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Abstract
Let k; n 2 N; l 2 Nn 1f g;m 2 N [ 0f g, and let aðzÞð6� 0Þ be a holomorphic func-

tion, all zeros of a(z) have multiplicities at most m. Let F be a family of mero-

morphic functions in D. If for each f 2 F , the zeros of f have multiplicity at least

k þ m, and for f 2 F , f lðf ðkÞÞn � aðzÞ has at most one zero in D, then F is normal in

D.
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1 Introduction and main results

Let f be a meromorphic function in C and we shall use the usual notations and

classical results of Nevanlinna’s theory, such as mðr; f Þ;Nðr; f Þ;Nðr; f Þ; Tðr; f Þ; . . ..
Let D be a domain in C and F be a family of meromorphic functions in D. A

family F is said to be normal in D, in the sense of Montel, if each sequence fn has a

subsequence fnk that converges spherically locally uniformly in D to a meromorphic

function or to the constant 1.

The following well-known normal conjecture was proposed by Hayman in 1967.

Theorem A [1] Let n 2 N, and a 2 Cn 0f g. let F be a family of meromorphic
function in D. If f nf 0 6¼ a, for each f 2 F , then F is normal in D.

This normal conjecture was showed by Yang and Zhang [2] (for n� 5), Gu [3]

ðforn ¼ 4; 3Þ; Pang [4] (for n� 2) and Chen and Fang [5] (for n ¼ 1).
For the related results, see Zhang [6], Meng and Hu [7], Deng et al.[8].
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Ding et al. [9] studied the general case of f lðf ðkÞÞn and and proved the following
theorem.

Theorem B Let k; l 2 N; n 2 Nn 1f g; a 2 Cn 0f g. Let F be a family of meromor-
phic functions in D. If for each f 2 F , the zeros of f have multiplicity at least

maxfk; 2g, and for f ; g 2 F , f lðf ðkÞÞn and glðgðkÞÞn share a, then F is normal in D.

Recently, Meng et al. [10] considered the case of sharing a holomorphic function
and and proved the following result.

Theorem C Let k; l 2 N; n 2 Nn 1f g;m 2 N [ 0f g, and let aðzÞð6� 0Þ be a
holomorphic function, all zeros of a(z) have multiplicities at most m, which is
divisible by nþ l. Let F be a family of meromorphic functions in D. If for each
f 2 F , the zeros of f have multiplicities at least k þ mþ 1 and all poles of f are of

multiplicity at least mþ 1, and for f ; g 2 F , f lðf ðkÞÞn and glðgðkÞÞn share a(z), then
F is normal in D.

By Theorem C, the following question arises naturally:

Question 1.1 Is it possible to omit the conditions: (1)‘‘ m is divisible by nþ l’’ and

(2)‘‘all poles of f have multiplicity at least mþ 1’’ ?

In this paper, we study this problem and obtain the following result.

Theorem 1.1 Let k; n 2 N; l 2 Nn 1f g;m 2 N [ 0f g, and let aðzÞð6� 0Þ be a
holomorphic function, all zeros of a(z) have multiplicities at most m. Let F be a
family of meromorphic functions in D. If for each f 2 F , the zeros of f have

multiplicity at least k þ m, and for f 2 F , f lðf ðkÞÞn � aðzÞ has at most one zero in D,

then F is normal in D.
Now we give some examples to show that the conditions in our results are

necessary.

Example 1.1 Let D ¼ fz : jzj\1g and aðzÞ � 0. Let F ¼ ffjðzÞg, where

fjðzÞ ¼ ejz; z 2 D; j ¼ 1; 2. . .:

Then f lj zð Þ f
kð Þ

j

� �n
zð Þ � aðzÞ 6¼ 0 in D, however F is not normal at z ¼ 0. This shows

that aðzÞ 6� 0 is necessary in Theorem 1.1.

Example 1.2 Let D ¼ fz : jzj\1g and aðzÞ ¼ 1
zlþknþn. Let F ¼ ffjðzÞg, where

fjðzÞ ¼
1

jz
; z 2 D; j ¼ 1; 2 � � � ; jlþn 6¼ ½ð�1Þkk!�n:

Then f lj zð Þ f
kð Þ

j

� �n
zð Þ � aðzÞ 6¼ 0 in D, however F is not normal at z ¼ 0. This shows

that Theorem 1.1 is not valid if a(z) is a meromorphic function in D.

Example 1.3 Let D ¼ fz : jzj\1g, aðzÞ ¼ a. Let F ¼ ffjðzÞg, where

fjðzÞ ¼ jzk�1; z 2 D; j ¼ 1; 2 � � � :
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Then f lj zð Þ f
kð Þ

j

� �n
zð Þ � a, which has no zero in D , however F is not normal at

z ¼ 0. This shows that the condition ‘‘ all zeros of f have multiplicity at least k þ m
’’ in Theorem 1.1 is sharp.

Example 1.4 Let D ¼ fz : jzj\1g, aðzÞ ¼ a. Let F ¼ ffjðzÞg, where

fjðzÞ ¼ jzk; z 2 D; j ¼ 1; 2. . .:

Then f lj zð Þ f
kð Þ

j

� �n
zð Þ � a ¼ jlþnðk!Þnzlk � a, which has at least l� 2 distinct zeros in

D, however F is not normal at z ¼ 0. This shows that the condition ‘‘f lðf ðkÞÞn � aðzÞ
has at most one zero’’ in Theorem 1.1 is necessary.

2 Some lemmas

Lemma 2.1 [11] Let F be a family of functions meromorphic in the unit disc D, all
of whose zeros have multiplicity at least k. Then if F is not normal in any
neighbourhood of z0 2 D, there exist, for each a, 0� a\k,

(i) points zn, zn ! z0, z0 2 D;

(ii) functions fn 2 F ; and
(iii) positive numbers qn ! 0þ, such that gnðnÞ ¼ q�a

n fnðzn þ qnnÞ ! gðnÞ
spherically uniformly on compact subsets of C, where g is a non-constant
meromorphic function, all of whose zeros have multiplicity at least k.

Lemma 2.2 [12] Let k; n 2 N, l 2 Nn 1f g, a 2 Cn 0f g, and let f(z) be a non-
constant meromorphic with all zeros that have multiplicity at least k. Then

f lðzÞðf ðkÞÞnðzÞ � a has at least two distinct zeros.
Using the idea of Chang [13], we get the following lemma.

Lemma 2.3 Let k; l; n;m 2 N, let q(z) be a polynomial of degree m, and let f(z) be a

non-constant rational function with f ðzÞ 6¼ 0. Then f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least
lþ knþ n distinct zeros.

The proof of Lemma 2.3 is almost exactly the same with Lemma 11 in Deng etc.
[14], here, we omit the details.

Lemma 2.4 [15] Let fjðj ¼ 1; 2Þ be two nonconstant meromorphic functions, then

Nðr; f1f2Þ � N r;
1

f1f2

� �
¼ Nðr; f1Þ þ Nðr; f2Þ � N r;

1

f1

� �
� N r;

1

f2

� �
:

Lemma 2.5 Let k;m; n 2 N, l 2 Nn 1f g, let q(z) be a polynomial of degree m, and
let f(z) be a non-constant meromorphic function in C, the zeros of f(z) have

multiplicities at least k þ m.Then ðf ðzÞÞlðf ðkÞÞnðzÞ � qðzÞ has at least two distinct
zeros.
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Proof Since

1

f lþn
¼ f kð Þ

f

� �n

� 1

q
�
f l f kð Þ� �n�q

qf lþn

¼
f l f kð Þ� �n
qf lþn

�
f l f kð Þ� �n� 	0

q� q0 f l f kð Þ� �n� 	
qf lþn

�
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	 :

Noticing that mðr; f ðkÞf Þ ¼ Sðr; f Þ;mðr; 1
qÞ ¼ Oð1Þ, and mðr; qÞ ¼ mlogr þ Oð1Þ. By

Nevanlinna’s Fundamental Theorem, we get

lþ nð Þm r;
1

f

� �
¼ m r;

1

f lþn

� �

¼ m r;
f l f kð Þ� �n
qf lþn

�
f l f kð Þ� �n� 	0

q� q0 f l f kð Þ� �n� 	
qf lþn

�
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !

�m r;
1

q

� �
þ nm r;

f ðkÞ

f

� �
þ m r;

f l f kð Þ� �n� 	0
q� q0 f l f kð Þ� �n� 	
qf lþn

 !

þ m r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ Oð1Þ

�m r;
f l f kð Þ� �n� 	0

q� q0 f l f kð Þ� �n� 	
qf lþn

 !

þ m r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ S r; fð Þ

� T r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !

� N r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ S r; fð Þ

� T r;
f l f kð Þ� �n� 	0

q� q0 f l f kð Þ� �n� 	

f l f kð Þð Þn�q

 !

� N r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ S r; fð Þ

¼ m r;
f l f kð Þ� �n� 	0

q� q0 f l f kð Þ� �n� 	

f l f kð Þð Þn�q

 !
þ N r;

f l f kð Þ� �n� 	0
q� q0 f l f kð Þ� �n� 	

f l f kð Þð Þn�q

 !

� N r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ S r; fð Þ

¼ m r; q �

f l f kð Þð Þn�q

q


 �0

f l f kð Þð Þn�q
q

0
BB@

1
CCAþ N r;

f l f kð Þ� �n� 	0
q� q0 f l f kð Þ� �n� 	

f l f kð Þð Þn�q

 !

� N r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !

þ S r; fð Þ:

�m r;

f l f kð Þð Þn�q

q


 �0

f l f kð Þð Þn�q
q

0
BB@

1
CCAþ N r;

f l f kð Þ� �n� 	0
q� q0 f l f kð Þ� �n� 	

f l f kð Þð Þn�q

 !

� N r;
f l f kð Þ� �n�q

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !

þ m r; qð Þ þ S r; fð Þ:

ð2:1Þ

By Lemma 2.4 applied to (2.1), we can get
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lþ nð Þm r;
1

f

� �
�m r;

f l f kð Þð Þn�q

q


 �0

f l f kð Þð Þn�q
q

0
BB@

1
CCAþ N r;

1

f l f kð Þð Þn�q

� �

� N r; f l f kð Þ
� �n

�q
� �

þ N r; f l f kð Þ
� �nh i0

q� q0 f l f kð Þ
� �nh i� �

� N r;
1

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ m log r þ S r; fð Þ:

This is

lþ nð Þm r;
1

f

� �
�Nðr; f Þ þ N r;

1

f l f kð Þð Þn�q

� �

� N r;
1

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ m log r þ S r; fð Þ:

ð2:2Þ

We add ðlþ nÞN r; 1
f

� �
to both sides in (2.2), then

lþ nð ÞT r;
1

f

� �
�ðlþ nÞN r;

1

f

� �
þ Nðr; f Þ þ N r;

1

f l f kð Þð Þn�q

� �

� N r;
1

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
þ m log r þ S r; fð Þ:

ð2:3Þ

Let n be a zero of f with multiplicity tð� k þ mÞ, then n is a zero of ½f lðf ðkÞÞn�0q�
½f lðf ðkÞÞn�q0 with multiplicity at least ðlþ nÞt � kn� 1. Noticing that

f l f kð Þ
� �nh i0

q� q0 f l f kð Þ
� �nh i

¼ f l f kð Þ
� �n

�q
h i0

q� q0 f l f kð Þ
� �n

�q
h i

;

which implies

N r;
1

f l f kð Þð Þn
� 	0

q� q0 f l f kð Þð Þn
� 	

 !
�N r;

1

f l f kð Þð Þn�q

� �

� N r;
1

f l f kð Þð Þn�q

� �
:

Therefore, from (2.3), we get

lþ nð ÞT r; fð Þ� ðknþ 1ÞN r;
1

f

� �
þ Nðr; f Þ þ N r;

1

f l f kð Þð Þn�q

� �
þ m log r þ S r; fð Þ

� knþ 1

k þ m
N r;

1

f

� �
þ Nðr; f Þ þ N r;

1

f l f kð Þð Þn�q

� �
þ m log r þ S r; fð Þ:

i.e.,
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MT r; fð Þ�N r;
1

f l f kð Þð Þn�q

� �
þ m log r þ S r; fð Þ; ð2:4Þ

where

M ¼ lþ n� 1 � knþ 1

k þ m
¼ l� 1 þ mn� 1

k þ m
:

Suppose that f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at most one zero.

Next, we consider two cases.

Case 1: n� 2. By the assumptions,

M� 1 þ 1

k þ m
:

From (2.4), we get

T r; fð Þ\MT r; fð Þ� ðmþ 1Þ log r þ S r; fð Þ:

It follows that f(z) is a rational function of degree \mþ 1. Since the zeros of f(z)
have multiplicities at least k þ m�mþ 1, then we get f ðzÞ 6¼ 0. Thus, by

Lemma 2.3, we obtain that f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least lþ knþ n� 6 distinct

zeros, which is a contradiction.

Case 2: n ¼ 1. Then M ¼ l� kþ1
kþm.

Subcase 2:1: m� 2. By the assumptions, M[ 1 and from (2.4), we get

T r; fð Þ\ðmþ 1Þ log r þ S r; fð Þ:

It follows that f(z) is a rational function of degree \mþ 1. Since the zeros of f(z)
have multiplicities at least k þ m�mþ 1, then we get f ðzÞ 6¼ 0. Thus, by

Lemma 2.3, we obtain that f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least lþ k þ 1� 4 distinct

zeros, which is a contradiction.

Subcase 2:2: m ¼ 1. From (2.4), we get

l� 1ð ÞT r; fð Þ�N r;
1

f lf kð Þ � q

� �
þ log r þ S r; fð Þ;

Subcase 2:2:1: f lðzÞf ðkÞðzÞ � qðzÞ 6¼ 0. From (2.4), we get

T r; fð Þ� ðl� 1ÞT r; fð Þ� log r þ S r; fð Þ:

It follows that f(z) is a rational function of degree � 1. Since the zeros of f(z) have

multiplicities at least k þ 1� 2, then we get f ðzÞ 6¼ 0. Thus, by Lemma 2.3, we

obtain that f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least lþ k þ 1� 4 distinct zeros, which is a

contradiction.
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Subcase 2:2:2: f lðzÞf ðkÞðzÞ � qðzÞ ¼ 0. By the assumptions, we get f lðzÞf ðkÞðzÞ �
qðzÞ has only one zero. Then, from (2.4), we obtain

ðl� 1ÞT r; fð Þ� 2 log r þ S r; fð Þ:

Subcase 2:2:2:1: l� 3, from (2.4), we obtain

T r; fð Þ� log r þ S r; fð Þ:

It follows that f(z) is a rational function of degree � 1. Since the zeros of f(z) have

multiplicities at least k þ 1� 2, then we get f ðzÞ 6¼ 0. Thus, by Lemma 2.3, we

obtain that f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least lþ k þ 1� 5 distinct zeros, which is a

contradiction.

Subcase 2:2:2:2: l ¼ 2, from (2.4), we obtain

T r; fð Þ� 2 log r þ S r; fð Þ:

It follows that f(z) is a rational function of degree � 2.

Subcase 2:2:2:2:1: k� 2. Since the zeros of f(z) have multiplicities at least

k þ 1� 3, then we get f ðzÞ 6¼ 0. Thus, by Lemma 2.3, we obtain that

f lðzÞðf ðkÞÞnðzÞ � qðzÞ has at least lþ k þ 1� 5 distinct zeros, which is a contra-

diction.

Subcase 2:2:2:2:2: k ¼ 1. Then we get f ðzÞ 6¼ 0 or f(z) has only one zero with

multiplicity 2.

The former case can be ruled out from Lemma 2.3. Hence f(z) has the following

forms:

ðiÞ f ðzÞ ¼ Aðz� z0Þ2; ðiiÞ f ðzÞ ¼ Aðz� z0Þ2

ðz� z1Þ
;

ðiiiÞ f ðzÞ ¼ Aðz� z0Þ2

ðz� z1Þ2
; ðivÞ f ðzÞ ¼ Aðz� z0Þ2

ðz� z1Þðz� z2Þ
;

where A; z0 are nonzero constants, and z1; z2 are distinct constants. Clearly,

z0 6¼ z1; z0 6¼ z2, and Tðr; f Þ ¼ 2 log r þ Oð1Þ.
ðiÞ f ðzÞ ¼ Aðz� z0Þ2

. Obviously, N r; 1
f

� �
� 1

2
Tðr; f Þ þ Oð1Þ. From (2.4), we

obtain

3Tðr; f Þ� 2N r;
1

f

� �
þ Nðr; f Þ þ 2 log r þ Sðr; f Þ:

Then

Tðr; f Þ� log r þ Sðr; f Þ;

a contradiction.
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ðiiÞ f ðzÞ ¼ Aðz�z0Þ2

ðz�z1Þ . Then, N r; 1
f

� �
� 1

2
Tðr; f Þ þ Oð1Þ;Nðr; f Þ ¼ log r. From (2.4),

we obtain

3Tðr; f Þ� 2N r;
1

f

� �
þ Nðr; f Þ þ 2 log r þ Sðr; f Þ:

Then

Tðr; f Þ� 4

3
log r þ Sðr; f Þ;

which is a contradiction.

ðiiiÞ f ðzÞ ¼ Aðz�z0Þ2

ðz�z1Þ2 . Then, N r; 1
f

� �
� 1

2
Tðr; f Þ þ Oð1Þ;Nðr; f Þ� 1

2
Tðr; f Þ þ Oð1Þ.

From (2.4), we obtain

3Tðr; f Þ� 2N r;
1

f

� �
þ Nðr; f Þ þ 2 log r þ Sðr; f Þ:

Then

Tðr; f Þ� 7

6
log r þ Sðr; f Þ;

we also get a contradiction.

ðivÞ f ðzÞ ¼ Aðz�z0Þ2

ðz�z1Þðz�z2Þ. Then

f 2 zð Þf 0 zð Þ ¼ A3 z� z0ð Þ5
2z0 � z1 þ z2ð Þð Þzþ 2z1z2 � z0 z1 þ z2ð Þ½ �

z� z1ð Þ4 z� z2ð Þ4
: ð2:5Þ

Since qðzÞ ¼ Bzþ C, where B 6¼ 0;C are constants, and f lðzÞf ðkÞðzÞ � qðzÞ has only

one zero. Then we have

f 2ðzÞf 0ðzÞ ¼ Bzþ C þ dðz� fÞt

z� z1ð Þ4 z� z2ð Þ4
: ð2:6Þ

Obviously, By calculation, we get d ¼ �B; t ¼ 9, and f 6¼ z0.

Differentiating (2.5)–(2.6) two times separately, we obtain

½f 2ðzÞf 0ðzÞ�
00
¼ ðz� z0Þ3gðzÞ

z� z1ð Þ6 z� z2ð Þ6
;

where g(z) is a polynomial of degree � 5, and

½f 2ðzÞf 0ðzÞ�
00
¼ ðz� fÞ7hðzÞ

z� z1ð Þ6 z� z2ð Þ6
;

where h(z) is a polynomial of degree � 4.

Since z0 6¼ f, then ðz� fÞ7
is a factor of g(z). Thus g(z) is a polynomial of degree

� 7, which is impossible. h
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Lemma 2.6 Let k; n 2 N; l 2 Nn 1f g, and let F ¼ ffmg be a sequence of
meromorphic functions, gmðzÞ be a sequence of holomorphic functions in D such
that gmðzÞ �! gðzÞ, where gðzÞð6¼ 0Þ be a holomorphic function. If all zeros of

function fmðzÞ have multiplicity at least k, and f lmðzÞðf
ðkÞ
n ðzÞÞn � gnðzÞ has at most

one zero, then F is normal in D.

Proof Suppose that F is not normal at z0 2 D. By Lemma 2.1, there exists

zm ! z0, qm ! 0þ, and fm 2 F such that

hmðnÞ ¼
fmðzm þ qmnÞ

q
kn
lþn
m

�! hðnÞ

locally uniformly on compact subsets of C, where hðnÞ is a non-constant mero-

morphic function in C. By Hurwitz’s theorem, all zeros of hðnÞ have multiplicity at

least k.

For each n 2 C=fh�1ð1Þg, we have

hlmðnÞðhðkÞm ðnÞÞn � gmðzm þ qmnÞ ¼ f lmðzm þ qmnÞðf ðkÞm Þnðzm þ qmnÞ
� gmðzm þ qmnÞ �! hlðnÞðhðkÞÞnðnÞ � gðz0Þ:

Obviously, hlðnÞðhðkÞÞnðnÞ � gðz0Þ 6� 0.

Suppose that hlðnÞðhðkÞÞnðnÞ � gðz0Þ � 0, then hðnÞ 6¼ 0 since gðz0Þ 6¼ 0. It fol-

lows that

1

hlþnðnÞ �
1

gðz0Þ
hðkÞðnÞ
hðnÞ


 �n
:

Thus

ðlþ nÞm r;
1

h

� �
¼ m r;

1

gðz0Þ
hðkÞðnÞ
hðnÞ


 �n !
¼ Sðr; hÞ:

Then Tðr; hÞ ¼ Sðr; hÞ since h 6¼ 0. we can deduce that hðnÞ is a constant, a con-

tradiction.

We claim that hlðnÞðhðkÞÞnðnÞ � gðz0Þ has at most one zero, Suppose this is not

the case, and hlðnÞðhðkÞÞnðnÞ � gðz0Þ has two distinct zeros n1, and n2. We choose a

positive number d small enough such that D1 \ D2 ¼ ; and hlðnÞðhðkÞÞnðnÞ � gðz0Þ
has no other zeros in D1 [ D2 except for n1 and n2, where D1 ¼ fn : jn� n1j\dg
and D2 ¼ fn : jn� n2j\dg.

By Hurwitz’s theorem, for sufficiently large m, there exist points n1;m ! n1 and

n2;m ! n2 such that

f lmðzm þ qmn1;mÞðf ðkÞm Þ
n

ðzm þ qmn1;mÞ � gmðzm þ qmn1;mÞ ¼ 0;

and

f lmðzm þ qmn2;mÞðf ðkÞm Þ
n

ðzm þ qmn2;mÞ � gmðzm þ qmn2;mÞ ¼ 0
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Since f lmðzÞðf
ðkÞ
m ðzÞÞn � gmðzÞ has at most one zero in D, then

zm þ qmn1;m ¼ zm þ qmn2;m;

this is

n1;m ¼ n2;m ¼ z0 � zm
qm

;

which contradicts the fact D1 \ D2 ¼ ;. The claim is proved.

From Lemma 2.2, we get hlðzÞðhðkÞÞnðzÞ � gðz0Þ has at least two distinct zeros, a

contradiction. Therefore F is normal in D. h

3 Proof of Theorem

Proof of Theorem 1.1 Suppose that F is not normal at z0. From Lemma 2.6, we

obtain aðz0Þ ¼ 0. Without loss of generality, we assume that z0 ¼ 0 and

aðzÞ ¼ ztbðzÞ, where 1� t�m, bð0Þ ¼ 1. Then by Lemma 2.1, there exists

zj �! 0, fj 2 F and qj �! 0þ such that

gjðnÞ ¼
fjðzj þ qjnÞ

q
knþt
lþn

j

�! gðnÞ

locally uniformly on compact subsets of C, where gðnÞ is a non-constant mero-

morphic functions in C. By Hurwitz’s theorem, all zeros of gðnÞ have multiplicity at

least k þ m.

Next, we discuss two cases.

Case 1. Let zn
qn
! a; a 2 C.

For each n 2 C=fg�1ð1Þg, It can be easily calculated that

glj nð Þðg kð Þ
j nð ÞÞn � nþ zj

qj

 !t

b zj þ qjn
� �

¼
f lj zj þ qjn
� �

ðf kð Þ
j zj þ qjn
� �

Þn � a zj þ qjn
� �

qtj
�! gl nð Þðg kð Þ nð ÞÞn � nþ að Þt:

Since for sufficiently large j, f lj zj þ qjn
� �

ðf kð Þ
j zj þ qjn
� �

Þn � a zj þ qjn
� �

has one

zero, from the proof Lemma 2.6, we can deduce that gl nð Þðg kð Þ nð ÞÞn � nþ að Þt has

at most one distinct zero.

By Lemma 2.5, gl nð Þðg kð Þ nð ÞÞn � nþ að Þt have at least two distinct zeros. Thus

gðnÞ is a constant, we can get a contradiction.

Case 2. Let zn
qn
! 1.

Set
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FjðnÞ ¼
fjðzj þ qjnÞ

q
knþt
lþn

j

:

It follows that

Fl
jðnÞðF

ðkÞ
j ðnÞÞn � ð1 þ nÞtbðzj þ zjnÞ ¼

f lj ðzj þ zjnÞðf ðkÞj ðzj þ zjnÞÞn � aðzj þ zjnÞ
ztj

:

As the same argument as in Lemma 2.6, we can deduce that Fl
jðnÞðF

ðkÞ
j ðnÞÞn �

ð1 þ nÞtbðzj þ zjnÞ has at most one zero in D ¼ fn : jnj\1g.

Since all zeros of Fj have multiplicity at least k þ m, and ð1 þ nÞtbðzj þ zjnÞ !
ð1 þ nÞt 6¼ 0 for n 2 D. Then by Lemma 2.6, fFng is normal in D.

Therefore, there exists a subsequence of fFnðzÞg(we still express it as fFnðzÞg)

such that fFnðzÞg converges spherically locally uniformly to a meromorphic

function F(z) or 1.

If Fð0Þ 6¼ 1, then, for each n 2 C=fg�1ð1Þg, we have

g kþm�1ð Þ nð Þ ¼ lim
j!1

g
kþm�1ð Þ
j nð Þ ¼ lim

j!1

f
kþm�1ð Þ

j zj þ qjn
� �

q
knþt
lþn� kþm�1ð Þ
j

¼ lim
j!1

qj
zj

� �kþm�1�knþt
lþn

F
kþm�1ð Þ
j

qj
zj
n

� �
¼ 0:

Hence gðkþm�1Þ � 0. It follows that g is a polynomial of degree � k þ m� 1. Note

that all zeros of g have multiplicity at least k þ m, then we get that g is a constant,

which is a contradiction.

If Fð0Þ ¼ 1, then, for each n 2 C=fg�1ð0Þg, we get

1

Fj
qj
zj
n

� � ¼
z
knþt
lþn

j

fj zj þ qjn
� �! 1

F 0ð Þ ¼ 0;

It follows that we have

1

g nð Þ ¼ lim
j!1

q
knþt
lþn

j

fj zj þ qjn
� � ¼ lim

j!1

qj
zj

� �knþt
lþn z

knþt
lþn

j

fj zj þ qjn
� � ¼ 0:

Thus gðnÞ ¼ 1, which contradicts that gðnÞ is a non-constant meromorphic func-

tion.

Therefore F is normal at z0 ¼ 0. Hence F is normal in D.
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