1 Introduction and main results

Let f be a meromorphic function in \({\mathbb {C}}\) and we shall use the usual notations and classical results of Nevanlinna’s theory, such as \(m(r,f),N(r,f),{\overline{N}}(r,f),\) \(T(r,f),\ldots \).

Let D be a domain in \({\mathbb {C}}\) and \({\mathcal {F}}\) be a family of meromorphic functions in D. A family \({\mathcal {F}}\) is said to be normal in D, in the sense of Montel, if each sequence \(f_n\) has a subsequence \(f_{n_k}\) that converges spherically locally uniformly in D to a meromorphic function or to the constant \(\infty \).

The following well-known normal conjecture was proposed by Hayman in 1967.

Theorem A

[1] Let \(n\in {\mathbb {N}}\), and \(a\in {\mathbb {C}}\backslash \left\{ 0 \right\} \). let \({\mathcal {F}}\) be a family of meromorphic function in D. If \(f^{n}f' \ne a\), for each \(f \in {\mathcal {F}} \), then \({\mathcal {F}}\) is normal in D.

This normal conjecture was showed by Yang and Zhang [2] (for \(n \ge 5\)), Gu [3] \((for n = 4, 3),\) Pang [4] (for \(n \ge 2\)) and Chen and Fang [5] (for \(n = 1\)).

For the related results, see Zhang [6], Meng and Hu [7], Deng et al.[8].

Ding et al. [9] studied the general case of \(f^{l}(f^{(k)})^{n}\) and and proved the following theorem.

Theorem B

 Let \(k, l\in {\mathbb {N}}, n\in {\mathbb {N}}\backslash \left\{ 1 \right\} , a\in {\mathbb {C}}\backslash \left\{ 0 \right\} \). Let \({\mathcal {F}}\) be a family of meromorphic functions in D. If for each \(f \in {\mathcal {F}}\), the zeros of f have multiplicity at least \(max\{k,2\}\), and for \(f, g \in {\mathcal {F}}\), \(f^{l}(f^{(k)})^{n}\) and \(g^{l}(g^{(k)})^{n}\) share a, then \({\mathcal {F}}\) is normal in D.

Recently, Meng et al. [10] considered the case of sharing a holomorphic function and and proved the following result.

Theorem C

Let \(k,l \in {\mathbb {N}}, n\in {\mathbb {N}}\backslash \left\{ 1 \right\} , m\in {\mathbb {N}}\cup \left\{ 0 \right\} \), and let \(a(z)(\not \equiv 0)\) be a holomorphic function, all zeros of a(z) have multiplicities at most m, which is divisible by \(n+l\). Let \({\mathcal {F}}\) be a family of meromorphic functions in D. If for each \(f \in {\mathcal {F}}\), the zeros of f have multiplicities at least \(k+m+1\) and all poles of f are of multiplicity at least \(m+1\), and for \(f, g \in {\mathcal {F}}\), \(f^{l}(f^{(k)})^{n}\) and \(g^{l}(g^{(k)})^{n}\) share a(z), then \({\mathcal {F}}\) is normal in D.

By Theorem C, the following question arises naturally:

Question 1.1

Is it possible to omit the conditions: (1)“ m is divisible by \(n+l\)” and (2)“all poles of f have multiplicity at least \(m+1\)” ?

In this paper, we study this problem and obtain the following result.

Theorem 1.1

Let \(k, n \in {\mathbb {N}}, l \in {\mathbb {N}}\backslash \left\{ 1 \right\} , m\in {\mathbb {N}}\cup \left\{ 0 \right\} \), and let \(a(z)(\not \equiv 0)\) be a holomorphic function, all zeros of a(z) have multiplicities at most m. Let \({\mathcal {F}}\) be a family of meromorphic functions in D. If for each \(f \in {\mathcal {F}}\), the zeros of f have multiplicity at least \(k+m\), and for \(f\in {\mathcal {F}}\), \(f^{l}(f^{(k)})^{n}-a(z)\) has at most one zero in D, then \({\mathcal {F}}\) is normal in D.

Now we give some examples to show that the conditions in our results are necessary.

Example 1.1

Let \({D}=\{z: |z| <1\}\) and \(a(z)\equiv 0\). Let \({\mathcal {F}}=\{f_j(z)\}\), where

$$\begin{aligned} f_j(z)=e^{jz},z\in D,j=1,2\ldots . \end{aligned}$$

Then \(f_{j}^{l}\left( z \right) \left( f_{j}^{\left( k \right) } \right) ^n\left( z \right) -a(z)\ne 0\) in D, however \({\mathcal {F}}\) is not normal at \(z = 0\). This shows that \(a(z)\not \equiv 0\) is necessary in Theorem 1.1.

Example 1.2

Let \({D}=\{z: |z| <1\}\) and \(a(z)=\frac{1}{z^{l+kn+n}}\). Let \({\mathcal {F}}=\{f_j(z)\}\), where

$$\begin{aligned} f_j(z)=\frac{1}{jz},z\in D,j=1,2\cdots ,j^{l+n}\ne [(-1)^{k}k!]^{n}. \end{aligned}$$

Then \(f_{j}^{l}\left( z \right) \left( f_{j}^{\left( k \right) } \right) ^n\left( z \right) -a(z)\ne 0\) in D, however \({\mathcal {F}}\) is not normal at \(z = 0\). This shows that Theorem  1.1 is not valid if a(z) is a meromorphic function in D.

Example 1.3

Let \({D}=\{z: |z| <1\}\), \(a(z)=a\). Let \({\mathcal {F}}=\{f_j(z)\}\), where

$$\begin{aligned} f_j(z)=jz^{k-1},z\in D,j=1,2\cdots . \end{aligned}$$

Then \(f_{j}^{l}\left( z \right) \left( f_{j}^{\left( k \right) } \right) ^n\left( z \right) -a\), which has no zero in D , however \({\mathcal {F}}\) is not normal at \(z=0\). This shows that the condition “ all zeros of f have multiplicity at least \(k+m\) ” in Theorem 1.1 is sharp.

Example 1.4

Let \({D}=\{z: |z| <1\}\), \(a(z)=a\). Let \({\mathcal {F}}=\{f_j(z)\}\), where

$$\begin{aligned} f_j(z)=jz^{k},z\in D,j=1,2\ldots . \end{aligned}$$

Then \(f_{j}^{l}\left( z \right) \left( f_{j}^{\left( k \right) } \right) ^n\left( z \right) -a=j^{l+n}(k!)^{n}z^{lk}-a\), which has at least \(l\ge 2\) distinct zeros in D, however \({\mathcal {F}}\) is not normal at \(z=0\). This shows that the condition “\(f^{l}(f^{(k)})^{n}-a(z)\) has at most one zero” in Theorem 1.1 is necessary.

2 Some lemmas

Lemma 2.1

[11] Let \({\mathcal {F}}\) be a family of functions meromorphic in the unit disc \(\Delta \), all of whose zeros have multiplicity at least k. Then if \({\mathcal {F}}\) is not normal in any neighbourhood of \(z_{0}\in \Delta \), there exist, for each \(\alpha \), \(0\le \alpha <k\),

  1. (i)

    points \(z_n\), \(z_n\rightarrow z_0\), \(z_0\in \Delta \);

  2. (ii)

    functions \(f_n \in {\mathcal {F}} \); and

  3. (iii)

    positive numbers \(\rho _n\rightarrow 0^ +\), such that \( g_n (\xi ) = \rho _n^{ - \alpha } f_n (z_n + \rho _n \xi ) \rightarrow g(\xi ) \) spherically uniformly on compact subsets of \({\mathbb {C}}\), where g is a non-constant meromorphic function, all of whose zeros have multiplicity at least k.

Lemma 2.2

[12]  Let \(k,n\in {\mathbb {N}}\), \(l\in {\mathbb {N}}\backslash \left\{ 1 \right\} \), \(a\in {\mathbb {C}}{\setminus} \left\{ 0 \right\} \), and let f(z) be a non-constant meromorphic with all zeros that have multiplicity at least k. Then \(f^{l}(z)(f^{(k)})^{n}(z)-a\) has at least two distinct zeros.

Using the idea of Chang [13], we get the following lemma.

Lemma 2.3

Let \(k,l,n,m \in {\mathbb {N}}\), let q(z) be a polynomial of degree m, and let f(z) be a non-constant rational function with \(f(z)\ne 0\). Then \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l+kn+n\) distinct zeros.

The proof of Lemma 2.3is almost exactly the same with Lemma 11 in Deng etc. [14], here, we omit the details.

Lemma 2.4

[15] Let \(f_{j}(j=1,2)\) be two nonconstant meromorphic functions, then

$$\begin{aligned} N(r,f_{1}f_{2})-N \left(r,\frac{1}{f_{1}f_{2}} \right)=N(r,f_{1})+N(r,f_{2})-N \left(r,\frac{1}{f_{1}} \right)-N \left(r,\frac{1}{f_{2}}\right). \end{aligned}$$

Lemma 2.5

Let \(k, m, n \in {\mathbb {N}}\), \(l\in {\mathbb {N}}\backslash \left\{ 1 \right\} \), let q(z) be a polynomial of degree m, and let f(z) be a non-constant meromorphic function in \({\mathbb {C}}\), the zeros of f(z) have multiplicities at least \(k+m\).Then \((f(z))^{l}(f^{(k)})^{n}(z) -q(z)\) has at least two distinct zeros.

Proof

Since

$$\begin{aligned} \frac{1}{f^{l+n}} &= \left( \frac{f^{\left( k \right) }}{f} \right) ^n\cdot \frac{1}{q}-\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{qf^{l+n}} \\ &= \frac{f^l\left( f^{\left( k \right) } \right) ^n}{qf^{l+n}}-\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{qf^{l+n}}\cdot \frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } . \end{aligned}$$

Noticing that \(m(r,\frac{f^{(k)}}{f})=S(r,f), m(r,\frac{1}{q})=O(1)\), and \(m(r,q)=mlog r + O(1)\). By Nevanlinna’s Fundamental Theorem, we get

$$\begin{aligned}\left( l+n \right) m\left( r,\frac{1}{f} \right) & =m\left( r,\frac{1}{f^{l+n}} \right) \nonumber \\& =m\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n}{qf^{l+n}}-\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{qf^{l+n}}\cdot \frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }\right) \nonumber \\& \le m \left(r,\frac{1}{q} \right)+ n~m \left(r,\frac{f^{(k)}}{f} \right)+ m\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{qf^{l+n}} \right) \nonumber \\& \quad + m\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) + O(1)\nonumber \\& \le m\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{qf^{l+n}} \right) \nonumber \\& \quad +m \left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +S\left( r,f \right) \nonumber \\& \le T\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }\right) \nonumber \\& \quad - N\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +S\left( r,f \right) \nonumber \\& \le T\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\& \quad -N\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +S\left( r,f \right) \nonumber \\& = m\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) +N\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\& \quad - N\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +S\left( r,f \right) \nonumber \\& = m\left( r,q\cdot \frac{\left[ \frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q} \right] '}{\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q}} \right) +N\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\& \quad - N\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) \nonumber \\& \quad +S\left( r,f \right) .\nonumber \\& \le m\left( r,\frac{\left[ \frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q} \right] '}{\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q}} \right) +N\left( r,\frac{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] }{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\& \quad - N\left( r,\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) \nonumber \\& \quad +m\left( r,q \right) +S\left( r,f \right) . \end{aligned}$$
(2.1)

By Lemma 2.4 applied to (2.1), we can get

$$\begin{aligned}&\left( l+n \right) m\left( r,\frac{1}{f} \right) \le m\left( r,\frac{\left[ \frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q} \right] '}{\frac{f^l\left( f^{\left( k \right) } \right) ^n-q}{q}} \right) +N\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \\& \quad -N\left( r,f^l\left( f^{\left( k \right) } \right) ^n-q \right) +N\left( r,\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] \right) \\& \quad -N\left( r,\frac{1}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +m\log r +S\left( r,f \right) . \end{aligned}$$

This is

$$\begin{aligned}&\left( l+n \right) m\left( r,\frac{1}{f}\right) \le {\overline{N}}(r,f) +N\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\&\quad -N\left( r,\frac{1}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +m\log r +S\left( r,f \right) . \end{aligned}$$
(2.2)

We add \((l+n)N \left(r,\frac{1}{f} \right)\) to both sides in (2.2), then

$$\begin{aligned}&\left( l+n \right) T\left( r,\frac{1}{f}\right) \le (l+n)N\left(r,\frac{1}{f} \right)+{\overline{N}}(r,f) +N\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \nonumber \\&\quad -N\left( r,\frac{1}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) +m\log r +S\left( r,f \right) . \end{aligned}$$
(2.3)

Let \(\xi \) be a zero of f with multiplicity \(t (\ge k+m)\), then \(\xi \) is a zero of \([f^{l}(f^{(k)})^{n}]'q-[f^{l}(f^{(k)})^{n}]q'\) with multiplicity at least \((l + n)t - kn -1\). Noticing that

$$\begin{aligned} \left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] =\left[ f^l\left( f^{\left( k \right) } \right) ^n -q\right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n -q\right] , \end{aligned}$$

which implies

$$\begin{aligned}&N\left( r,\frac{1}{\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] 'q-q'\left[ f^l\left( f^{\left( k \right) } \right) ^n \right] } \right) \ge N\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) \\&\quad -{\overline{N}}\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) . \end{aligned}$$

Therefore, from (2.3), we get

$$\begin{aligned} \left( l+n \right) T\left( r,f\right) & \le (kn+1){\overline{N}}\left(r,\frac{1}{f} \right)+{\overline{N}}(r,f) +{\overline{N}}\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) +m\log r +S\left( r,f \right) \\& \le \frac{kn+1}{k+m}N\left(r,\frac{1}{f} \right)+{\overline{N}}(r,f) +{\overline{N}}\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) +m\log r +S\left( r,f \right) . \end{aligned}$$

i.e.,

$$\begin{aligned} M~T\left( r,f\right) \le {\overline{N}}\left( r,\frac{1}{f^l\left( f^{\left( k \right) } \right) ^n-q} \right) +m\log r +S\left( r,f \right) , \end{aligned}$$
(2.4)

where

$$\begin{aligned} M=l+n -1-\frac{kn+1}{k+m}=l-1+\frac{mn-1}{k+m}. \end{aligned}$$

Suppose that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at most one zero.

Next, we consider two cases.


Case 1: \(n\ge 2\). By the assumptions,

$$\begin{aligned} M\ge 1+\frac{1}{k+m}. \end{aligned}$$

From (2.4), we get

$$\begin{aligned} T\left( r,f\right) <MT\left( r,f\right) \le (m+1)\log r +S\left( r,f \right) . \end{aligned}$$

It follows that f(z) is a rational function of degree \(<m+1\). Since the zeros of f(z) have multiplicities at least \(k+m\ge m+1\), then we get \(f(z)\ne 0\). Thus, by Lemma 2.3, we obtain that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l + kn + n\ge 6\) distinct zeros, which is a contradiction.


Case 2: \(n=1\). Then \(M=l-\frac{k+1}{k+m}\).


\(\mathbf {Subcase \,\,2.1}\): \(m\ge 2\). By the assumptions, \(M> 1\) and from (2.4), we get

$$\begin{aligned} T\left( r,f\right) <(m+1)\log r +S\left( r,f \right) . \end{aligned}$$

It follows that f(z) is a rational function of degree \(<m+1\). Since the zeros of f(z) have multiplicities at least \(k+m\ge m+1\), then we get \(f(z)\ne 0\). Thus, by Lemma 2.3, we obtain that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l + k + 1\ge 4\) distinct zeros, which is a contradiction.


\(\mathbf {Subcase \,\,2.2}\): \(m=1\). From (2.4), we get

$$\begin{aligned} \left( l-1\right) T\left( r,f\right) \le {\overline{N}}\left( r,\frac{1}{f^l f^{\left( k \right) }-q} \right) +\log r +S\left( r,f \right) , \end{aligned}$$

\(\mathbf {Subcase \,\,2.2.1}\): \(f^{l}(z)f^{(k)}(z)-q(z)\ne 0\). From (2.4), we get

$$\begin{aligned} T\left( r,f\right) \le (l-1) T\left( r,f\right) \le \log r +S\left( r,f \right) . \end{aligned}$$

It follows that f(z) is a rational function of degree \(\le 1\). Since the zeros of f(z) have multiplicities at least \(k+1\ge 2\), then we get \(f(z)\ne 0\). Thus, by Lemma 2.3, we obtain that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l + k + 1\ge 4\) distinct zeros, which is a contradiction.


\(\mathbf {Subcase \,\,2.2.2}\): \(f^{l}(z)f^{(k)}(z)-q(z)= 0\). By the assumptions, we get \(f^{l}(z)f^{(k)}(z)-q(z)\) has only one zero. Then, from (2.4), we obtain

$$\begin{aligned} (l-1)T\left( r,f\right) \le 2 \log r +S\left( r,f \right) . \end{aligned}$$

\(\mathbf {Subcase\,\,2.2.2.1}\): \(l\ge 3\), from (2.4), we obtain

$$\begin{aligned} T\left( r,f\right) \le \log r +S\left( r,f \right) . \end{aligned}$$

It follows that f(z) is a rational function of degree \(\le 1\). Since the zeros of f(z) have multiplicities at least \(k+1\ge 2\), then we get \(f(z)\ne 0\). Thus, by Lemma 2.3, we obtain that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l + k + 1\ge 5\) distinct zeros, which is a contradiction.


\(\mathbf {Subcase \,\,2.2.2.2}\): \(l=2\), from (2.4), we obtain

$$\begin{aligned} T\left( r,f\right) \le 2\log r +S\left( r,f \right) . \end{aligned}$$

It follows that f(z) is a rational function of degree \(\le 2\).


\(\mathbf {Subcase \,\,2.2.2.2.1}\): \(k\ge 2\). Since the zeros of f(z) have multiplicities at least \(k+1\ge 3\), then we get \(f(z)\ne 0\). Thus, by Lemma 2.3, we obtain that \(f^{l}(z)(f^{(k)})^{n}(z) -q(z)\) has at least \(l + k + 1\ge 5\) distinct zeros, which is a contradiction.


\(\mathbf {Subcase\,\,2.2.2.2.2}\): \(k=1\). Then we get \(f(z)\ne 0\) or f(z) has only one zero with multiplicity 2.

The former case can be ruled out from Lemma 2.3. Hence f(z) has the following forms:

$$\begin{aligned} \mathrm{(i)}\,\, f(z)&= A(z-z_{0})^{2}; ~~{\rm (ii)}\,\, f(z)=\frac{A(z-z_{0})^{2}}{(z-z_{1})};\\ \mathrm{(iii)}\,\, f(z)&= \frac{A(z-z_{0})^{2}}{(z-z_{1})^{2}}; ~~{\rm (iv)} \,\, f(z)=\frac{A(z-z_{0})^{2}}{(z-z_{1})(z-z_{2})}, \end{aligned}$$

where \(A, z_{0}\) are nonzero constants, and \(z_{1}, z_{2}\) are distinct constants. Clearly, \(z_{0}\ne z_{1}, z_{0}\ne z_{2}\), and \(T(r,f)=2 \log r + O(1)\).

\(\mathrm{(i)}\,\, f(z)=A(z-z_{0})^{2}\). Obviously, \({\overline{N}}\left(r,\frac{1}{f} \right)\le \frac{1}{2} T(r,f)+ O(1)\). From (2.4), we obtain

$$\begin{aligned} 3T(r,f)\le 2 {\overline{N}}\left(r,\frac{1}{f} \right)+{\overline{N}}(r,f)+2 \log r + S(r,f). \end{aligned}$$

Then

$$\begin{aligned} T(r,f)\le \log r + S(r,f), \end{aligned}$$

a contradiction.

\(\mathrm{(ii)} \,\, f(z)=\frac{A(z-z_{0})^{2}}{(z-z_{1})}\). Then, \({\overline{N}}\left(r,\frac{1}{f} \right)\le \frac{1}{2} T(r,f)+ O(1), {\overline{N}}(r,f) = \log r \). From (2.4), we obtain

$$\begin{aligned} 3T(r,f)\le 2 {\overline{N}} \left(r,\frac{1}{f} \right)+{\overline{N}}(r,f)+2 \log r + S(r,f). \end{aligned}$$

Then

$$\begin{aligned} T(r,f)\le \frac{4}{3}\log r + S(r,f), \end{aligned}$$

which is a contradiction.

\(\mathrm{(iii)} \,\, f(z)=\frac{A(z-z_{0})^{2}}{(z-z_{1})^{2}}\). Then, \({\overline{N}}\left(r,\frac{1}{f} \right)\le \frac{1}{2} T(r,f)+ O(1), {\overline{N}}(r,f)\le \frac{1}{2} T(r,f) + O(1)\). From (2.4), we obtain

$$\begin{aligned} 3T(r,f)\le 2 {\overline{N}}\left(r,\frac{1}{f} \right)+{\overline{N}}(r,f)+2 \log r + S(r,f). \end{aligned}$$

Then

$$\begin{aligned} T(r,f)\le \frac{7}{6}\log r + S(r,f), \end{aligned}$$

we also get a contradiction.

\(\mathrm{(iv)} \,\, f(z)=\frac{A(z-z_{0})^{2}}{(z-z_{1})(z-z_{2})}\). Then

$$\begin{aligned} f^2\left( z \right) f'\left( z \right) =\frac{A^3\left( z-z_0 \right) ^5\left[ \left( 2z_0-\left( z_1+z_2 \right) \right) z+2z_1z_2-z_0\left( z_1+z_2 \right) \right] }{\left( z-z_1 \right) ^4\left( z-z_2 \right) ^4}. \end{aligned}$$
(2.5)

Since \(q(z)=Bz + C\), where \(B\ne 0, C\) are constants, and \(f^{l}(z)f^{(k)}(z)-q(z)\) has only one zero. Then we have

$$\begin{aligned} f^{2}(z)f'(z)=Bz+ C +\frac{d(z-\zeta )^{t}}{\left( z-z_1 \right) ^4\left( z-z_2 \right) ^4}. \end{aligned}$$
(2.6)

Obviously, By calculation, we get \(d=-B, t=9\), and \(\zeta \ne z_{0}\).

Differentiating (2.5)–(2.6) two times separately, we obtain

$$\begin{aligned}{}[f^{2}(z)f'(z)]^{''}=\frac{(z-z_{0})^{3}g(z)}{\left( z-z_1 \right) ^6\left( z-z_2 \right) ^6}, \end{aligned}$$

where g(z) is a polynomial of degree \(\le 5\), and

$$\begin{aligned}{}[f^{2}(z)f'(z)]^{''}=\frac{(z-\zeta )^{7}h(z)}{\left( z-z_1 \right) ^6\left( z-z_2 \right) ^6}, \end{aligned}$$

where h(z) is a polynomial of degree \(\le 4\).

Since \(z_{0} \ne \zeta \), then \((z-\zeta )^{7}\) is a factor of g(z). Thus g(z) is a polynomial of degree \(\ge 7\), which is impossible. \(\square \)

Lemma 2.6

Let \(k, n \in {\mathbb {N}}, l\in {\mathbb {N}}\backslash \left\{ 1 \right\} \), and let \({\mathcal {F}}=\{f_{m}\}\) be a sequence of meromorphic functions, \(g_{m}(z)\) be a sequence of holomorphic functions in D such that \(g_{m}(z)\longrightarrow g(z)\), where \(g(z)(\ne 0)\) be a holomorphic function. If all zeros of function \(f_{m}(z)\) have multiplicity at least k, and \(f_{m}^{l}(z)(f_{n}^{(k)}(z))^{n}-g_{n}(z)\) has at most one zero, then \({\mathcal {F}}\) is normal in D.

Proof

Suppose that \({\mathcal {F}}\) is not normal at \(z_{0}\in D\). By Lemma 2.1, there exists \(z_{m}\rightarrow z_{0}\), \(\rho _{m}\rightarrow 0^{+}\), and \(f_{m}\in {\mathcal {F}}\) such that

$$\begin{aligned} h_{m}(\xi ) &=\frac{f_{m}(z_{m}+\rho _{m}\xi )}{\rho _{m}^{\frac{kn}{l+n}}}\longrightarrow h(\xi ) \end{aligned}$$

locally uniformly on compact subsets of \({\mathbb {C}}\), where \(h(\xi )\) is a non-constant meromorphic function in \({\mathbb {C}}\). By Hurwitz’s theorem, all zeros of \(h(\xi )\) have multiplicity at least k.

For each \(\xi \in {\mathbb {C}}/\{h^{-1}(\infty )\}\), we have

$$\begin{aligned}&h_{m}^{l}(\xi )(h_{m}^{(k)}(\xi ))^{n}-g_{m}(z_{m}+\rho _{m}\xi )=f_{m}^{l}(z_{m}+\rho _{m}\xi )(f_{m}^{(k)})^{n}(z_{m}+\rho _{m}\xi )\\&\quad - g_{m}(z_{m}+\rho _{m}\xi )\longrightarrow h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0}). \end{aligned}$$

Obviously, \(h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0})\not \equiv 0\).

Suppose that \(h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0})\equiv 0\), then \(h(\xi )\ne 0\) since \(g(z_{0})\ne 0\). It follows that

$$\begin{aligned} \frac{1}{h^{l+n}(\xi )}\equiv \frac{1}{g(z_{0})} \left[\frac{h^{(k)}(\xi )}{h(\xi )} \right]^{n}. \end{aligned}$$

Thus

$$\begin{aligned} (l+n)m \left(r,\frac{1}{h} \right)=m \left(r,\frac{1}{g(z_{0})} \left[\frac{h^{(k)}(\xi )}{h(\xi )} \right]^{n} \right)=S(r,h). \end{aligned}$$

Then \(T(r,h)=S(r,h)\) since \(h\ne 0\). we can deduce that \(h(\xi )\) is a constant, a contradiction.

We claim that \(h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0})\) has at most one zero, Suppose this is not the case, and \(h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0})\) has two distinct zeros \(\xi _{1}\), and \(\xi _{2}\). We choose a positive number \(\delta \) small enough such that \(D_{1}\cap D_{2}=\emptyset \) and \(h^{l}(\xi )(h^{(k)})^{n}(\xi )-g(z_{0})\) has no other zeros in \(D_{1}\cup D_{2}\) except for \(\xi _{1}\) and \(\xi _{2}\), where \(D_{1}=\{\xi :|\xi -\xi _{1}|<\delta \}\) and \(D_{2}=\{\xi :|\xi -\xi _{2}|<\delta \}\).

By Hurwitz’s theorem, for sufficiently large m, there exist points \(\xi _{1,m}\rightarrow \xi _{1}\) and \(\xi _{2,m}\rightarrow \xi _{2}\) such that

$$\begin{aligned} f_{m}^{l}(z_{m}+\rho _{m}\xi _{1,m})(f_{m}^{(k)})^{^{n}}(z_{m}+\rho _{m}\xi _{1,m})-g_{m}(z_{m}+\rho _{m}\xi _{1,m})=0, \end{aligned}$$

and

$$\begin{aligned} f_{m}^{l}(z_{m}+\rho _{m}\xi _{2,m})(f_{m}^{(k)})^{^{n}}(z_{m}+\rho _{m}\xi _{2,m})-g_{m}(z_{m}+\rho _{m}\xi _{2,m})=0 \end{aligned}$$

Since \(f_{m}^{l}(z)(f_{m}^{(k)}(z))^{n}-g_{m}(z)\) has at most one zero in D, then

$$\begin{aligned} z_{m}+\rho _{m}\xi _{1,m}=z_{m}+\rho _{m}\xi _{2,m}, \end{aligned}$$

this is

$$\begin{aligned} \xi _{1,m}=\xi _{2,m}=\frac{z_{0}-z_{m}}{\rho _{m}}, \end{aligned}$$

which contradicts the fact \(D_{1}\cap D_{2}=\emptyset \). The claim is proved.

From Lemma 2.2, we get \(h^{l}(z)(h^{(k)})^{n}(z)-g(z_{0})\) has at least two distinct zeros, a contradiction. Therefore \({\mathcal {F}}\) is normal in D. \(\square \)

3 Proof of Theorem

Proof of Theorem 1.1

Suppose that \({\mathcal {F}}\) is not normal at \(z_{0}\). From Lemma 2.6, we obtain \(a(z_{0})= 0\). Without loss of generality, we assume that \(z_0 =0\) and \(a(z)=z^tb(z)\), where \(1\le t\le m\), \(b(0)=1\). Then by Lemma 2.1, there exists \(z_{j} \longrightarrow 0\), \(f_{j} \in {\mathcal {F}}\) and \(\rho _{j} \longrightarrow 0^{+}\) such that

$$\begin{aligned} g_{j}(\xi )=\frac{f_{j}(z_{j}+\rho _{j}\xi )}{\rho _{j}^{\frac{kn+t}{l+n}}}\longrightarrow g(\xi ) \end{aligned}$$

locally uniformly on compact subsets of \({\mathbb {C}}\), where \(g(\xi )\) is a non-constant meromorphic functions in \({\mathbb {C}}\). By Hurwitz’s theorem, all zeros of \(g(\xi )\) have multiplicity at least \(k+m\).

Next, we discuss two cases.


Case 1.  Let \(\frac{z_n}{\rho _n}\rightarrow \alpha ,\alpha \in {\mathbb {C}}\).

For each \(\xi \in {\mathbb {C}}/\{g^{-1}(\infty )\}\), It can be easily calculated that

$$\begin{aligned}&g_j^{l}\left( \xi \right) (g_{j}^{\left( k \right) }\left( \xi \right) )^{n} -\left( \xi +\frac{z_j}{\rho _j} \right) ^tb\left( z_j+\rho _j\xi \right) \\& \quad =\frac{f^{l}_j\left( z_j+\rho _j\xi \right) (f_{j}^{\left( k \right) }\left( z_j+\rho _j\xi \right) )^{n} -a\left( z_j+\rho _j\xi \right) }{\rho _{j}^{t}}\longrightarrow g^{l}\left( \xi \right) ( g^{\left( k \right) }\left( \xi \right) )^{n} -\left( \xi +\alpha \right) ^t. \end{aligned}$$

Since for sufficiently large j, \(f^{l}_j\left( z_j+\rho _j\xi \right) (f_{j}^{\left( k \right) }\left( z_j+\rho _j\xi \right) )^{n} -a\left( z_j+\rho _j\xi \right) \) has one zero, from the proof Lemma  2.6, we can deduce that \(g^{l}\left( \xi \right) (g^{\left( k \right) }\left( \xi \right) )^{n} -\left( \xi +\alpha \right) ^t\) has at most one distinct zero.

By Lemma 2.5, \(g^{l}\left( \xi \right) (g^{\left( k \right) }\left( \xi \right) )^{n} -\left( \xi +\alpha \right) ^t\) have at least two distinct zeros. Thus \(g(\xi )\) is a constant, we can get a contradiction.


Case 2. Let \(\frac{z_n}{\rho _n}\rightarrow \infty \).

Set

$$\begin{aligned} F_{j}(\xi )=\frac{f_{j}(z_{j}+\rho _{j}\xi )}{\rho _{j}^{\frac{kn+t}{l+n}}}. \end{aligned}$$

It follows that

$$\begin{aligned} F^{l}_{j}(\xi )(F_{j}^{(k)}(\xi ))^{n}-(1+\xi )^{t}b(z_{j}+z_{j}\xi ) =\frac{{{f^{l}_j}({z_j} + {z _j}\xi )(f_j^{(k)}({z_j} + {z _j}\xi )})^{n}-{a({z_j} + {z _j}\xi )}}{z_{j}^{t}}. \end{aligned}$$

As the same argument as in Lemma 2.6, we can deduce that \(F^{l}_{j}(\xi )(F_{j}^{(k)}(\xi ))^{n}-(1+\xi )^{t}b(z_{j}+z_{j}\xi )\) has at most one zero in \(\Delta =\{\xi :|\xi |<1\}\).

Since all zeros of \(F_{j}\) have multiplicity at least \(k+m\), and \((1+\xi )^{t}b(z_{j}+z_{j}\xi )\rightarrow (1+\xi )^{t}\ne 0\) for \(\xi \in \Delta \). Then by Lemma 2.6, \(\{F_{n}\}\) is normal in \(\Delta \).

Therefore, there exists a subsequence of \( \{F_n(z)\}\)(we still express it as \( \{F_n(z)\}\)) such that \( \{F_n(z)\}\) converges spherically locally uniformly to a meromorphic function F(z) or \(\infty \).

If \(F(0)\ne \infty \), then, for each \(\xi \in {\mathbb {C}}/\{g^{-1}(\infty )\}\), we have

$$\begin{aligned} g^{\left( k+m-1 \right) }\left( \xi \right)&= \lim _{j\rightarrow \infty }g_{j}^{\left( k+m-1 \right) }\left( \xi \right) =\lim _{j\rightarrow \infty }\frac{f_{j}^{\left( k+m-1 \right) }\left( z_j+\rho _j\xi \right) }{\rho _{j}^{\frac{kn+t}{l+n}-\left( k+m-1 \right) }} \\&= \underset{j\rightarrow \infty }{\lim }\left( \frac{\rho _j}{z_j} \right) ^{k+m-1-\frac{kn+t}{l+n}}F_{j}^{\left( k+m-1 \right) }\left( \frac{\rho _j}{z_j}\xi \right) =0. \end{aligned}$$

Hence \(g^{(k+m-1)}\equiv 0\). It follows that g is a polynomial of degree \(\le k+m-1\). Note that all zeros of g have multiplicity at least \(k+m\), then we get that g is a constant, which is a contradiction.

If \(F(0)=\infty \), then, for each \(\xi \in {\mathbb {C}}/\{g^{-1}(0)\}\), we get

$$\begin{aligned} \frac{1}{F_j\left( \frac{\rho _j}{z_j}\xi \right) }=\frac{z_{j}^{\frac{kn+t}{l+n}}}{f_j\left( z_j+\rho _j\xi \right) }\rightarrow \frac{1}{F\left( 0 \right) }=0, \end{aligned}$$

It follows that we have

$$\begin{aligned} \frac{1}{g\left( \xi \right) }=\underset{j\rightarrow \infty }{\lim }\frac{\rho _{j}^{\frac{kn+t}{l+n}}}{f_j\left( z_j+\rho _j\xi \right) }=\underset{j\rightarrow \infty }{\lim }\left( \frac{\rho _j}{z_j} \right) ^{\frac{kn+t}{l+n}}\frac{z_{j}^{\frac{kn+t}{l+n}}}{f_j\left( z_j+\rho _j\xi \right) }=0. \end{aligned}$$

Thus \(g(\xi )=\infty \), which contradicts that \(g(\xi )\) is a non-constant meromorphic function.

Therefore \({\mathcal {F}}\) is normal at \(z_0 = 0\). Hence \({\mathcal {F}}\) is normal in D.