x+\int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \chi _{\left\{ T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) >\eta \right\} } \,dx. \end{aligned}$$

The first term of the right-side hand, with the Hölder inequality we obtain

$$\begin{aligned}&\displaystyle \int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } \,dx \le \left( \int _{\Omega ^{*}} \Theta _{n, k} \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } d x\right) ^{\delta }\left( \int _{\Omega ^{*}} \,dx\right) ^{1-\delta } \nonumber \\&\quad \displaystyle \le C_{1}\left( \int _{\Omega ^{s}} \Theta _{n, k} \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } \,dx\right) ^{\delta }. \end{aligned}$$
(5.37)

For the second term of the right-side hand by the Hölder inequality we have

$$\begin{aligned} \int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \chi _{\left\{ T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right)>\eta \right\} } d x \le \left( \int _{\Omega ^{s}} \Theta _{n, k} \,dx\right) ^{\delta }\left( \int _{\{T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) >\eta \}} \,dx\right) ^{1-\delta }, \end{aligned}$$
(5.38)

since \(a\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right)\) is bounded in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N},\) while \(\nabla T_{k}\left( u_{n}\right)\) is bounded in \(\left( L_{\varphi }(\Omega )\right) ^{N}\) then

$$\begin{aligned} \int _{\Omega ^{s}} \Theta _{n, k}^{\delta } \chi _{\left\{ T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right)>\eta \right\} } \,dx \le C_{2} {\text {meas}}\left\{ x \in \Omega : T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) >\eta \right\} ^{1-\delta } \end{aligned}$$
(5.39)

We obtain

$$\begin{aligned}&\displaystyle \int _{\Omega ^{g}} \Theta _{n, k}^{\delta } d x \le C_{1}\left( \int _{\Omega ^{s}} \Theta _{n, k} \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } \,dx\right) ^{\delta }\nonumber \\&\quad +C_{2} {\text {meas}}\left\{ x \in \Omega : T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) >\eta \right\} ^{1-\delta } \end{aligned}$$
(5.40)

On the other hand

$$\begin{aligned}&\displaystyle \displaystyle \int _{\Omega ^{s}} \Theta _{n, k} \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } \,dx \nonumber \\&\quad \displaystyle \le \int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u) \chi _{s}\right) \Big ) \nonumber \\&\qquad \times \Big (\nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u) \chi _{s}\Big )\,dx. \end{aligned}$$
(5.41)

For each \(s,\ r\in {\mathbb {R}}^+\) with \(s>r\) one has

$$\begin{aligned}&\displaystyle 0 \le \int _{\left. \Omega ^{r}\cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right) \right\} }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \Big ) \nonumber \\&\qquad \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\right) \,dx \nonumber \\&\quad \displaystyle \le \int _{\left. \Omega ^{s} \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right) \right\} }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \Big ) \nonumber \\&\qquad \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\right) \,dx \nonumber \\&\quad \displaystyle =\int _{\Omega ^{s}\cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u) \chi _{s}\right) \Big ) \nonumber \\&\qquad \displaystyle \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u) \chi _{s}\right) \,dx \nonumber \\&\quad \displaystyle \le \int _{\left. \Omega \cap \left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right) \right\} }\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u) \chi ^{s}\right) \Big ) \nonumber \\&\qquad \displaystyle \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u) \chi ^{s}\right) \,dx \nonumber \\&\quad \displaystyle =\int _{\{0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \}}\Big (b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \Big ) \nonumber \\&\qquad \displaystyle \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \,dx \nonumber \\&\qquad \displaystyle +\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}(u) \chi ^{s}\right) \,dx \nonumber \\&\qquad \displaystyle +\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} }\left( b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u) \chi ^{s}\right) \right) \nabla T_{k}\left( u_{n}\right) \,dx \nonumber \\&\qquad \displaystyle -\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}) \,dx \nonumber \\&\qquad \displaystyle +\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u) \chi ^{s}\right) \nabla T_{k}(u) \chi ^{s}) \,dx \nonumber \\&\quad \displaystyle =I_{1}+I_{2}+I_{3}+I_{4}+I_{5}. \end{aligned}$$
(5.42)

In the sequel we pass to the limit in \(I_i\) when \(n,\ j,\ \mu ,\) and \(s \rightarrow +\infty\). We have

$$\begin{aligned}&I_{1}=\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \right) d x \\&\begin{array}{llll}&{}\displaystyle { -\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\Big (x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \Big )\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}\left( v_{j}\right) \right) d x } \\ &{}\quad \displaystyle { -\int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) d x } \end{array} \end{aligned}$$

Thanks to (5.35), the first term of the right hand side in \(I_1\), we get

$$\begin{aligned}&\displaystyle { \int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \right) d x} \\&\begin{array}{clll}&{}\displaystyle { \le C \eta +\epsilon (n, m, j, s)-\int _{\left\{ |u|>k \cap 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}(u), 0\right) \nabla T_{k}\left( v_{j}\right) \,dx } \\ &{}\quad \le C \eta +\epsilon (n, m, j). \end{array} \end{aligned}$$

Since \(b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right)\) is bounded in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N},\) there exist some \(\varpi _{k} \in\) \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N}\) such that (for a subsequence still denoted by \(u_{n}\)):

$$\begin{aligned}&b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \\&\quad \rightarrow \varpi _{k} \quad \text{ in } \quad \left( L_{\varphi }(\Omega )\right) ^{N} \quad \text{ for } \quad \sigma \left( \Pi L_{\varphi }, \Pi E_{\varphi }\right) \end{aligned}$$

By using in the fact \(\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}\left( v_{j}\right) \right) \chi _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} }\) strongly converges to \(\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}\left( v_{j}\right) \right) \chi _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} }\) in \(\left( E_{\varphi }(\Omega )\right) ^{N}\) as \(n \rightarrow +\infty\).

The second term of the right hand side of \(I_1\) tends to

$$\begin{aligned}&\displaystyle \int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\Big (x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \Big )\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}\left( v_{j}\right) \right) \,dx \\&\quad =\int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } \varpi _{k}\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}\left( v_{j}\right) \right) \,dx + \epsilon (n). \end{aligned}$$

The third term of the right-hand side tends to

$$\begin{aligned}&\displaystyle \int _{\left\{ 0 \le T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \,dx \\&\quad =\int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}(u), \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \left( \nabla T_{k}(u)-\nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}\right) \,dx+\epsilon (n), \end{aligned}$$

Letting \(j \rightarrow +\infty\) and \(\mu \rightarrow +\infty\) of \(I_1\), it possible to conclude that

$$\begin{aligned} I_{1} \le C \eta +\epsilon (n, j, s). \end{aligned}$$

Concerning \(I_{2},\) by letting \(n \rightarrow +\infty ,\) we obtain

$$\begin{aligned} I_{2} \rightarrow \int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } \varpi _{k}\left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}(u) \chi ^{s}\right) \,dx. \end{aligned}$$

Since \(b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \rightarrow \varpi _{k}\) in \(\left( L_{\overline{\varphi }}(\Omega )\right) ^{N},\) for \(\sigma \left( \Pi L_{\overline{\varphi }}, \Pi E_{\varphi }\right)\) while

$$\begin{aligned} \left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}(u) \chi ^{s}\right) \chi _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } \rightarrow \left( \nabla T_{k}\left( v_{j}\right) \chi _{j}^{s}-\nabla T_{k}(u) \chi ^{s}\right) \chi _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } \end{aligned}$$

strongly in \(\left( E_{\varphi }(\Omega )\right) ^{N}\). Now, letting \(j \rightarrow +\infty ,\) and thanks to Lebesgue’s theorem, we obtain

$$\begin{aligned}&I_{2}=\epsilon (n, j), \\&I_{3}=\epsilon (n, j), \\&\displaystyle {I_{4}=\int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x+\epsilon (n, j, s, m)}, \end{aligned}$$

and

$$\begin{aligned} \displaystyle I_{5}=\int _{\left\{ 0 \le T_{k}(u)-T_{k}\left( v_{j}\right) \le \eta \right\} } b\left( x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x+\epsilon (n, j, s, m). \end{aligned}$$

Consequently, we obtain

$$\begin{aligned} \int _{\Omega ^{s}} \Theta _{n, k} d x \le C_{1}(C \eta +\epsilon (n, \eta , m))^{\delta }+C_{2}(\epsilon (n,))^{1-\delta }. \end{aligned}$$

Which leads to

$$\begin{aligned}&\displaystyle \int _{\left\{ T_{\eta }\left( T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \ge 0\right\} \cap \Omega ^{r}} \Big [\Big (b(x,T_{k}(u_{n}), \nabla T_{k}(u_{n}))-b(x,T_{k}(u_{n}), \nabla T_{k}(u))\Big ) \nonumber \\&\quad \times (\nabla T_{k}(u_{n})-\nabla T_{k}(u))\Big ]^{\delta } \,dx=\epsilon (n). \end{aligned}$$
(5.43)

By taking \(W_{\eta }^{n,j}=T_{\eta }\left( T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) ^{-}\) and \(W_{\eta }^{j}=T_{\eta }\left( T_{k}(u)-T_{k}\left( v_{j}\right) \right) ^{-},\) then testing the approximating equation by \(\exp \left( G\left( u_{n}\right) \right) W_{\eta }^{n, j} \varrho _{m}\left( u_{n}\right) ,\) we obtain

$$\begin{aligned}&\int _{\left\{ T_{\eta }\left( T_{k}\left( u_{n}\right) -T_{k}\left( v_{j}\right) \right) \le 0\right\} \cap \Omega ^{r}}\Big [\Big (b\left( x,T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x,T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \Big ) \nonumber \\&\quad \times \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\right) \Big ]^{\delta } \,dx=\epsilon (n). \end{aligned}$$
(5.44)

Thanks to (5.43) and (5.44) we have

$$\begin{aligned} \int _{\Omega ^{r}}\Big [\left( b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) -b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}(u)\right) \right) \left( \nabla T_{k}\left( u_{n}\right) -\nabla T_{k}(u)\right) \Big ]^{\delta } \,dx=\epsilon (n) \end{aligned}$$

As a consequence, since r is arbitrary:

$$\begin{aligned} \nabla u_{n} \rightarrow \nabla u \ \text{ a.e. } \text{ in } \Omega , \end{aligned}$$
(5.45)

and for all \(k \ge 0\), we have

$$\begin{aligned}&b\left( x, T_{k}\left( u_{n}\right) , \nabla T_{k}\left( u_{n}\right) \right) \rightharpoonup b\left( x, T_{k}(u), \nabla T_{k}(u)\right) \text { weakly in }\left( L_{\psi }(\Omega )\right) ^{N}, \end{aligned}$$
(5.46)
$$\begin{aligned}&\varphi \left( x,\left| \nabla T_{k}\left( u_{n}\right) \right| \right) \rightarrow \varphi \left( x,\left| \nabla T_{k}(u)\right| \right) \text { strongly in } L^{1}(\Omega ). \end{aligned}$$
(5.47)

5.6 Renormalization identity for the solutions

We show that The limit u of the approximate solution \(u_{n}\) of (5.1) satisfies:

$$\begin{aligned} \lim _{m \rightarrow \infty } \int _{\{m \le |u| \le m+1\}} b(x, u, \nabla u) \nabla u d x=0. \end{aligned}$$
(5.48)

To this end, remark that for any \(m>0\) one has

$$\begin{aligned}&\displaystyle \int _{\left\{ m \le \left| u_{n}\right| \le m+1\right\} } b\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \,dx \displaystyle =\int _{\Omega } b\left( x, u_{n}, \nabla u_{n}\right) \left( \nabla T_{m+1}\left( u_{n}\right) -\nabla T_{m}\left( u_{n}\right) \right) \,dx \nonumber \\&\quad \displaystyle =\int _{\Omega } b\Big (x, T_{m+1}\left( u_{n}\right) , \nabla T_{m+1}\left( u_{n}\right) \Big ) \nabla T_{m+1}\left( u_{n}\right) \,dx \displaystyle \nonumber \\&\quad -\int _{\Omega } b\Big (x, T_{m}\left( u_{n}\right) , \nabla T_{m}\left( u_{n}\right) \Big ) \nabla T_{m}\left( u_{n}\right) \,dx. \end{aligned}$$
(5.49)

According to (5.46), (5.47) one is at liberty to pass to the limit as n tends to infinity for fixed m and to obtain

$$\begin{aligned}&\displaystyle \lim _{n \rightarrow \infty }\int _{\left\{ m \le \left| u_{n}\right| \le m+1\right\} } b\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \,dx \displaystyle =\int _{\Omega } b\Big (x, T_{m+1}\left( u\right) , \nabla T_{m+1}\left( u\right) \Big ) \nabla T_{m+1}\left( u\right) \,dx\nonumber \\&\quad \displaystyle -\int _{\Omega } b\Big (x, T_{m}\left( u\right) , \nabla T_{m}\left( u\right) \Big ) \nabla T_{m}\left( u\right) \,dx. \displaystyle =\int _{\{m \le |u| \le m+1\}} b(x, u, \nabla u) \nabla u \,dx \end{aligned}$$
(5.50)

Taking the limit as m tends to \(+\infty\) and using the estimate (5.21) show that u satisfies (5.48).

5.7 Passing to the limit

Let \(h \in {\mathcal {C}}_{c}^{1}({\mathbb {R}})\) and \(V \in {\mathcal {D}}(\Omega ).\) Using the admissible test function \(h\left( u_{n}\right) V\) in (5.1) leads to

$$\begin{aligned} \begin{array}{l}\displaystyle { \int _{\Omega } b\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} h^{\prime }\left( u_{n}\right) V d x+\int _{\Omega } b\left( x, u_{n}, \nabla u_{n}\right) \nabla V h\left( u_{n}\right) d x }\\ \displaystyle { \quad +\int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla \left( h\left( u_{n}\right) V\right) d x }\displaystyle { =\int _{\Omega } f_{n} h\left( u_{n}\right) V d x + \int _{\Omega } \phi \nabla \left( h\left( u_{n}\right) V\right) d x . } \end{array}\end{aligned}$$
(5.51)

We shall pass to the limit in each term in the previous equality, to this end, remark that since h and \(h^{\prime }\) have a compact support in h,  there exists \(K>0\) such that \(supp(h)\subset [-K, K].\) For n large enough, we have:

$$\begin{aligned} \begin{aligned} F_{n}(x, t) h(t)&=F_{n}\left( x, T_{n}(t)\right) h(t)=F\left( x, T_{K}(t)\right) h(t) \\ F_{n}(x, t) h^{\prime }(t)&=F_{n}\left( x, T_{n}(t)\right) h^{\prime }(t)=F\left( x, T_{K}(t)\right) h^{\prime }(t) \end{aligned} \end{aligned}$$

Let us start by the third integral of the left-hand side and the right hand-side of (5.51). Since \(h \in C _{c}^{1}({\mathbb {R}})\) and \(V \in {\mathcal {D}}(\Omega ),\) then there exists two positive constants \(c_{1}\) and \(c_{1}^{\prime }\) such that \(\left\| h\left( T_{K}\left( u_{n}\right) \right) \nabla V\right\| _{\infty } \le c_{1}\) and \(\left\| h^{\prime }(t)\left( T_{K}\left( u_{n}\right) V \nabla T_{K}\left( u_{n}\right) \Vert _{\infty } \le c_{1}^{\prime }\right. \right.\) Now since \(T_{K}\left( u_{n}\right)\) is bounded in \(W_{0}^{1} L_{\varphi }(\Omega ),\) then there exists two positive constant \(\lambda _{0}\) and \(\lambda\) such that \(\displaystyle {\int _{\Omega } \varphi \left( x,\frac{\left| \nabla T_{K}\left( u_{n}\right) \right| }{\lambda }\right) d x }\le \lambda _{0} .\) Using the convexity and monotonicity of \(\varphi ,\) for \(\eta\) large enough, we can write

$$\begin{aligned} \begin{array}{lllll} &{}\displaystyle { \int _{\Omega } \varphi \left( x,\frac{\nabla \left( h\left( T_{K}\left( u_{n}\right) \right) V\right) }{\eta }\right) d x }\\ &{}\quad \displaystyle { =\int _{\Omega } \varphi \left( x,\frac{h\left( T_{K}\left( u_{n}\right) \right) \nabla V+h^{\prime }(t)\left( T_{K}\left( u_{n}\right) V\left| \nabla T_{K}\left( u_{n}\right) \right| \right. }{\eta }\right) d x} \\ &{}\quad \displaystyle \le \int _{\Omega } \varphi \left( x,{ c_{1}+{c_{1}^{\prime } \lambda {\left| \nabla T_{K}(u_{n})\right| \over \lambda }} \over \eta }\right) \,dx \\ &{}\quad \displaystyle { \le \int _{\Omega } \varphi \left( x,\frac{c_{1}}{\eta }\right) \,dx+\frac{c_{1}^{\prime } \lambda }{\eta } \int _{\Omega } \varphi \left( x,\frac{\left| \nabla T_{K}\left( u_{n}\right) \right| }{\lambda }\right) \,dx} \\ &{}\quad \displaystyle { \le C_{\eta , c_{1}}+\frac{c_{1}^{\prime } \lambda \lambda _{0}}{\eta } \quad \text{ where } C_{\eta , c_{1}}=\int _{\Omega } \varphi \left( x,\frac{c_{1}}{\eta }\right) d x<\infty }. \end{array} \end{aligned}$$

Then the sequence \(\left\{ \nabla \left( h\left( T_{K}\left( u_{n}\right) \right) V\right) \right\}\) is bounded in \(\left( L_{\varphi }(\Omega )\right) ^{N},\) as a consequence, we deduce

$$\begin{aligned} h\left( u_{n}\right) V \rightharpoonup h(u) V \text { weakly in } W_{0}^{1} L_{\varphi }(\Omega )\text { for } \sigma \left( \Pi L_{\varphi }, \Pi E_{\psi }\right) . \end{aligned}$$
(5.52)

Moreover, since \(F\left( x, T_{K}\left( u_{n}\right) \right)\) is bounded in \(L_{\psi }(\Omega ),\) we have from Lemma 3.10

$$\begin{aligned} F\left( x, T_{K}\left( u_{n}\right) \right) \rightarrow F\left( x, T_{K}(u)\right) \quad \text{ strongly } \text{ in } E_{\psi }(\Omega ). \end{aligned}$$

By (5.52), we get

$$\begin{aligned} \lim _{n \rightarrow \infty } \int _{\Omega } F_{n}\left( x, u_{n}\right) \nabla \left( h\left( u_{n}\right) V\right) d x=\int _{\Omega } F\left( x, T_{K}(u)\right) \nabla (h(u) V) d x. \end{aligned}$$

Moreover we have

$$\begin{aligned} \lim _{n \rightarrow \infty } \int _{\Omega } f_{n} h\left( u_{n}\right) V d x=\int _{\Omega } f h(u) V d x, \\\lim _{n \rightarrow \infty } \int _{\Omega } \phi \nabla h\left( u_{n}\right) V d x = \int _{\Omega } \phi \nabla h(u)V d x .\end{aligned}$$

Concerning the first integral of (5.51), while supp \(h^{\prime } \subset [-K, K],\) we obtain

$$\begin{aligned} h^{\prime }\left( u_{n}\right) V b\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} =h^{\prime }\left( u_{n}\right) V b\left( x, T_{K}\left( u_{n}\right) , \nabla T_{K}\left( u_{n}\right) \right) \nabla T_{K}\left( u_{n}\right) \quad \text{ a.e. } \text{ in } \Omega . \end{aligned}$$

The pointwise convergence of \(u_{n}\) to u, the bounded character of \(h'V\), (5.46) and (5.47) imply that

$$\begin{aligned} h^{\prime }\left( u_{n}\right) V b\left( x, u_{n}, \nabla u_{n}\right) \nabla u_{n} \rightharpoonup h^{\prime }(u) V b\left( x, T_{K}(u), \nabla T_{K}(u)\right) \nabla T_{K}(u) \text { weakly in } L^{1}(\Omega ). \end{aligned}$$

The term \(h^{\prime }(u) V b\left( x, T_{K}(u), \nabla T_{K}(u)\right) \nabla T_{K}(u)\) is identified with \(h^{\prime }(u) V b\left( x, u, \nabla u\right) \nabla u\).

Now since \(h\left( u_{n}\right) V b\left( x, u_{n}, \nabla u_{n}\right) =h\left( u_{n}\right) V b\left( x, T_{K}\left( u_{n}\right) , \nabla T_{K}\left( u_{n}\right) \right)\) a.e. in \(\Omega\), and using the strongly convergence of \(h\left( u_{n}\right) \nabla V\) to \(h(u) \nabla V\) in \(\left( E_{\varphi }(\Omega )\right) ^{N},\) and using the weakly convergence of \(b\left( x, T_{K}\left( u_{n}\right) , \nabla T_{K}\left( u_{n}\right) \right)\) to \(b\left( x, T_{K}(u), \nabla T_{K}(u)\right)\) in \(\left( L_{\psi }(\Omega )\right) ^{N}\) for \(\sigma \left( \Pi L_{\psi }, \Pi E_{\varphi }\right) ,\) then

$$\begin{aligned} \displaystyle \lim _{n \rightarrow \infty } \int _{\Omega } b\left( x, u_{n}, \nabla u_{n}\right) \nabla V h\left( u_{n}\right) d x=\int _{\Omega } b(x, u, \nabla u) \nabla V h(u) \,dx. \end{aligned}$$

As a consequence of the above convergence results, we are in a position to pass to the limit as n tends to \(+\infty\) in (5.51) and to conclude that u satisfies (4.3). As a conclusion of Step 5.1 to Step 5.7, the proof of Theorem 4.1 is complete.

Remark 6

  1. (1)

    It is possible to extend this result to the following parabolic equation

    $$\begin{aligned} {\left\{ \begin{array}{ll}\frac{\partial u}{\partial t}-{\text {div}}(a(x, t, u, \nabla u))+ F(x, t, u)=\mu &{} \text{ in } \Omega \times (0, T), \\ u=0 &{} \text{ on } \partial \Omega \times (0, T), \\ u(x, 0)=u_0(x) &{} \text{ in } \Omega .\end{array}\right. } \end{aligned}$$

    where \(\Omega\) is a bounded open subset of \({\mathbb {R}}^N, N \ge 1, T>0\) and \(Q_T\) is the cylinder \(\Omega \times (0, T)\). The operator \(A(u)=-{\text {div}}(a(x, t, u, \nabla u))\) is a Leray-Lions operator lefined in \(W_0^{1, x} L_\varphi \left( Q_T\right)\). The lower order term F verifies the natural growth condition, no \(\Delta _{2}\)-condition is assumed on the Musielak function, and the datum \(\mu\) is assumed to belong to \(L^{1}(Q_T)+W^{-1} E_{\psi }(Q_T)\).

  2. (2)

    In the case of \(F\equiv 0,\) the problem (1.1) admits a unique solution.