ORIGINAL RESEARCH PAPER

Normal family of meromorphic functions concerning limited the numbers of zeros

Chengxiong Sun¹

Received: 15 October 2019/Accepted: 17 October 2020/Published online: 5 November 2020 @ Forum D'Analystes, Chennai 2020

Abstract

Let $k, n \in \mathbb{N}, l \in \mathbb{N} \setminus \{1\}, m \in \mathbb{N} \cup \{0\}$, and let $a(z) \neq 0$ be a holomorphic function, all zeros of a(z) have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least k + m, and for $f \in \mathcal{F}, f^l(f^{(k)})^n - a(z)$ has at most one zero in D, then \mathcal{F} is normal in D.

Keywords Meromorphic function · Normal families · Zero numbers

Mathematics Subject Classification Primary 30D35 · Secondary 30D45

1 Introduction and main results

Let *f* be a meromorphic function in \mathbb{C} and we shall use the usual notations and classical results of Nevanlinna's theory, such as $m(r,f), N(r,f), \overline{N}(r,f), T(r,f), \ldots$

Let *D* be a domain in \mathbb{C} and \mathcal{F} be a family of meromorphic functions in *D*. A family \mathcal{F} is said to be normal in *D*, in the sense of Montel, if each sequence f_n has a subsequence f_{n_k} that converges spherically locally uniformly in *D* to a meromorphic function or to the constant ∞ .

The following well-known normal conjecture was proposed by Hayman in 1967.

Theorem A [1] Let $n \in \mathbb{N}$, and $a \in \mathbb{C} \setminus \{0\}$. let \mathcal{F} be a family of meromorphic function in D. If $f^n f' \neq a$, for each $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

This normal conjecture was showed by Yang and Zhang [2] (for $n \ge 5$), Gu [3] (for n = 4, 3), Pang [4] (for $n \ge 2$) and Chen and Fang [5] (for n = 1).

For the related results, see Zhang [6], Meng and Hu [7], Deng et al.[8].

Chengxiong Sun aatram@aliyun.com

¹ Department of Mathematics, Xuanwei No. 9 Senior High School, Yunnan, People's Republic of China

Ding et al. [9] studied the general case of $f^l(f^{(k)})^n$ and and proved the following theorem.

Theorem B Let $k, l \in \mathbb{N}, n \in \mathbb{N} \setminus \{1\}, a \in \mathbb{C} \setminus \{0\}$. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $max\{k,2\}$, and for $f, g \in \mathcal{F}, f^l(f^{(k)})^n$ and $g^l(g^{(k)})^n$ share a, then \mathcal{F} is normal in D.

Recently, Meng et al. [10] considered the case of sharing a holomorphic function and and proved the following result.

Theorem C Let $k, l \in \mathbb{N}, n \in \mathbb{N} \setminus \{1\}, m \in \mathbb{N} \cup \{0\}$, and let $a(z) (\not\equiv 0)$ be a holomorphic function, all zeros of a(z) have multiplicities at most m, which is divisible by n + l. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least k + m + 1 and all poles of f are of multiplicity at least m + 1, and for $f, g \in \mathcal{F}$, $f^l(f^{(k)})^n$ and $g^l(g^{(k)})^n$ share a(z), then \mathcal{F} is normal in D.

By Theorem C, the following question arises naturally:

Question 1.1 Is it possible to omit the conditions: (1)" *m* is divisible by n + l" and (2)"all poles of *f* have multiplicity at least m + 1"?

In this paper, we study this problem and obtain the following result.

Theorem 1.1 Let $k, n \in \mathbb{N}, l \in \mathbb{N} \setminus \{1\}, m \in \mathbb{N} \cup \{0\}$, and let $a(z) \neq 0$ be a holomorphic function, all zeros of a(z) have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least k + m, and for $f \in \mathcal{F}, f^l(f^{(k)})^n - a(z)$ has at most one zero in D, then \mathcal{F} is normal in D.

Now we give some examples to show that the conditions in our results are necessary.

Example 1.1 Let $D = \{z : |z| < 1\}$ and $a(z) \equiv 0$. Let $\mathcal{F} = \{f_j(z)\}$, where $f_j(z) = e^{jz}, z \in D, j = 1, 2...$

Then $f_j^l(z) (f_j^{(k)})^n(z) - a(z) \neq 0$ in *D*, however \mathcal{F} is not normal at z = 0. This shows that $a(z) \neq 0$ is necessary in Theorem 1.1.

Example 1.2 Let $D = \{z : |z| < 1\}$ and $a(z) = \frac{1}{z^{1+kn+n}}$. Let $\mathcal{F} = \{f_j(z)\}$, where

$$f_j(z) = \frac{1}{jz}, z \in D, j = 1, 2 \cdots, j^{l+n} \neq [(-1)^k k!]^n.$$

Then $f_j^l(z) \left(f_j^{(k)}\right)^n(z) - a(z) \neq 0$ in *D*, however \mathcal{F} is not normal at z = 0. This shows that Theorem 1.1 is not valid if a(z) is a meromorphic function in *D*.

Example 1.3 Let $D = \{z : |z| < 1\}$, a(z) = a. Let $\mathcal{F} = \{f_j(z)\}$, where

$$f_j(z) = j z^{k-1}, z \in D, j = 1, 2 \cdots$$

🖄 Springer

Then $f_j^l(z) (f_j^{(k)})^n(z) - a$, which has no zero in D, however \mathcal{F} is not normal at z = 0. This shows that the condition "all zeros of f have multiplicity at least k + m" in Theorem 1.1 is sharp.

Example 1.4 Let $D = \{z : |z| < 1\}$, a(z) = a. Let $\mathcal{F} = \{f_j(z)\}$, where $f_j(z) = jz^k, z \in D, j = 1, 2...$

Then $f_j^l(z) (f_j^{(k)})^n(z) - a = j^{l+n} (k!)^n z^{lk} - a$, which has at least $l \ge 2$ distinct zeros in D, however \mathcal{F} is not normal at z = 0. This shows that the condition " $f^l(f^{(k)})^n - a(z)$ has at most one zero" in Theorem 1.1 is necessary.

2 Some lemmas

Lemma 2.1 [11] Let \mathcal{F} be a family of functions meromorphic in the unit disc Δ , all of whose zeros have multiplicity at least k. Then if \mathcal{F} is not normal in any neighbourhood of $z_0 \in \Delta$, there exist, for each α , $0 \le \alpha < k$,

- (i) points $z_n, z_n \rightarrow z_0, z_0 \in \Delta$;
- (ii) functions $f_n \in \mathcal{F}$; and
- (iii) positive numbers $\rho_n \to 0^+$, such that $g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi) \to g(\xi)$ spherically uniformly on compact subsets of \mathbb{C} , where g is a non-constant meromorphic function, all of whose zeros have multiplicity at least k.

Lemma 2.2 [12] Let $k, n \in \mathbb{N}$, $l \in \mathbb{N} \setminus \{1\}$, $a \in \mathbb{C} \setminus \{0\}$, and let f(z) be a nonconstant meromorphic with all zeros that have multiplicity at least k. Then $f^l(z)(f^{(k)})^n(z) - a$ has at least two distinct zeros.

Using the idea of Chang [13], we get the following lemma.

Lemma 2.3 Let $k, l, n, m \in \mathbb{N}$, let q(z) be a polynomial of degree m, and let f(z) be a non-constant rational function with $f(z) \neq 0$. Then $f^l(z)(f^{(k)})^n(z) - q(z)$ has at least l + kn + n distinct zeros.

The proof of Lemma 2.3 *is almost exactly the same with Lemma* 11 *in Deng etc.* [14], *here, we omit the details.*

Lemma 2.4 [15] Let $f_i(j = 1, 2)$ be two nonconstant meromorphic functions, then

$$N(r, f_1 f_2) - N\left(r, \frac{1}{f_1 f_2}\right) = N(r, f_1) + N(r, f_2) - N\left(r, \frac{1}{f_1}\right) - N\left(r, \frac{1}{f_2}\right)$$

Lemma 2.5 Let $k, m, n \in \mathbb{N}$, $l \in \mathbb{N} \setminus \{1\}$, let q(z) be a polynomial of degree m, and let f(z) be a non-constant meromorphic function in \mathbb{C} , the zeros of f(z) have multiplicities at least k + m. Then $(f(z))^l (f^{(k)})^n (z) - q(z)$ has at least two distinct zeros.

Proof Since

$$\begin{aligned} \frac{1}{f^{l+n}} &= \left(\frac{f^{(k)}}{f}\right)^n \cdot \frac{1}{q} - \frac{f^l \left(f^{(k)}\right)^n - q}{qf^{l+n}} \\ &= \frac{f^l \left(f^{(k)}\right)^n}{qf^{l+n}} - \frac{\left[f^l \left(f^{(k)}\right)^n\right]' q - q' \left[f^l \left(f^{(k)}\right)^n\right]}{qf^{l+n}} \cdot \frac{f^l \left(f^{(k)}\right)^n - q}{\left[f^l \left(f^{(k)}\right)^n\right]' q - q' \left[f^l \left(f^{(k)}\right)^n\right]}.\end{aligned}$$

Noticing that $m(r, \frac{f^{(k)}}{f}) = S(r, f), m(r, \frac{1}{q}) = O(1)$, and m(r, q) = mlogr + O(1). By Nevanlinna's Fundamental Theorem, we get

$$\begin{split} (l+n)m\left(r,\frac{1}{f}\right) &= m\left(r,\frac{1}{f^{l+n}}\right) \\ &= m\left(r,\frac{f^{l}(f^{(k)})^{n}}{qf^{l+n}} - \frac{[f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]^{'}}{qf^{l+n}} \cdot \frac{f^{l}(f^{(k)})^{n}}{qf^{l+n}} \right) \\ &\leq m\left(r,\frac{1}{q}\right) + mn\left(r,\frac{f^{(k)}}{f}\right) + m\left(r,\frac{f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]}{qf^{l+n}}\right) \\ &+ m\left(r,\frac{f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]}{qf^{l}(f^{(k)})^{n}}\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]}{f^{l}(f^{(k)})^{n}}\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]}{f^{l}(f^{(k)})^{n}}\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}]^{'}q - q^{'}[f^{l}(f^{(k)})^{n}]}{f^{l}(f^{(k)})^{n}}\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &- N\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ S(r,f) \\ &= m\left(r,q,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ S(r,f) \\ &\leq m\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ S(r,f) \\ &\leq m\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ N\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ N\left(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[f^{l}(f^{(k)})^{n}]\right) \\ &+ N(r,\frac{f^{l}(f^{(k)})^{n}}{q} - q^{'}[$$

By Lemma 2.4 applied to (2.1), we can get

$$\begin{split} (l+n)m\bigg(r,\frac{1}{f}\bigg) &\leq m \left(r,\frac{\left[\frac{f^{l}(f^{(k)})^{n}-q}{q}\right]'}{r}\right) + N\bigg(r,\frac{1}{f^{l}(f^{(k)})^{n}-q}\bigg) \\ &- N\bigg(r,f^{l}\bigg(f^{(k)}\bigg)^{n}-q\bigg) + N\bigg(r,\bigg[f^{l}\bigg(f^{(k)}\bigg)^{n}\bigg]'q - q'\bigg[f^{l}\bigg(f^{(k)}\bigg)^{n}\bigg]\bigg) \\ &- N\bigg(r,\frac{1}{\big[f^{l}(f^{(k)})^{n}\big]'q - q'\big[f^{l}(f^{(k)})^{n}\bigg]}\bigg) + m\log r + S(r,f). \end{split}$$

This is

$$(l+n)m\left(r,\frac{1}{f}\right) \leq \overline{N}(r,f) + N\left(r,\frac{1}{f^{l}(f^{(k)})^{n}-q}\right) - N\left(r,\frac{1}{\left[f^{l}(f^{(k)})^{n}\right]'q - q'\left[f^{l}(f^{(k)})^{n}\right]}\right) + m\log r + S(r,f).$$
(2.2)

We add $(l+n)N(r,\frac{1}{f})$ to both sides in (2.2), then

$$(l+n)T\left(r,\frac{1}{f}\right) \le (l+n)N\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + N\left(r,\frac{1}{f^{l}(f^{(k)})^{n}-q}\right) - N\left(r,\frac{1}{\left[f^{l}(f^{(k)})^{n}\right]'q - q'\left[f^{l}(f^{(k)})^{n}\right]}\right) + m\log r + S(r,f).$$
(2.3)

Let ξ be a zero of f with multiplicity $t(\geq k+m)$, then ξ is a zero of $[f^l(f^{(k)})^n]'q - [f^l(f^{(k)})^n]q'$ with multiplicity at least (l+n)t - kn - 1. Noticing that

$$\left[f^{l}\left(f^{(k)}\right)^{n}\right]'q-q'\left[f^{l}\left(f^{(k)}\right)^{n}\right]=\left[f^{l}\left(f^{(k)}\right)^{n}-q\right]'q-q'\left[f^{l}\left(f^{(k)}\right)^{n}-q\right],$$

which implies

$$\begin{split} & N\left(r, \frac{1}{\left[f^{l}(f^{(k)})^{n}\right]' q - q'\left[f^{l}(f^{(k)})^{n}\right]}\right) \geq N\left(r, \frac{1}{f^{l}(f^{(k)})^{n} - q}\right) \\ & - \overline{N}\left(r, \frac{1}{f^{l}(f^{(k)})^{n} - q}\right). \end{split}$$

Therefore, from (2.3), we get

$$\begin{split} (l+n)T(r,f) &\leq (kn+1)\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f^l(f^{(k)})^n - q}\right) + m\log r + S(r,f) \\ &\leq \frac{kn+1}{k+m}N\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f^l(f^{(k)})^n - q}\right) + m\log r + S(r,f). \end{split}$$

i.e.,

$$MT(r,f) \le \overline{N}\left(r, \frac{1}{f^l(f^{(k)})^n - q}\right) + m\log r + S(r,f),$$
(2.4)

where

$$M = l + n - 1 - \frac{kn + 1}{k + m} = l - 1 + \frac{mn - 1}{k + m}.$$

Suppose that $f^{l}(z)(f^{(k)})^{n}(z) - q(z)$ has at most one zero.

Next, we consider two cases.

Case 1: $n \ge 2$. By the assumptions,

$$M \ge 1 + \frac{1}{k+m}.$$

From (2.4), we get

$$T(r,f) < MT(r,f) \le (m+1)\log r + S(r,f).$$

It follows that f(z) is a rational function of degree $\langle m + 1$. Since the zeros of f(z) have multiplicities at least $k + m \ge m + 1$, then we get $f(z) \ne 0$. Thus, by Lemma 2.3, we obtain that $f^l(z)(f^{(k)})^n(z) - q(z)$ has at least $l + kn + n \ge 6$ distinct zeros, which is a contradiction.

Case 2: n = 1. Then $M = l - \frac{k+1}{k+m}$.

Subcase 2.1: $m \ge 2$. By the assumptions, M > 1 and from (2.4), we get

$$T(r,f) < (m+1)\log r + S(r,f)$$

It follows that f(z) is a rational function of degree $\langle m + 1$. Since the zeros of f(z) have multiplicities at least $k + m \ge m + 1$, then we get $f(z) \ne 0$. Thus, by Lemma 2.3, we obtain that $f^l(z)(f^{(k)})^n(z) - q(z)$ has at least $l + k + 1 \ge 4$ distinct zeros, which is a contradiction.

Subcase 2.2: m = 1. From (2.4), we get

$$(l-1)T(r,f) \leq \overline{N}\left(r,\frac{1}{f^l f^{(k)}-q}\right) + \log r + S(r,f),$$

Subcase 2.2.1: $f^{l}(z)f^{(k)}(z) - q(z) \neq 0$. From (2.4), we get

$$T(r,f) \le (l-1)T(r,f) \le \log r + S(r,f).$$

It follows that f(z) is a rational function of degree ≤ 1 . Since the zeros of f(z) have multiplicities at least $k + 1 \geq 2$, then we get $f(z) \neq 0$. Thus, by Lemma 2.3, we obtain that $f^{l}(z)(f^{(k)})^{n}(z) - q(z)$ has at least $l + k + 1 \geq 4$ distinct zeros, which is a contradiction.

Subcase 2.2.2: $f^{l}(z)f^{(k)}(z) - q(z) = 0$. By the assumptions, we get $f^{l}(z)f^{(k)}(z) - q(z)$ has only one zero. Then, from (2.4), we obtain

$$(l-1)T(r,f) \le 2\log r + S(r,f).$$

Subcase 2.2.2.1: $l \ge 3$, from (2.4), we obtain

$$T(r,f) \le \log r + S(r,f).$$

It follows that f(z) is a rational function of degree ≤ 1 . Since the zeros of f(z) have multiplicities at least $k + 1 \geq 2$, then we get $f(z) \neq 0$. Thus, by Lemma 2.3, we obtain that $f^{l}(z)(f^{(k)})^{n}(z) - q(z)$ has at least $l + k + 1 \geq 5$ distinct zeros, which is a contradiction.

Subcase 2.2.2.2: l = 2, from (2.4), we obtain

$$T(r,f) \le 2\log r + S(r,f).$$

It follows that f(z) is a rational function of degree ≤ 2 .

Subcase 2.2.2.1: $k \ge 2$. Since the zeros of f(z) have multiplicities at least $k+1\ge 3$, then we get $f(z) \ne 0$. Thus, by Lemma 2.3, we obtain that $f^l(z)(f^{(k)})^n(z) - q(z)$ has at least $l+k+1\ge 5$ distinct zeros, which is a contradiction.

Subcase 2.2.2.2.2: k = 1. Then we get $f(z) \neq 0$ or f(z) has only one zero with multiplicity 2.

The former case can be ruled out from Lemma 2.3. Hence f(z) has the following forms:

(i)
$$f(z) = A(z - z_0)^2$$
; (ii) $f(z) = \frac{A(z - z_0)^2}{(z - z_1)}$;
(iii) $f(z) = \frac{A(z - z_0)^2}{(z - z_1)^2}$; (iv) $f(z) = \frac{A(z - z_0)^2}{(z - z_1)(z - z_2)}$,

where A, z_0 are nonzero constants, and z_1, z_2 are distinct constants. Clearly, $z_0 \neq z_1, z_0 \neq z_2$, and $T(r, f) = 2 \log r + O(1)$.

(i) $f(z) = A(z-z_0)^2$. Obviously, $\overline{N}\left(r,\frac{1}{f}\right) \le \frac{1}{2}T(r,f) + O(1)$. From (2.4), we obtain

$$3T(r,f) \le 2\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + 2\log r + S(r,f).$$

Then

$$T(r,f) \le \log r + S(r,f),$$

a contradiction.

(ii) $f(z) = \frac{A(z-z_0)^2}{(z-z_1)}$. Then, $\overline{N}\left(r,\frac{1}{f}\right) \le \frac{1}{2}T(r,f) + O(1), \overline{N}(r,f) = \log r$. From (2.4), we obtain

we obtain

$$3T(r,f) \le 2\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + 2\log r + S(r,f).$$

Then

$$T(r,f) \le \frac{4}{3}\log r + S(r,f),$$

which is a contradiction.

(iii) $f(z) = \frac{A(z-z_0)^2}{(z-z_1)^2}$. Then, $\overline{N}\left(r,\frac{1}{f}\right) \leq \frac{1}{2}T(r,f) + O(1), \overline{N}(r,f) \leq \frac{1}{2}T(r,f) + O(1)$. From (2.4), we obtain

$$3T(r,f) \le 2\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}(r,f) + 2\log r + S(r,f).$$

Then

$$T(r,f) \le \frac{7}{6}\log r + S(r,f),$$

we also get a contradiction.

(iv)
$$f(z) = \frac{A(z-z_0)^2}{(z-z_1)(z-z_2)}$$
. Then

$$f^2(z)f'(z) = \frac{A^3(z-z_0)^5[(2z_0-(z_1+z_2))z+2z_1z_2-z_0(z_1+z_2)]}{(z-z_1)^4(z-z_2)^4}.$$
(2.5)

Since q(z) = Bz + C, where $B \neq 0, C$ are constants, and $f^{l}(z)f^{(k)}(z) - q(z)$ has only one zero. Then we have

$$f^{2}(z)f'(z) = Bz + C + \frac{d(z-\zeta)^{t}}{(z-z_{1})^{4}(z-z_{2})^{4}}.$$
(2.6)

Obviously, By calculation, we get d = -B, t = 9, and $\zeta \neq z_0$.

Differentiating (2.5)–(2.6) two times separately, we obtain

$$[f^{2}(z)f'(z)]'' = \frac{(z-z_{0})^{3}g(z)}{(z-z_{1})^{6}(z-z_{2})^{6}}$$

where g(z) is a polynomial of degree ≤ 5 , and

$$[f^{2}(z)f'(z)]'' = \frac{(z-\zeta)^{7}h(z)}{(z-z_{1})^{6}(z-z_{2})^{6}},$$

where h(z) is a polynomial of degree ≤ 4 .

Since $z_0 \neq \zeta$, then $(z - \zeta)^7$ is a factor of g(z). Thus g(z) is a polynomial of degree ≥ 7 , which is impossible. \Box

Lemma 2.6 Let $k, n \in \mathbb{N}, l \in \mathbb{N} \setminus \{1\}$, and let $\mathcal{F} = \{f_m\}$ be a sequence of meromorphic functions, $g_m(z)$ be a sequence of holomorphic functions in D such that $g_m(z) \longrightarrow g(z)$, where $g(z)(\neq 0)$ be a holomorphic function. If all zeros of function $f_m(z)$ have multiplicity at least k, and $f_m^l(z)(f_n^{(k)}(z))^n - g_n(z)$ has at most one zero, then \mathcal{F} is normal in D.

Proof Suppose that \mathcal{F} is not normal at $z_0 \in D$. By Lemma 2.1, there exists $z_m \to z_0, \rho_m \to 0^+$, and $f_m \in \mathcal{F}$ such that

$$h_m(\xi) = rac{f_m(z_m+
ho_m\xi)}{
ho_m^{rac{kn}{l+n}}} \longrightarrow h(\xi)$$

locally uniformly on compact subsets of \mathbb{C} , where $h(\xi)$ is a non-constant meromorphic function in \mathbb{C} . By Hurwitz's theorem, all zeros of $h(\xi)$ have multiplicity at least k.

For each $\xi \in \mathbb{C}/\{h^{-1}(\infty)\}$, we have

$$\begin{aligned} h_m^l(\xi)(h_m^{(k)}(\xi))^n &- g_m(z_m + \rho_m \xi) = f_m^l(z_m + \rho_m \xi)(f_m^{(k)})^n(z_m + \rho_m \xi) \\ &- g_m(z_m + \rho_m \xi) \longrightarrow h^l(\xi)(h^{(k)})^n(\xi) - g(z_0). \end{aligned}$$

Obviously, $h^{l}(\xi)(h^{(k)})^{n}(\xi) - g(z_{0}) \neq 0$.

Suppose that $h^l(\xi)(h^{(k)})^n(\xi) - g(z_0) \equiv 0$, then $h(\xi) \neq 0$ since $g(z_0) \neq 0$. It follows that

$$\frac{1}{h^{l+n}(\xi)} \equiv \frac{1}{g(z_0)} \left[\frac{h^{(k)}(\xi)}{h(\xi)} \right]^n.$$

Thus

$$(l+n)m\left(r,\frac{1}{h}\right) = m\left(r,\frac{1}{g(z_0)}\left[\frac{h^{(k)}(\zeta)}{h(\zeta)}\right]^n\right) = S(r,h).$$

Then T(r,h) = S(r,h) since $h \neq 0$. we can deduce that $h(\xi)$ is a constant, a contradiction.

We claim that $h^l(\xi)(h^{(k)})^n(\xi) - g(z_0)$ has at most one zero, Suppose this is not the case, and $h^l(\xi)(h^{(k)})^n(\xi) - g(z_0)$ has two distinct zeros ξ_1 , and ξ_2 . We choose a positive number δ small enough such that $D_1 \cap D_2 = \emptyset$ and $h^l(\xi)(h^{(k)})^n(\xi) - g(z_0)$ has no other zeros in $D_1 \cup D_2$ except for ξ_1 and ξ_2 , where $D_1 = \{\xi : |\xi - \xi_1| < \delta\}$ and $D_2 = \{\xi : |\xi - \xi_2| < \delta\}$.

By Hurwitz's theorem, for sufficiently large *m*, there exist points $\xi_{1,m} \rightarrow \xi_1$ and $\xi_{2,m} \rightarrow \xi_2$ such that

$$f_m^l(z_m + \rho_m \xi_{1,m}) (f_m^{(k)})^n (z_m + \rho_m \xi_{1,m}) - g_m(z_m + \rho_m \xi_{1,m}) = 0,$$

and

$$f_m^l(z_m + \rho_m \xi_{2,m}) (f_m^{(k)})^n (z_m + \rho_m \xi_{2,m}) - g_m(z_m + \rho_m \xi_{2,m}) = 0$$

Since $f_m^l(z)(f_m^{(k)}(z))^n - g_m(z)$ has at most one zero in *D*, then

$$z_m + \rho_m \xi_{1,m} = z_m + \rho_m \xi_{2,m},$$

this is

$$\xi_{1,m} = \xi_{2,m} = \frac{z_0 - z_m}{\rho_m} \,,$$

which contradicts the fact $D_1 \cap D_2 = \emptyset$. The claim is proved.

From Lemma 2.2, we get $h^l(z)(h^{(k)})^n(z) - g(z_0)$ has at least two distinct zeros, a contradiction. Therefore \mathcal{F} is normal in D. \Box

3 Proof of Theorem

Proof of Theorem 1.1 Suppose that \mathcal{F} is not normal at z_0 . From Lemma 2.6, we obtain $a(z_0) = 0$. Without loss of generality, we assume that $z_0 = 0$ and $a(z) = z^t b(z)$, where $1 \le t \le m$, b(0) = 1. Then by Lemma 2.1, there exists $z_j \longrightarrow 0, f_j \in \mathcal{F}$ and $\rho_j \longrightarrow 0^+$ such that

$$g_j(\check{\zeta}) = rac{f_j(z_j+
ho_j\check{\zeta})}{
ho_i^{rac{kn+t}{l+n}}} \longrightarrow g(\check{\zeta})$$

locally uniformly on compact subsets of \mathbb{C} , where $g(\xi)$ is a non-constant meromorphic functions in \mathbb{C} . By Hurwitz's theorem, all zeros of $g(\xi)$ have multiplicity at least k + m.

Next, we discuss two cases.

Case 1. Let
$$\frac{z_n}{\alpha} \to \alpha, \alpha \in \mathbb{C}$$
.

For each $\xi \in \mathbb{C}/\{g^{-1}(\infty)\}$, It can be easily calculated that

$$g_{j}^{l}(\xi)(g_{j}^{(k)}(\xi))^{n} - \left(\xi + \frac{z_{j}}{\rho_{j}}\right)^{t} b(z_{j} + \rho_{j}\xi)$$

= $\frac{f_{j}^{l}(z_{j} + \rho_{j}\xi)(f_{j}^{(k)}(z_{j} + \rho_{j}\xi))^{n} - a(z_{j} + \rho_{j}\xi)}{\rho_{j}^{t}} \longrightarrow g^{l}(\xi)(g^{(k)}(\xi))^{n} - (\xi + \alpha)^{t}.$

Since for sufficiently large j, $f_j^l(z_j + \rho_j \xi)(f_j^{(k)}(z_j + \rho_j \xi))^n - a(z_j + \rho_j \xi)$ has one zero, from the proof Lemma 2.6, we can deduce that $g^l(\xi)(g^{(k)}(\xi))^n - (\xi + \alpha)^t$ has at most one distinct zero.

By Lemma 2.5, $g^l(\xi)(g^{(k)}(\xi))^n - (\xi + \alpha)^t$ have at least two distinct zeros. Thus $g(\xi)$ is a constant, we can get a contradiction.

Case 2. Let
$$\frac{z_n}{\rho_n} \to \infty$$
.

Set

$$F_j(\xi) = \frac{f_j(z_j + \rho_j \xi)}{\rho_j^{\frac{kn+i}{l+n}}}.$$

It follows that

$$F_j^l(\xi)(F_j^{(k)}(\xi))^n - (1+\xi)^l b(z_j+z_j\xi) = \frac{f_j^l(z_j+z_j\xi)(f_j^{(k)}(z_j+z_j\xi))^n - a(z_j+z_j\xi)}{z_j^l}$$

As the same argument as in Lemma 2.6, we can deduce that $F_j^l(\xi)(F_j^{(k)}(\xi))^n - (1+\xi)^t b(z_j+z_j\xi)$ has at most one zero in $\Delta = \{\xi : |\xi| < 1\}.$

Since all zeros of F_j have multiplicity at least k + m, and $(1 + \xi)^t b(z_j + z_j \xi) \rightarrow (1 + \xi)^t \neq 0$ for $\xi \in \Delta$. Then by Lemma 2.6, $\{F_n\}$ is normal in Δ .

Therefore, there exists a subsequence of $\{F_n(z)\}$ (we still express it as $\{F_n(z)\}$) such that $\{F_n(z)\}$ converges spherically locally uniformly to a meromorphic function F(z) or ∞ .

If $F(0) \neq \infty$, then, for each $\xi \in \mathbb{C}/\{g^{-1}(\infty)\}$, we have

$$g^{(k+m-1)}(\xi) = \lim_{j \to \infty} g_j^{(k+m-1)}(\xi) = \lim_{j \to \infty} \frac{f_j^{(k+m-1)}(z_j + \rho_j \xi)}{\rho_j^{\frac{k+l}{l+n} - (k+m-1)}}$$
$$= \lim_{j \to \infty} \left(\frac{\rho_j}{z_j}\right)^{k+m-1 - \frac{kn+l}{l+n}} F_j^{(k+m-1)}\left(\frac{\rho_j}{z_j} \xi\right) = 0.$$

Hence $g^{(k+m-1)} \equiv 0$. It follows that g is a polynomial of degree $\leq k + m - 1$. Note that all zeros of g have multiplicity at least k + m, then we get that g is a constant, which is a contradiction.

If $F(0) = \infty$, then, for each $\xi \in \mathbb{C}/\{g^{-1}(0)\}$, we get

$$\frac{1}{F_j\left(\frac{\rho_j}{z_j}\xi\right)} = \frac{z_j^{\frac{N+1}{1+n}}}{f_j(z_j + \rho_j\xi)} \to \frac{1}{F(0)} = 0,$$

It follows that we have

$$\frac{1}{g(\xi)} = \lim_{j \to \infty} \frac{\rho_j^{\frac{kn+l}{l+n}}}{f_j(z_j + \rho_j \xi)} = \lim_{j \to \infty} \left(\frac{\rho_j}{z_j}\right)^{\frac{kn+l}{l+n}} \frac{z_j^{\frac{kn+l}{l+n}}}{f_j(z_j + \rho_j \xi)} = 0.$$

Thus $g(\xi) = \infty$, which contradicts that $g(\xi)$ is a non-constant meromorphic function.

Therefore \mathcal{F} is normal at $z_0 = 0$. Hence \mathcal{F} is normal in D.

Acknowledgements The author wish to thank the referee for a careful reading of the manuscript and some useful suggestions to this paper.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

References

- 1. Hayman, W.K. 1967. Research Problems of Function Theory. London: Athlone Press of University of London.
- Yang, L., and G. Zhang. 1965. Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, Un nouveau critère et quelques applications. *Scientia Sinica Series A* 14: 1258–1271.
- 3. Gu, Y.X. 1978. On normal families of meromorphic functions. Scientia Sinica Series A 4: 373–384.
- 4. Pang, X.C. 1988. Bloch's principle and normal criterion. Scientia Sinica Series A 11: 1153–1159.
- 5. Chen, H.H., and M.L. Fang. 1995. On the value distribution of $f^n f'$. Science China Series A 38: 789–798.
- Zhang, Q.C. 2008. Some normality criteria of meromorphic functions. *Complex Variables and Elliptic Equations* 53 (1): 791–795.
- Hu, P.C., and D.W. Meng. 2009. Normality criteria of meromorphic functions with multiple zeros. Journal of Mathematical Analysis and Applications 357: 323–329.
- Deng, B.M., C.L. Lei, and M.L. Fang. 2019. Normal families and shared functions concerning Hayman's question. *Bulletin of the Malaysian Mathematical Sciences Society* 42 (3): 847–857.
- Ding, J.J., L.W. Ding, and W.J. Yuan. 2013. Normal families of meromorphic functions concerning shared values. *Complex Variables and Elliptic Equations* 58 (1): 113–121.
- Meng, D.W., S.Y. Liu, and H.Y. Xu. 2019. Normal criteria of meromorphic functions concerning holomorphic functions. *Journal of Computational Analysis and Applications* 27 (3): 511–524.
- Pang, X.C., and L. Zalcman. 2000. Normal families and shared values. Bulletin of the London Mathematical Society 32: 325–331.
- 12. Sun, C.X. 2013. Normal families and shared values of meromorphic functions (in Chinese). *Chinese Annals of Mathematics, Series A* 34 (2): 205–210.
- 13. Chang, J.M. 2012. Normality and quasinormality of zero-free meromorphic functions. Acta Mathematica Sinica, English Series 28: 707–716.
- Deng, B.M., M.L. Fang, and D. Liu. 2011. Normal families of zero-free meromorphic functions. Journal of the Australian Mathematical Society 91: 313–322.
- 15. Yang, L. 1993. Value Distribution Theory. Berlin: Springer.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.