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Abstract
We study the existence of solutions for some nonlinear elliptic problems of the 
type −div(b(x, u,∇u) + F(x, u)) = � in Ω, in the setting of Musielak–Orlicz spaces. 
The lower order term F verifies the natural growth condition, no Δ2-condition is 
assumed on the Musielak function, and the datum � is assumed to belong to 
L1(Ω) +W−1E

�
(Ω).
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1 3

1 � Introduction and basic assumptions

In this note we will prove an existence of a renormalized solutions for the follow-
ing nonlinear boundary value problem :

where Ω is a bounded domain of ℝN ,N ≥ 2, B(u) = −div(b(x, u,∇u)) is a Leray-
Lions operator defined from the space W1

0
L
�
(Ω) into its dual W−1L

�
(Ω), with � and 

� are two complementary Musielak-Orlicz functions and where b is a function satis-
fying the following conditions:

There exist two Musielak-Orlicz functions � and P such that P ≺≺ 𝜑, a positive 
function d(x) ∈ E

𝜑
(Ω), 𝛼 > 0 and ki > 0 for i = 1,⋯ , 4 , such that for a.e. x ∈ Ω and 

all s ∈ ℝ and all �, �� ∈ ℝN , � ≠ �
�:

The lower order term F is a Carathéodory function satisfying, for a.e. x ∈ Ω and for 
all s ∈ ℝ, the following condition:

where c(.) ∈ L∞(Ω) such that

The right hand side of (1.1) is assumed to satisfy

In the usual Sobolev spaces, the concept of renormalized solutions was introduced 
by Diperna and Lions in [22] for the study of the Boltzmann equations, this notion 
of solutions was then adapted to the study of the problem (1.1) by Boccardo et al. in 
[21] when the right hand side is in W−1,p� (Ω) and in the case where the nonlinearity 
g depends only on x and u,  this work was then studied by Rakotoson in [31] when 

(1.1)

{
B(u) − div

(
F(x, u)

)
= � in Ω

u = 0 on �Ω,

(1.2)b ∶ Ω ×ℝ ×ℝ
N
⟶ ℝ

N is a Carath éodory function.

(1.3)|b(x, s, �)| ≤k1
(
d(x) + �

−1

x

(
P
(
x, k2|s|

))
+ �

−1

x

(
�

(
x, k3|�|

)))

(1.4)
(
b(x, s, 𝜉) − b

(
x, s, 𝜉�

))(
𝜉 − 𝜉

�
)
>0,

(1.5)b(x, s, �).� ≥��(x, |�|).

(1.6)|F(x, s)| ≤ c(x)�
−1

x
�(x, �0|s|),

(1.7)‖c(.)‖L∞ ≤ min

�
𝛼

𝛼0 + 1
;

𝛼

2
�
𝛼0 + 1

�
�

and 0 < 𝛼0 < 1.

(1.8)
� ∈ L1(Ω) +W−1E

�
(Ω) ∶ � = f − div(�) with f ∈ L1(Ω) and � ∈

(
E
�
(Ω)

)N
.
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the right hand side is in L1(Ω), and finally by DalMaso et al. in [23] for the case in 
which the right hand side is general measure data.

On Orlicz-Sobolev spaces and in variational case, Benkirane and Bennouna have 
studied in [8] the problem (1.1) where Φ(x, u) ≡ Φ(u), and the nonlinearity g depends 
only on x and u under the restriction that the N-function satisfies the Δ2-condition, this 
work was then extended in [4] by Aharouch, Bennouna and Touzani for N-function 
not satisfying necessarily the Δ2-condition and Φ(x, u) ≡ Φ(u) . If g depends also on 
∇u, the problem (1.1) has been solved by Aissaoui Fqayeh, Benkirane, El Moumni and 
Youssfi in [5] where Φ(x, u) ≡ Φ(u) , and without assuming the Δ2-condition on the 
N-function.

In the framework of variable exponent Sobolev spaces, Bendahmane 
and Wittbold have treated in [7] the nonlinear elliptic equation (1.1) where 
a(x, u,∇u) = |∇u|p(x)−2∇u, Φ ≡ 0, g ≡ 0 and where f ∈ L1(Ω) , they proved the 
existence and uniqueness of a renormalized solution in Sobolev space with variable 
exponents W1,p(x)

0
(Ω).

In the variational case of Musielak-Orlicz spaces and in the case where g ≡ 0 and 
Φ ≡ 0, an existence result for (1.1) has been proved by Benkirane and Sidi El Vally in 
[10] a when the non-linearity g depends only on x and u. If g depends also on ∇u, the 
problem (1.1) has recently been solved by N. El Amarty, B. El Haji and M. El Moumni 
in [18] where Φ(x, u) ≡ Φ(u).

and several researches deals with the existence solutions of elliptic and parabolic 
problems under various assumptions and in different contexts (see [6, 11–16, 18–20] 
for more details).

The paper is organized as follows: In Sect. 2, we give some preliminaries and back-
ground. Section 3 is devoted to some technical lemmas which can be used to our result. 
In Sect. 4, we state our main result and in Sect. 5 we give the proof of an existence 
solution .

2 � Some preliminaries and background

Here we give some definitions and properties that concern Musielak-Orlicz spaces (see 
[17]). Let Ω be an open subset of ℝN , a Musielak-Orlicz function � is a real-valued 
function defined in Ω ×ℝ+ such that

a) �(x, .) is an N-function for all x ∈ Ω (i.e. convex, nondecreasing, continuous, 
𝜑(x, 0) = 0, 𝜑(x, t) > 0 for all t > 0 and lim

t→0
sup
x∈Ω

�(x, t)

t
= 0 and lim

t→∞
inf
x∈Ω

�(x, t)

t
= ∞).

b) �(., t) is a measurable function for all t ≥ 0.
For a Musielak–Orlicz function � , let �x(t) = �(x, t) and let �−1

x
 be the nonnegative 

reciprocal function with respect to t,  i.e. the function that satisfies

The Musielak–Orlicz function � is said to satisfy the Δ2 -condition if for some k > 0, 
and a nonnegative function h,  integrable in Ω, we have

�
−1
x
(�(x, t)) = �

(
x,�−1

x
(t)
)
= t.
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When (2.1) holds only for t ≥ t0 > 0, then � is said to satisfy the Δ2-condition near 
infinity. Let � and � be two Musielak–Orlicz functions, we say that � dominate � and 
we write 𝛾 ≺ 𝜑, near infinity (resp. globally) if there exist two positive constants c 
and t0 such that for a.e. x ∈ Ω ∶

We say that � grows essentially less rapidly than � at 0 (resp. near infinity) and we 
write 𝛾 ≺≺ 𝜑 if for every positive constant c we have

Remark 1  (see [33]) If 𝛾 ≺≺ 𝜑 near infinity, then ∀𝜀 > 0 there exists a nonnegative 
integrable function h,  such that

For a Musielak-Orlicz function � and a measurable function u ∶ Ω ⟶ ℝ, we 
define the functional

The set K
𝜑
(Ω) =

{
u ∶ Ω ⟶ ℝ measurable/ 𝜌

𝜑,Ω(u) < ∞

}
 is called the Musielak-

Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (the general-
ized Orlicz spaces) L

�
(Ω) is the vector space generated by K

�
(Ω), that is, L

�
(Ω) is 

the smallest linear space containing the set K
�
(Ω). Equivalently

For a Musielak-Orlicz function � we put:

Note that � is the Musielak-Orlicz function complementary to � (or conjugate of � ) 
in the sense of Young with respect to the variable s. In the space L

�
(Ω) we define the 

following two norms:

which is called the Luxemburg norm and the so-called Orlicz norm by:

(2.1)�(x, 2t) ≤ k�(x, t) + h(x) for all x ∈ Ω and t ≥ 0.

�(x, t) ≤ �(x, ct) for all t ≥ t0, (resp. for all t ≥ 0 i.e. t0 = 0).

lim
t→0

(
sup
x∈Ω

�(x, ct)

�(x, t)

)
= 0, (resp. lim

t→∞

(
sup
x∈Ω

�(x, ct)

�(x, t)

)
= 0).

(2.2)�(x, t) ≤ �(x, �t) + h(x) for all t ≥ 0 and for a.e. x ∈ Ω.

�
�,Ω(u) = ∫

Ω

�(x, |u(x)|) dx.

L
𝜑
(Ω) =

{
u ∶ Ω ⟶ ℝ measurable/ 𝜌

𝜑,Ω

(
u

𝜆

)
< ∞, for some 𝜆 > 0

}

𝜑(x, s) = sup
t>0

{st − 𝜑(x, t)},

‖u‖
𝜑,Ω = inf

�
𝜆 > 0∕�

Ω

𝜑

�
x,
�u(x)�
𝜆

�
dx ≤ 1

�
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where � is the Musielak-Orlicz function complementary to �. These two norms 
are equivalent (see [17]). The closure in L

�
(Ω) of the bounded measurable func-

tions with compact support in Ω is denoted by E
�
(Ω) , It is a separable space (see 

[17], Theorem 7.10).
We say that sequence of functions un ∈ L

�
(Ω) is modular convergent to u ∈ 

L
�
(Ω) if there exists a constant 𝜆 > 0 such that

For any fixed nonnegative integer m we define

and

where � =
(
�1,… , �n

)
 with nonnegative integers �i, |�| = ||�1|| +…+ ||�n|| and D�u 

denote the distributional derivatives. The space WmL
�
(Ω) is called the Musielak-

Orlicz Sobolev space. Let for u ∈ WmL
�
(Ω) ∶

these functionals are a convex modular and a norm on WmL
�
(Ω), respectively, and 

the pair 
�
WmL

�
(Ω), ‖.‖m

�,Ω

�
 is a Banach space if � satisfies the following condition 

(see [17]):

The space WmL
�
(Ω) will always be identified to a subspace of the product ∏

|�|≤m
L
�
(Ω) = ΠL

�
, this subspace is �

(
ΠL

�
,ΠE

�

)
 closed.

The space Wm
0
L
�
(Ω) is defined as the �

(
ΠL

�
,ΠE

�

)
 closure of D(Ω) in 

WmL
�
(Ω), and the space Wm

0
E
�
(Ω) as the closure of the Schwartz space D(Ω) in 

WmL
�
(Ω).

Let Wm
0
L
�
(Ω) be the �

(
ΠL

�
,ΠE

�

)
 closure of D(Ω) in WmL

�
(Ω). The following 

spaces of distributions will also be used:

and

‖�u�‖
�,Ω = sup

‖v‖
�
≤1�Ω

�u(x)v(x)� dx

lim
n→∞

�
�,Ω

(un − u

�

)
= 0.

WmL
�
(Ω) =

{
u ∈ L

�
(Ω)∕ ∀|�| ≤ m,D�u ∈ L

�
(Ω)

}

WmE
�
(Ω) =

{
u ∈ E

�
(Ω)∕ ∀|�| ≤ m,D�u ∈ E

�
(Ω)

}

𝜌
𝜑,Ω(u) =

�
�𝛼�≤m

𝜌
𝜑,Ω(D

𝛼u) and ‖u‖m
𝜑,Ω

= inf
�
𝜆 > 0∕ 𝜌

𝜑,Ω

�
u

𝜆

� ≤ 1
�

(2.3)There exist a constant c0 > 0 such that inf
x∈Ω

𝜑(x, 1) ≥ c0.

W−mL
�
(Ω) =

{
f ∈ D

�(Ω)∕ f =
∑
|�|≤m

(−1)|�|D�f
�
with f

�
∈ L

�
(Ω)

}
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We say that a sequence of functions un ∈ WmL
�
(Ω) is modular convergent to 

u ∈ WmL
�
(Ω) if there exists a constant k > 0 such that

We recall that

For � and her complementary function �, the following inequality is called the 
Young inequality (see [17]):

This inequality implies that

In L
�
(Ω) we have the relation between the norm and the modular

and

For two complementary Musielak-Orlicz functions � and �, let u ∈ L
�
(Ω) and 

v ∈ L
�
(Ω), then we have the Hölder inequality (see [17]):

3 � Some technical lemmas

This section concern some technical lemmas that will be used in our main result.

Definition 3.1  We say that a Musielak function � verifies the log-Hölder continuity 
hypothesis on Ω if there exists A > 0 such that

W−mE
�
(Ω) =

{
f ∈ D

�(Ω)∕ f =
∑
|�|≤m

(−1)|�|D�f
�
with f

�
∈ E

�
(Ω)

}
.

lim
n→∞

�
�,Ω

(un − u

k

)
= 0.

(2.4)�(x, t) ≤ t�
−1
(�(x, t)) ≤ 2�(x, t) for all t ≥ 0.

(2.5)ts ≤ �(x, t) + �(x, s), ∀t, s ≥ 0, a.e. x ∈ Ω.

(2.6)‖u‖
�,Ω ≤ �

�,Ω(u) + 1

(2.7)‖u‖
𝜑,Ω ≤ 𝜌

𝜑,Ω(u) if ‖u‖
𝜑,Ω > 1

(2.8)‖u‖
�,Ω ≥ �

�,Ω(u) if ‖u‖
�,Ω ≤ 1

(2.9)
�����Ω

u(x)v(x) dx
���� ≤ ‖u‖

�,Ω‖�v�‖�,Ω.

�(x, t)

�(y, t)
≤ t

⎛⎜⎜⎜⎝
A

log
�

1

�x−y�
�
⎞⎟⎟⎟⎠
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∀t ≥ 1 and ∀x, y ∈ Ω with |x − y| ≤ 1

2

Lemma 3.1  [2] Let Ω be a bounded Lipschitz domain in ℝN(N ≥ 2) and let � be a 
Musielak function verifying the log-Hölder continuity such that

Then �(Ω) is dense in L
�
(Ω) and in W1

0
L
�
(Ω) for the modular convergence.

Remark 2  Note that if limt→∞ infx∈Ω
�(x,t)

t
= ∞, then (3.1) holds (see [2]).

Example 3.1  Let p ∈ P(Ω) a bounded variable exponent on Ω, such that there exists 
a constant A > 0 such that for all points x, y ∈ Ω with |x − y| < 1

2
, we have the 

inequality

We can show that the Musielak function defined by �(x, t) = tp(x) log(1 + t) satisfies 
the hypothesis of Lemma 3.1.

Proof  (see [2]). 	�  ◻

Lemma 3.2  [2] (Poincare’s inequality: Integral form) Let Ω be a bounded Lipschitz 
domain of RN(N ≥ 2) and let � be a Musielak function satisfying the hypothesis of 
Lemma 3.1. Then there exists 𝛽, 𝜂 > 0 and 𝜆 > 0 depending only on Ω and � such 
that

	�  ◻

Corollary 3.3  [2] (Poincare’s inequality) Let Ω be a bounded Lipchitz domain 
of ℝN(N ≥ 2) and let � be a Musielak function satisfying the same hypothesis of 
Lemma 3.2. Then there exists C > 0 such that

Lemma 3.4  ( [30]) Let F ∶ ℝ ⟶ ℝ be uniformly Lipschitzian, with F(0) = 0. Let � 
be a Musielak-Orlicz function and let u ∈ W1

0
L
�
(Ω). Then F(u) ∈ W1

0
L
�
(Ω).

Hawever, if the set D of discontinuity points of F′ is finite, we obtain

(3.1)𝜑̄(x, 1) ≤ c1 a.e in Ω for some c1 > 0

|p(x) − p(y)| ≤ A

log
(

1

|x−y|
)

(3.2)�
Ω

�(x, |v|)dx ≤ � + � �
Ω

�(x, �|∇v|)dx for all v ∈ W1
0
L
�
(Ω).

‖v‖
�
≤ C‖∇v‖

�
∀v ∈ W1

0
L
�
(Ω).

�F(u)

�xi
=

{
F�(u)

�u

�xi
a.e. in {x ∈ Ω ∶ u(x) ∈ D}

0 a.e. in {x ∈ Ω ∶ u(x) ∉ D}.
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Lemma 3.5  [1] (Poincare’s inequality). Let � a Musielak-Orlicz function which sat-
isfies the hypothesis of Lemma 3.1, let �(x, t) decreases with respect of one of coor-
dinate of x, then, that exists c > 0 depends only of Ω such that

Lemma 3.6  [9] Let Ω satisfies the segment property and suppose that u ∈ W1
0
L
�
(Ω). 

Then, there exists a sequence 
(
un
)
⊂ D(Ω) such that

In addition to this, if u ∈ W1
0
L
�
(Ω) ∩ L∞(Ω) then ��un��∞ ≤ (N + 1)‖u‖∞.

Lemma 3.7  Suppose that 
(
gn
)
, g ∈ L1(Ω) such that

(i) gn ≥ 0 a.e in Ω,

(ii) gn ⟶ g a.e in Ω,

(iii) ∫
Ω

gn(x) dx ⟶ ∫
Ω

g(x) dx.

Then gn ⟶ g strongly in L1(Ω).

Lemma 3.8  [10] If a sequence hn ∈ L
�
(Ω) converges in measure to a measurable 

function h and if hn remains bounded in L
�
(Ω), then h ∈ L

�
(Ω) and hn ⇀ h for 

�

(
ΠL

�
,ΠE

�

)
.

Lemma 3.9  [10] Let vn, v ∈ L
�
(Ω). If vn → v with respect to the modular conver-

gence, then vn → v for �
(
L
�
(Ω), L

�
(Ω)

)
.

Lemma 3.10  [25] If 𝛾 ≺ 𝜑 and un → u for the modular convergence in L
�
(Ω) then 

un → u strongly in E
�
(Ω).

Lemma 3.11  (The Nemytskii Operator). Suppose that Ω be an open subset of ℝN 
with finite measure and let � and � be two Musielak Orlicz functions. Suppose that 
g ∶ Ω ×ℝp

⟶ ℝq be a Carathéodory function such that for a.e. x ∈ Ω and all 
s ∈ ℝp ∶

where k1 and k2 are real positives constants and c(.) ∈ E
�
(Ω) . Then the Nemytskii 

Operator Ng defined by Ng(u)(x) = g(x, u(x)) is continuous from

�
Ω

�(x, |v|) dx ≤ �
Ω

�(x, c|∇v|) dx ∀u ∈ W1
0
L
�
(Ω).

un → u for modular convergence in W1
0
L
�
(Ω).

|g(x, s)| ≤ c(x) + k1�
−1
x
�

(
x, k2|s|

)

P

(
EM(Ω),

1

k2

)p

=
∏{

u ∈ LM(Ω) ∶ d
(
u,EM(Ω)

)
<

1

k2

}
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into 
(
L
�
(Ω)

)q for the modular convergence. However if c(⋅) ∈ E
�
(Ω) and 𝛾 ≺≺ 𝜓 

then Ng is strongly continuous from P
(
EM(Ω),

1

k2

)p

 to 
(
E
�
(Ω)

)q.

4 � Main result

We now give the definition of a renormalized solution of (1.1).

Definition 4.1  A measurable function u ∶ Ω → ℝ is called a renormalized solution 
of (1.1) if:

and for every function h ∈ C1
c
(ℝ) such that

Remark 3  Every term in equation (4.3) is meaningful in the distributional sense. 
Indeed, for h ∈ C1

c
(ℝ) and u ∈ W1

0
L
�
(Ω), then h(u) ∈ W1L

�
(Ω) and for V in D(Ω) 

the function Vh(u) ∈ W1
0
L
�
(Ω). Since div

(
b(x, u,∇u)

)
∈ W−1L

�
(Ω), we have for 

every V ∈ D(Ω):

F i n a l l y , 
F(x, u)h(u) ∈ (L∞(Ω))N , F(x, u)h�(u) ∈ (L∞(Ω))N , div

(
F(x, u)h(u)

)
∈ W−1L

�
(Ω) 

and F(x, u)h�(u)∇u ∈ L
�
(Ω).

Our main result is the following

Theorem  4.1  Under assumptions (1.2)-(1.8) there exists at least a renormalized 
solution of Problem (1.1).

Remark 4  Actually the original equation (1.1) will be recovered whenever h(u) ≡ 1 
but unfortunately this cannot happen in general strong additional requirements on u. 
Therefore, (4.3) is to be viewed as a weaker form of (1.1).

Remark 5  Generalized Orlicz spaces (Musielak-Orlicz-sobolev spaces), Orlicz spaces 
and Lp(⋅)-spaces have different nature, and neither of them is a subset of the other.

(4.1)Tk(u) ∈ W1
0
L
�
(Ω) and b(x, u,∇u) ∈

(
L
�
(Ω)

)N
,

(4.2)lim
m→+∞�

{x∈Ω∶ m≤|u(x)|≤m+1}
b(x, u,∇u)∇u dx = 0,

(4.3)−div
(
b(x, u,∇u)h(u)

)
− div

(
F(x, u)h(u)

)
+ h�(u)F(x, u)∇u

= fh(u) − div(�h(u)) + h�(u)�∇u in D
�(Ω).

⟨
div

(
b(x, u,∇u)

)
h(u) ; V

⟩
D

�(Ω),D(Ω)
=

⟨
div

(
b(x, u,∇u)

)
; Vh(u)

⟩
W−1L

�
(Ω),W1

0
L
�
(Ω)
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Let us list some techniques from the classical case which do not work in Lp(⋅)− 
spaces and some additional ones that do not work in the generalized Orlicz case. 
Orlicz spaces are similar to Lp-spaces in many regards, but some differences exist.

–	 Exponents cannot be moved outside the Φ-function, i.e. �(t� ) ≠ �(t)� in general.
–	 The formula �−1

(∫
Ω
�(|f |)dx) does not define a norm. Techniques which do not 

work in Lp(⋅)-spaces (from [24], pp. 9–10]):
–	 The space Lp(⋅) is not rearrangement invariant; the translation operator Th : 

Lp(⋅) → Lp(⋅), Thf (x) ∶= f (x + h) is not bounded; Young’s convolution inequality 
‖f ∗ g‖p(⋅) ⩽ c‖f‖1‖g‖p(⋅) does not hold [24], Section 3.6].

–	 The formula 

 has no variable exponent analogue.
–	 Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular form. For 

instance, A. Lerner showed that the inequality 

 holds if and only if p ∈ (1,∞) is constant [29], Theorem 1.1]. For the Poincaré 
inequality see [24], Example 8.2.7] and the discussion after it.

–	 Interpolation is not so useful, since variable exponent spaces never result as an 
interpolant of constant exponent spaces (see Sect. 5.5).

–	 Solutions of the p(⋅)-Laplace equation are not scalable, i.e. �u need not be a solution 
even if u is [24], Example 13.1.9]. New obstructions in generalized Orlicz spaces:

–	 We cannot estimate 𝜑(x, t) ≲ 𝜑(y, t)1+𝜀 + 1 even when |x − y| is small, because of 
lack of polynomial growth. This complicates e.g. the use of higher integrability in 
PDE proofs.

–	 It is not always the case that �E ∈ L�(Ω) when |E| < ∞.

5 � Proof of Theorem 4.1

Throughout the paper, Tk denotes the truncation function at height k ≥ 0 ∶

5.1 � Approximate problem

For n ∈ ℕ∗, let define the following approximations of f  and Φ. Let fn be a 
sequence of L∞(Ω) functions that converge strongly to f in L1(Ω), and ‖‖fn‖‖L1 ≤ 
‖f‖L1 . Let Fn(x, s) = F

(
x, Tn(s)

)
 . Then we consider the approximate Eq. (1.1) for 

n ≥ 1 ∶ un ∈ W1
0
L
�
(Ω)

∫
Ω

|f (x)|pdx = p∫
∞

0

tp−1|{x ∈ Ω ∶ |f (x)| > t}|dt

∫
ℝn

|Mf |p(x)dx ⩽ c∫
ℝn

|f |p(x)dx

Tk(s) = max(−k, min(k, s))
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there exists at last one solution un ∈ W1
0
L
�
(Ω) of (5.1) (see [26]).

5.2 � A priori estimates

Choosing Tk(un) as a test function in (5.1), we get

By (1.6), Lemma 3.5 and Young inequality, we obtain:

Recall that

return to (5.2) and using (5.3) and (5.4) we get

by using (1.5) we get

thus

(5.1)−div
(
b
(
x, un,∇un

))
+ div

(
Fn

(
x, un

))
= fn − div(�) inD�(Ω).

(5.2)
�
Ω

bn(x, un,∇un)∇Tk
(
un
)
dx + �

Ω

Fn(x, un)∇Tk
(
un
)
dx

≤ k‖‖fn‖‖L1(Ω) + �
Ω

�∇Tk(un) dx.

(5.3)

�
Ω

Fn(x, un)∇Tk
�
un
�
dx

≤ ‖c(.)‖L∞(Ω)

�
�0 �

Ω

�

�
x, un

�
Tk
�
un
�
dx + �

Ω

�

�
x, ��∇un��

�
Tk
�
un
�
dx

�
.

≤ ‖c(.)‖L∞
�
�0 + 1

�
�Q

�

�

�
x,
���∇Tk

�
un
����
�
dxdt.

(5.4)�
Ω

�∇Tk
(
un
)
dx ≤ �

2 �
Ω

�

(
x, ||∇Tk(un)||

)
dx + c(Ω,N, �,�).

(5.5)�
Ω

bn
�
x, un,∇un

�
∇Tk

�
un
�
dxdt ≤ k��fn��L1(Ω) +

�
‖c(.)‖L∞

�
�0 + 1

�
+

�

2

�

∫
Ω
�

�
x,
���∇Tk

�
un
����
�
dxdt

�
Ω

bn
�
x, un,∇un

�
∇Tk

�
un
�
dxdt ≤

�
‖c(.)‖L∞

�
�0 + 1

�
+

�

2

�

�

�
Ω

bn
�
x, un,∇un

�
∇Tk

�
un
�
dxdt + k��fn��L1(Ω),

�
1

2
−

�‖c(.)‖L∞
�
�0 + 1

��
�

�
�
Ω

b
�
x, un,∇un

�
∇
�
Tk
�
un
��

dx ≤ kc1,
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We take 1
c2

=

�
1

2
−

�‖c(.)‖L∞
�
�0 + 1

��
�

�
. Then we deduce that

By (1.7) we have c2 > 0 where C = c1c2. And by (1.5) we have

So it follows that 
(
Tk
(
un
))

n
is bounded in W1

0
L
�
(Ω), then there exists some 

vk ∈ W1
0
L
�
(Ω) such that

On the other hand, using (5.6), we have

Then

for all n ≥ 1 and for all k ≥ 1 . Assuming that there exists a positive function � such 
that lim

t→∞

�(t)

t
= +∞ and �(t) ≤ ess infx∈Ω �(x, t), ∀t ≥ 0. Thus, we get

Let 𝜂 > 0 and 𝜖 > 0 then

then, by using (5.7) one suppose that 
(
Tk
(
un
))

n
 is a Cauchy sequence in measure in 

Ω , Let 𝜀 > 0, then by (5.8) there exists some k = k(𝜀) > 0 such that

which means that 
(
un
)
n
 is a Cauchy sequence in measure in Ω, thus converge almost 

every where to u. Consequently

(5.6)�
Ω

�

(
x,
|||∇Tk

(
un
)|||
)
dx ≤ kC.

(5.7)

{
Tk
(
un
)
⇀ vk weakly inW1

0
L
�
(Ω) for �

(
ΠL

�
,ΠE

�

)

Tk
(
un
)
⟶ vk strongly in E

�
(Ω).

inf
x∈Ω

𝜑

�
x,

k

𝛿

�
meas

���un�� > k
� ≤ �{�un�>k} 𝜑

⎛
⎜⎜⎝
x,

���Tk
�
un
����

𝛿

⎞
⎟⎟⎠
dx

≤ �
Ω

𝜑

�
x,
���∇Tk

�
un
����
�
dx ≤ kC.

meas
{||un|| > k

} ≤ kC

infx∈Ω 𝜑

(
x,

k

𝛿

)

(5.8)lim
k→∞

meas
{||un|| > k

}
= 0.

meas
{||un − u

m
|| > 𝜂

} ≤ meas
{||un|| > k

}
+meas

{||um|| > k
}
+meas

{|||Tk
(
u
n

)
− T

k

(
u
m

)||| > 𝜂

}

meas
{||un − um

|| > 𝜂

}
< 𝜀, for all n, m ≥ h0(k(𝜀), 𝜂),

(5.9)

{
un ⇀ u weakly inW1

0
L
�
(Ω) for �

(
ΠL

�
,ΠE

�

)

un ⟶ u strongly in E
�
(Ω).
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5.3 � Boundedness of 
(
b
(
x, un,∇un

))
n
 in 

(
L
'
(Ä)

)N

Let � ∈
(
E
�
(Ω)

)N such that
‖�‖

�,Ω = 1, we have

This implies that

By using Young’s inequality in the last two terms of the last side and (5.6) we get

Now, by using (1.3) and the convexity of � we get

Thanks to Remark 1 there exists h ∈ L1(Ω) such that

then by integrating over Ω we deduce that

�
Ω

[
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b

(
x, Tk

(
un
)
,
�

k3

)][
∇Tk

(
un
)
−

�

k3

]
dx ≥ 0.

(5.10)

�
Ω

1

k3
b
(
x, Tk

(
un
)
,∇Tk

(
un
))
� dx

≤ �
Ω

b
(
x, Tk

(
un
)
,∇Tk

(
un
))
∇Tk

(
un
)
dx − �

Ω

b

(
x, Tk

(
un
)
,
�

k3

)(
∇Tk

(
un
)
−

�

k3

)
dx

≤ kC1 + C2 − �
Ω

b

(
x, Tk

(
un
)
,
�

k3

)
∇Tk

(
un
)
dx +

1

k3 �Ω

b

(
x, Tk

(
un
)
,
�

k3

)
� dx.

(5.11)

�
Ω

b
�
x, Tk

�
un
�
,∇Tk

�
un
��
� dx

≤ k3(kC1 + C2) + 3k1
�
1 + k3

�
�
Ω

�

⎛⎜⎜⎜⎝
x,

����b
�
x, Tk

�
un
�
,
�

k3

�����
3k1

⎞⎟⎟⎟⎠
dx

+ 3k1k3 �
Ω

�

�
x,
���∇Tk

�
un
����
�
dx + 3k1 �

Ω

�(x, ���) dx

≤ k3(kC1 + C2) + 3k1k3(kC1 + C2) + 3k1 + 3k1
�
1 + k3

�
�
Ω

�

⎛
⎜⎜⎜⎝
x,

����b
�
x, Tk

�
un
�
,
�

k3

�����
3k1

⎞
⎟⎟⎟⎠
dx

(5.12)

�

⎛
⎜⎜⎜⎝
x,

����b
�
x, Tk

�
un
�
,
�

k3

�����
3k1

⎞
⎟⎟⎟⎠
≤ 1

3

�
�(x, d(x)) + P

�
x, k2

���Tk
�
un
����
�
+ �(x, ���)

�

P
(
x, k2

|||Tk
(
un
)|||
) ≤ P

(
x, k2k

) ≤ �(x, 1) + h(x)
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where c′
k
 is a constant depending on k,   then ∀� ∈

(
E
�
(Ω)

)N with ‖�‖
�,Ω = 1 we 

have �
Ω

b
(
x, Tk

(
un
)
,∇Tk

(
un
))
�dx ≤ c�

k
, and thus ‖‖‖b

(
x, Tk

(
un
)
,∇Tk

(
un
))‖‖‖�,Ω ≤ c�

k
, 

which implies that

5.4 � Renormalization identity for the approximate solutions

Consider the function Zm
(
un
)
= T1

(
un − Tm

(
un
))

 and by taking Zm
(
un
)
 as test func-

tion in (5.1) we obtain

By the same argument used in a priori estimates, we get

where 1
C

=

�
1

2
−

�‖c(⋅)‖L∞(Ω) + �1

�

��
. In order to pass to the limit in (5.16) as 

n → +∞, we use the pointwise convergence of un and strongly convergence in L1(Ω) 
of fn, we get

Thanks to Lebesgue’s theorem and passing to the limit as m → +∞, in every term of 
the right-hand side of the previous inequalities, we obtain

(5.13)

�
Ω

�

⎛
⎜⎜⎜⎝
x,

����b
�
x, Tk

�
un
�
,
v

k3

�����
3k1

⎞
⎟⎟⎟⎠
dx

≤ 1

3

�
�
Ω

�(x, c(x)) dx + �
Ω

h(x) dx + �
Ω

�(x, 1) dx + �
Ω

�(x, ���) dx
�

≤ c�
k
,

(5.14)
(
b
(
x, Tk

(
un
)
,∇Tk

(
un
)))

n
is bounded in L

�
(Ω)N .

(5.15)
∫
Ω

bn
(
x, un,∇un

)
∇Zm

(
un
)
dx + ∫

Ω

Fn

(
x, un

)
∇Zm

(
un
)
dx

= ∫
Ω

fnZm
(
un
)
dx + ∫

Ω

�∇Zm
(
un
)
dx.

(5.16)

�
Ω

�

(
x,
|||∇Zm

(
un
)|||
)
dx ≤ C

[
�
Ω

fnZm
(
un
)
dx +�

Ω

�

(
x,
|�|
�1

)
Zm

(
un
)
dx

]

+ C �{m≤un≤m+1} �
(
x,
|�|
�1

)
dx

(5.17)

lim
n→+∞�

Ω

�

(
x,
|||∇Zm

(
un
)|||
)
dx ≤ C

[
�
Ω

fZm(u)dx +�
Ω

�

(
x,
|�|
�1

)
Zm(u)dx

]

C �
{m≤u≤m+1}

�

(
x,
|�|
�1

)
dx
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Using (1.6) and Young inequality, for n > m + 1 we have

Thanks to Lebesgue’s theorem, and by the pointwise convergence of un we can have

Passing to the limit in (5.20) as m → +∞, we obtain

Finally passing to the limit in (5.16), we get

5.5 � Almost everywhere convergence of the gradients

Let vj ∈ D(Ω) be a sequence such that vj → u in W1
0
L
�
(Ω) for the modular conver-

gence. For m ≥ k, we define the function �m by

We denote by �(n, �, j,m) all quantities (possibly different) such that

For fixed k ≥ 0, let Wn,j
� = T

�

(
Tk
(
un
)
− Tk

(
vj
))

 and Wj
� = T

�

(
Tk(u) − Tk

(
vj
))
. Multi-

plying the approximating equation by Wn,j
� �m

(
un
)
 , we obtain

Remark that if we take n > m + 1, we obtain

(5.18)lim
m→+∞

lim
n→+∞∫

Ω

�

(
x,
|||∇Zm

(
un
)|||
)
dx = 0.

(5.19)
�
Ω

|||Fn

(
x, un

)
∇Zm

(
un
)|||dx ≤ �{m≤un≤m+1} �

(
x, �0

|||Tm+1
(
un
)|||
)
dx

+�
Ω

�

(
x,
|||∇Zm

(
un
)|||
)
dx.

(5.20)
lim

n→+∞�
Ω

|||Fn

(
x, un

)
∇Zm

(
un
)||| dx ≤ �

{m≤u≤m+1}
�

(
x, �0

||Tm+1(u)||
)
dx

+ lim
n→+∞�

Ω

�

(
x, ||∇Zm(u)||

)
dx.

lim
m→+∞

lim
n→+∞∫

Ω

Fn

(
x, un

)
∇Zm

(
un
)
dx = 0.

(5.21)lim
m→+∞

lim
n→+∞�{m≤un≤m+1} bn

(
x, un,∇un

)
∇un dx = 0.

�m(s) =

⎧⎪⎨⎪⎩

1 if �s� ≤ m

m + 1 − �s� if m ≤ �s� ≤ m + 1

0 if �s� ≥ m + 1

lim
m→+∞

lim
j→+∞

lim
�→+∞

lim
n→+∞

�(n, �, j,m) = 0.

(5.22)
�
Ω

bn
(
x, un,∇un

)
∇Wn,j

�
�m

(
un
)
dx − �

Ω

Fn

(
x, un

)
∇Wn,j

�
�m

(
un
)
dx

≤ �
Ω

fnW
n,j
�
�m

(
un
)
dx + �

Ω

�∇Wn,j
�
�m

(
un
)
dx.
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then Fn

(
x, un

)
 is bounded in L

�
(Ω), thus, by using the pointwise convergence of un 

and Lebesgue’s theorem we obtain Fn

(
x, un

)
 converges to F(x, u) with the modular 

convergence as n → +∞, then

In the other hand for 0 ≤ Tk
(
un
)
− Tk

(
vj
) ≤ � then ∇Wn,j

� = ∇

(
Tk(un) − Tk(vj)

)
 con-

verges to ∇
(
Tk(u) − Tk(vj)

)
 weakly in 

(
L
�
(Ω)

)N as n tends to +∞ , then

By using the modular convergence of Wj
� as j → +∞ and letting � tends to infinity, 

we get

In the other hand for n > m + 1 > k, we have ∇un�
�

m

(
un
)
= ∇Tm+1

(
un
)
 a.e. in Ω. By 

the almost every where convergence of un we have Wn,j
� → W

j
� in L∞(Ω) weak- ∗ and 

since the sequence 
(
Fn

(
x, Tm+1

(
un
)))

n
 converge strongly inE

�
(Ω) then

converge strongly in E
�
(Ω) as n → +∞. By virtue of ∇Tm+1

(
un
)
→ ∇Tm+1(u) 

weakly in 
(
L
�
(Ω)

)N as n → +∞ we have

with the modular convergence of Wj
� as j → +∞ , we get

Concerning the first term of (5.22) we have

thus

Fn

(
x, un

)
�m

(
un
)
= F

(
x, Tm+1

(
un
))
�m

(
Tm+1

(
un
))
,

Fn

(
x, un

)
�m

(
un
)
⟶ F(x, u)�m(u) for �

(
ΠL

�
,ΠL

�

)
.

lim
n→+∞∫

Ω

Fn

(
x, un

)
�m

(
un
)
∇Wn,j

�
dx = ∫

Ω

F(x, u)�m(u)∇W
j
�
dx.

(5.23)�
Ω

Fn

(
x, un

)
�m

(
un
)
∇Wn,j

�
dx = �(n, j) for any m ≥ 1.

Fn

(
x, Tm+1

(
un
))
Wn,j

�
→ F

(
x, Tm+1(u)

)
Wj

�

(5.24)
lim

n→+∞�
{m≤|un|≤m+1}

Fn(x, Tm+1(un))∇un�
�

m

(
un
)
Wn,j

�
dx

= �
{m≤|u|≤m+1}

F(x, u)∇u�
�

m
(u)Wj

�
dx

(5.25)�
Ω

Fn

(
x, un

)
∇un�

�

m

(
un
)
Wn,j

�
dx = �(n, j) for any m ≥ 1

(5.26)

�
Ω

bn
(
x, un,∇un

)
�

�

m

(
un
)
Wn,j

�
dx = �{m≤|un|≤m+1} bn

(
x, un,∇un

)
�

�

m

(
un
)
∇unW

n,j
�

dx

≤ �C �{m≤|un|≤m+1} bn
(
x, un,∇un

)
∇un dx,



663

1 3

Existence of solutions for a class of nonlinear elliptic problems…

The weakly convergence of Tk
(
un
)
 to Tk

(
vj
)
 in W0,1L

�
(Ω) as n tends to +∞ , the 

bounded character of Wn,j
�  , we obtain

and

Appealing now (1.5), we get

In the other hand we have

Since bn
(
x, Tk+�

(
un
)
,∇Tk+�

(
un
))

 is bounded in 
(
L
�
(Ω)

)N
, there exist some 

�k+� ∈
(
L
�
(Ω)

)N such that bn
(
x, Tk+�

(
un
)
,∇Tk+�

(
un
))

⇀ �k+� weakly in (
L
�
(Ω)

)N
. Thus:

By letting j → +∞, we get

Thanks to (5.23)–(5.33), one has

(5.27)�
Ω

bn
(
x, un,∇un

)
�

�

m

(
un
)
Wn,j

�
dx ≤ �(n,m).

(5.28)∫
Ω

fn�m
(
un
)
Wn,j

�
dx = �(n, �),

(5.29)∫
Ω

�∇Wn,j
�
�m

(
un
)
dx = �(n, �).

(5.30)

|||�
Ω

�∇un�
�

m

(
un
)
Wn,j

�
dx
||| ≤ �1

�
Ω

�

(
x,

�

�1

)
Wn,j

�
dx + �1� �

{m≤|un|≤m+1}
bn
(
x, un,∇un

)
∇undx ≤ �(n,m, j, �).

(5.31)

�
Ω

bn
(
x, un,∇un

)
𝜚m

(
un
)
∇Wn,j

𝜂
dx

= �{|un|≤k}∩{0≤Tk(un)−Tk(vj))≤𝜂} bn
(
x, Tk

(
un
)
,∇Tk

(
un
))
𝜚m

(
un
)

×
(
∇Tk

(
un
)
− ∇Tk

(
vj
))

dx

−�{|un|>k}∩{0≤Tk(un)−Tk(vj))≤𝜂} bn
(
x, un,∇un

)
𝜚m

(
un
)
∇Tk

(
vj
)
dx.

(5.32)
�{|un|>k}∩{0≤Tk(un)−Tk(vj))≤𝜂} bn

(
x, un,∇un

)
𝜚m

(
un
)
∇Tk

(
vj
)
dx

= �
{|u|>k}∩{0≤Tk(u)−Tk(vj))≤𝜂}

𝜚m(u)𝜛k+𝜂∇Tk
(
vj
)
dx + 𝜖(n),

(5.33)
� {|u|>k}∩{0≤Tk(u)−Tk(vj))≤𝜂}

𝜚m(u)∇Tk
(
vj
)
𝜛k+𝜂 dx = � {|u|>k}}

𝜚m(u)∇Tk(u)𝜛k+𝜂dx + 𝜖(n, j) = 𝜖(n, j).
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Since exp
(
G
(
un
)) ≥ 1 and �m

(
un
)
= 1 for ||un|| ≤ k then

Finally we show that,

For s > 0, denoting by Ωs =
{
x ∈ Ω ∶ ||∇Tk(u)|| ≤ s

}
 and 

Ωs
j
=

{
x ∈ Ω ∶

|||∇Tk
(
vj
)||| ≤ s} then by � s and � s

j
 the characteristic functions of Ωs 

and Ωs
j
 respectively, letting 0 < 𝛿 < 1 , define

For s > 0, we have

The first term of the right-side hand, with the Hölder inequality we obtain

For the second term of the right-side hand by the Hölder inequality we have

since a
(
x, Tk

(
un
)
,∇Tk

(
un
))

 is bounded in 
(
L
�
(Ω)

)N
, while ∇Tk

(
un
)
 is bounded in (

L
�
(Ω)

)N then

(5.34)�{|un|≤k}∩{0≤Tk(un)−Tk(vj))≤�} bn
(
x, Tk

(
un
)
,∇Tk

(
un
))
�m

(
un
)

×
(
∇Tk

(
un
)
− ∇Tk

(
vj
))

dx ≤ C� + �(n, j,m).

(5.35)

�
{|un|≤k}∩{0≤Tk(un)−Tk(vj)≤�}

bn
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
un
)
− ∇Tk

(
vj
))

dx

≤ C� + �(n, j,m).

(5.36)
∫
Ω

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))(
∇Tk

(
un
)
− ∇Tk(u)

)
dx → 0.

Θn,k =

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))(
∇Tk

(
un
)
− ∇Tk(u)

)
.

0 ≤ �
Ωs

Θ𝛿

n,k
dx = �

Ωs

Θ𝛿

n,k
𝜒{0≤Tk(un)−Tk(vj)≤𝜂}dx + �

Ωs

Θ𝛿

n,k
𝜒{Tk(un)−Tk(vj)>𝜂} dx.

(5.37)

�
Ωs

Θ�

n,k
�{0≤Tk(un)−Tk(vj)≤�} dx ≤

(
�
Ω∗

Θn,k�{0≤Tk(un)−Tk(vj)≤�}dx
)�(

�
Ω∗

dx

)1−�

≤ C1

(
�
Ωs

Θn,k�{0≤Tk(un)−Tk(vj)≤�} dx
)�

.

(5.38)
�
Ωs

Θ𝛿

n,k
𝜒{Tk(un)−Tk(vj)>𝜂}dx ≤

(
�
Ωs

Θn,k dx

)𝛿
(
�
{Tk(un)−Tk(vj)>𝜂}

dx

)1−𝛿

,

(5.39)
�
Ωs

Θ𝛿

n,k
𝜒{Tk(un)−Tk(vj)>𝜂} dx ≤ C2meas

{
x ∈ Ω ∶ Tk

(
un
)
− Tk

(
vj
)
> 𝜂

}1−𝛿
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We obtain

On the other hand

For each s, r ∈ ℝ+ with s > r one has

In the sequel we pass to the limit in Ii when n, j, �, and s → +∞ . We have

(5.40)�
Ωg

Θ𝛿

n,k
dx ≤ C1

(
�
Ωs

Θn,k𝜒{0≤Tk(un)−Tk(vj)≤𝜂} dx
)𝛿

+ C2meas
{
x ∈ Ω ∶ Tk

(
un
)
− Tk

(
vj
)
> 𝜂

}1−𝛿

(5.41)

�
Ωs

Θn,k�{0≤Tk(un)−Tk(vj)≤�} dx

≤ �{0≤Tk(u)−Tk(vj)≤�}
(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)�s

))

×

(
∇Tk

(
un
)
− ∇Tk(u)�s

)
dx.

(5.42)

0 ≤ �
Ωr∩{0≤Tk(un)−Tk(vj)≤�)}

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))

×
(
∇Tk

(
un
)
− ∇Tk(u)

)
dx

≤ �
Ωs∩{0≤Tk(un)−Tk(vj)≤�)}

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))

×
(
∇Tk

(
un
)
− ∇Tk(u)

)
dx

= �
Ωs∩{0≤Tk(un)−Tk(vj)≤�}

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)�s

))

×
(
∇Tk

(
un
)
− ∇Tk(u)�s

)
dx

≤ �
Ω∩{0≤Tk(un)−Tk(vj)≤�)}

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)�

s
))

×
(
∇Tk

(
un
)
− ∇Tk(u)�

s
)
dx

= �
{0≤Tk(un)−Tk(vj)≤�}

(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk

(
vj
)
�
s
j

))

×

(
∇Tk

(
un
)
− ∇Tk

(
vj
)
�
s
j

)
dx

+ �{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
vj
)
�
s
j
− ∇Tk(u)�

s
)
dx

+ �{0≤Tk(un)−Tk(vj)≤�}
(
b
(
x, Tk

(
un
)
,∇Tk

(
vj
)
�
s
j

)
− b

(
x, Tk

(
un
)
,∇Tk(u)�

s
))

∇Tk
(
un
)
dx

− �{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
vj
)
�
s
j

)
∇Tk

(
vj
)
�
s
j
) dx

+ �{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk(u)�

s
)
∇Tk(u)�

s) dx

= I1 + I2 + I3 + I4 + I5.
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Thanks to (5.35), the first term of the right hand side in I1 , we get

Since b
(
x, Tk

(
un
)
,∇Tk

(
un
))

 is bounded in 
(
L
�
(Ω)

)N
, there exist some �k ∈ (

L
�
(Ω)

)N such that (for a subsequence still denoted by un):

By using in the fact 
(
∇Tk

(
vj
)
�
s
j
− ∇Tk

(
vj
))

�{0≤Tk(un)−Tk(vj)≤�} strongly converges 

to 
(
∇Tk

(
vj
)
�
s
j
− ∇Tk

(
vj
))

�{0≤Tk(u)−Tk(vj)≤�} in 
(
E
�
(Ω)

)N as n → +∞.
The second term of the right hand side of I1 tends to

The third term of the right-hand side tends to

Letting j → +∞ and � → +∞ of I1 , it possible to conclude that

Concerning I2, by letting n → +∞, we obtain

I1 = �{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
un
)
− ∇Tk

(
vj
))
dx

−�{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
vj
)
�
s
j
− ∇Tk

(
vj
))

dx

−�{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
vj
)
�
s
j

)(
∇Tk

(
un
)
− ∇Tk

(
vj
)
�
s
j

)
dx

�{0≤Tk(un)−Tk(vj)≤𝜂} b
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
un
)
− ∇Tk

(
vj
))
dx

≤ C𝜂 + 𝜖(n,m, j, s) − �{|u|>k∩0≤Tk(u)−Tk(vj)≤𝜂} b
(
x, Tk(u), 0

)
∇Tk

(
vj
)
dx

≤ C𝜂 + 𝜖(n,m, j).

b
(
x, Tk

(
un
)
,∇Tk

(
un
))

→ �k in
(
L
�
(Ω)

)N
for �

(
ΠL

�
,ΠE

�

)

�{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
un
))(

∇Tk
(
vj
)
�
s
j
− ∇Tk

(
vj
))

dx

= �{0≤Tk(u)−Tk(vj)≤�}�k

(
∇Tk

(
vj
)
�
s
j
− ∇Tk

(
vj
))

dx + �(n).

�{0≤Tk(un)−Tk(vj)≤�} b
(
x, Tk

(
un
)
,∇Tk

(
vj
)
�
s
j

)(
∇Tk

(
un
)
− ∇Tk

(
vj
)
�
s
j

)
dx

= �{0≤Tk(u)−Tk(vj)≤�} b
(
x, Tk(u),∇Tk

(
vj
)
�
s
j

)(
∇Tk(u) − ∇Tk

(
vj
)
�
s
j

)
dx + �(n),

I1 ≤ C� + �(n, j, s).
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Since b
(
x, Tk

(
un
)
,∇Tk

(
un
))

→ �k in 
(
L
�
(Ω)

)N
, for �

(
ΠL

�
,ΠE

�

)
 while

strongly in 
(
E
�
(Ω)

)N . Now, letting j → +∞, and thanks to Lebesgue’s theorem, we 
obtain

and

Consequently, we obtain

Which leads to

By taking Wn,j
� = T

�

(
Tk
(
un
)
− Tk

(
vj
))− and Wj

� = T
�

(
Tk(u) − Tk

(
vj
))−

, then testing 
the approximating equation by exp

(
G
(
un
))
W

n,j
� �m

(
un
)
, we obtain

Thanks to (5.43) and (5.44) we have

As a consequence, since r is arbitrary:

I2 → �{0≤Tk(u)−Tk(vj)≤�}�k

(
∇Tk

(
vj
)
�
s
j
− ∇Tk(u)�

s
)
dx.

(
∇Tk

(
vj
)
�
s
j
− ∇Tk(u)�

s
)
�{0≤Tk(u)−Tk(vj)≤�} →

(
∇Tk

(
vj
)
�
s
j
− ∇Tk(u)�

s
)
�{0≤Tk(u)−Tk(vj)≤�}

I2 = �(n, j),

I3 = �(n, j),

I4 = �{0≤Tk(u)−Tk(vj)≤�} b
(
x, Tk(u),∇Tk(u)

)
∇Tk(u)dx + �(n, j, s,m),

I5 = �{0≤Tk(u)−Tk(vj)≤�} b
(
x, Tk(u),∇Tk(u)

)
∇Tk(u)dx + �(n, j, s,m).

�
Ωs

Θn,kdx ≤ C1(C� + �(n, �,m))� + C2(�(n, ))
1−� .

(5.43)

�{T�(Tk(un)−Tk(vj))≥0}∩Ωr

[(
b(x, Tk(un),∇Tk(un)) − b(x, Tk(un),∇Tk(u))

)

× (∇Tk(un) − ∇Tk(u))
]�

dx = �(n).

(5.44)

�{T�(Tk(un)−Tk(vj))≤0}∩Ωr

[(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))

×
(
∇Tk

(
un
)
− ∇Tk(u)

)]�
dx = �(n).

∫
Ωr

[(
b
(
x, Tk

(
un
)
,∇Tk

(
un
))

− b
(
x, Tk

(
un
)
,∇Tk(u)

))(
∇Tk

(
un
)
− ∇Tk(u)

)]�
dx = �(n)
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and for all k ≥ 0 , we have

5.6 � Renormalization identity for the solutions

We show that The limit u of the approximate solution un of (5.1) satisfies:

To this end, remark that for any m > 0 one has

According to (5.46), (5.47) one is at liberty to pass to the limit as n tends to infinity 
for fixed m and to obtain

Taking the limit as m tends to +∞ and using the estimate (5.21) show that u satisfies 
(5.48).

5.7 � Passing to the limit

Let h ∈ C
1
c
(ℝ) and V ∈ D(Ω). Using the admissible test function h

(
un
)
V  in (5.1) 

leads to

(5.45)∇un → ∇u a.e. in Ω,

(5.46)b
(
x, Tk

(
un
)
,∇Tk

(
un
))

⇀ b
(
x, Tk(u),∇Tk(u)

)
weakly in

(
L
�
(Ω)

)N
,

(5.47)�

(
x,
|||∇Tk

(
un
)|||
)
→ �

(
x, ||∇Tk(u)||

)
strongly in L1(Ω).

(5.48)lim
m→∞�

{m≤|u|≤m+1}
b(x, u,∇u)∇udx = 0.

(5.49)

�{m≤|un|≤m+1} b
(
x, un,∇un

)
∇un dx = �

Ω

b
(
x, un,∇un

)(
∇Tm+1

(
un
)
− ∇Tm

(
un
))

dx

= �
Ω

b
(
x, Tm+1

(
un
)
,∇Tm+1

(
un
))

∇Tm+1
(
un
)
dx

− �
Ω

b
(
x, Tm

(
un
)
,∇Tm

(
un
))

∇Tm
(
un
)
dx.

(5.50)

lim
n→∞�{m≤|un|≤m+1} b

(
x, un,∇un

)
∇un dx = �

Ω

b
(
x, Tm+1(u),∇Tm+1(u)

)
∇Tm+1(u) dx

− �
Ω

b
(
x, Tm(u),∇Tm(u)

)
∇Tm(u) dx. = �

{m≤|u|≤m+1}
b(x, u,∇u)∇u dx



669

1 3

Existence of solutions for a class of nonlinear elliptic problems…

We shall pass to the limit in each term in the previous equality, to this end, remark 
that since h and h′ have a compact support in h,   there exists K > 0 such that 
supp(h) ⊂ [−K,K]. For n large enough, we have:

Let us start by the third integral of the left-hand side and the right hand-side of 
(5.51). Since h ∈ C1

c
(ℝ) and V ∈ D(Ω), then there exists two positive constants c1 

and c′
1
 such that ‖‖‖h

(
TK

(
un
))
∇V

‖‖‖∞ ≤ c1 and ���h�(t)
�
TK

�
un
�
V∇TK

�
un
�‖∞ ≤ c�

1
 Now 

since TK
(
un
)
 is bounded in W1

0
L
�
(Ω), then there exists two positive constant �0 and � 

such that �
Ω

�

⎛⎜⎜⎝
x,

���∇TK
�
un
����

�

⎞⎟⎟⎠
dx ≤ �0. Using the convexity and monotonicity of �, 

for � large enough, we can write

Then the sequence 
{
∇
(
h
(
TK

(
un
))
V
)}

 is bounded in 
(
L
�
(Ω)

)N
, as a consequence, 

we deduce

Moreover, since F
(
x, TK

(
un
))

 is bounded in L
�
(Ω), we have from Lemma 3.10

By (5.52), we get

(5.51)

∫
Ω

b
(
x, un,∇un

)
∇unh

�
(
un
)
Vdx + ∫

Ω

b
(
x, un,∇un

)
∇Vh

(
un
)
dx

+∫
Ω

Fn

(
x, un

)
∇
(
h
(
un
)
V
)
dx= ∫

Ω

fnh
(
un
)
Vdx + ∫

Ω

�∇
(
h
(
un
)
V
)
dx.

Fn(x, t)h(t) = Fn

(
x, Tn(t)

)
h(t) = F

(
x, TK(t)

)
h(t)

Fn(x, t)h
�(t) = Fn

(
x, Tn(t)

)
h�(t) = F

(
x, TK(t)

)
h�(t)

�
Ω

𝜑

�
x,
∇
�
h
�
TK

�
un
��
V
�

𝜂

�
dx

= �
Ω

𝜑

⎛⎜⎜⎜⎝
x,

h
�
TK

�
un
��
∇V + h�(t)

�
TK

�
un
�
V
���∇TK

�
un
����

𝜂

⎞⎟⎟⎟⎠
dx

≤ �
Ω

𝜑

⎛⎜⎜⎝
x,
c1 + c�

1
𝜆
�∇TK (un)�

𝜆

𝜂

⎞⎟⎟⎠
dx

≤ �
Ω

𝜑

�
x,
c1

𝜂

�
dx +

c�
1
𝜆

𝜂 �
Ω

𝜑

⎛⎜⎜⎝
x,

���∇TK
�
un
����

𝜆

⎞⎟⎟⎠
dx

≤ C
𝜂,c1

+
c�
1
𝜆𝜆0

𝜂
where C

𝜂,c1
= �

Ω

𝜑

�
x,
c1

𝜂

�
dx < ∞.

(5.52)h
(
un
)
V ⇀ h(u)V weakly inW1

0
L
�
(Ω) for �

(
ΠL

�
,ΠE

�

)
.

F
(
x, TK

(
un
))

→ F
(
x, TK(u)

)
strongly in E

�
(Ω).
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Moreover we have

Concerning the first integral of (5.51), while supp h� ⊂ [−K,K], we obtain

The pointwise convergence of un to u, the bounded character of h′V  , (5.46) and 
(5.47) imply that

The term h�(u)Vb
(
x, TK(u),∇TK(u)

)
∇TK(u) is identified with h�(u)Vb(x, u,∇u)∇u.

Now since h
(
un
)
Vb

(
x, un,∇un

)
= h

(
un
)
Vb

(
x, TK

(
un
)
,∇TK

(
un
))

 a.e. in Ω , and 
using the strongly convergence of h

(
un
)
∇V  to h(u)∇V  in 

(
E
�
(Ω)

)N
, and using the 

weakly convergence of b
(
x, TK

(
un
)
,∇TK

(
un
))

 to b
(
x, TK(u),∇TK(u)

)
 in 

(
L
�
(Ω)

)N 
for �

(
ΠL

�
,ΠE

�

)
, then

As a consequence of the above convergence results, we are in a position to pass to 
the limit as n tends to +∞ in (5.51) and to conclude that u satisfies (4.3). As a con-
clusion of Step 5.1 to Step 5.7, the proof of Theorem 4.1 is complete.

Remark 6 

(1)	 It is possible to extend this result to the following parabolic equation 

 where Ω is a bounded open subset of ℝN ,N ≥ 1, T > 0 and QT is the cylinder 
Ω × (0, T) . The operator A(u) = −div(a(x, t, u,∇u)) is a Leray-Lions operator 
lefined in W1,x

0
L
�

(
QT

)
 . The lower order term F verifies the natural growth con-

dition, no Δ2-condition is assumed on the Musielak function, and the datum � 
is assumed to belong to L1(QT ) +W−1E

�
(QT ).

(2)	 In the case of F ≡ 0, the problem (1.1) admits a unique solution.

lim
n→∞∫

Ω

Fn

(
x, un

)
∇
(
h
(
un
)
V
)
dx = ∫

Ω

F
(
x, TK(u)

)
∇(h(u)V)dx.

lim
n→∞∫

Ω

fnh
(
un
)
Vdx = ∫

Ω

fh(u)Vdx,

lim
n→∞∫

Ω

�∇h
(
un
)
Vdx = ∫

Ω

�∇h(u)Vdx.

h�
(
un
)
Vb

(
x, un,∇un

)
∇un = h�

(
un
)
Vb

(
x, TK

(
un
)
,∇TK

(
un
))
∇TK

(
un
)

a.e. in Ω.

h�
(
un
)
Vb

(
x, un,∇un

)
∇un ⇀ h�(u)Vb

(
x, TK(u),∇TK(u)

)
∇TK(u) weakly in L1(Ω).

lim
n→∞∫

Ω

b
(
x, un,∇un

)
∇Vh

(
un
)
dx = ∫

Ω

b(x, u,∇u)∇Vh(u) dx.

⎧⎪⎨⎪⎩

�u

�t
− div(a(x, t, u,∇u)) + F(x, t, u) = � in Ω × (0, T),

u = 0 on �Ω × (0, T),

u(x, 0) = u0(x) in Ω.
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