Skip to main content

Advertisement

Log in

A holistic consideration of turbocharger heat transfer analysis and advanced turbocharging modeling methodology in a 1D engine process simulation context

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

The focus on transient engine operation will increase to fulfill future emission requirements in the commercial vehicle sector. Accordingly, the transient turbocharger matching process is becoming increasingly important. The one-dimensional fluid dynamics (1D-CFD) simulation is established as an important development tool for matching the exhaust gas turbocharger to a combustion engine. The optimization of the modeling methodology of the combustion process and the turbocharger modeling are two key parameters to improve the reliability of the dynamic engine process simulation. In this paper, the advanced turbocharger (TC) methodology is described. This includes the determination of the adiabatic turbocharger performance from conventional hot gas test stand (HGS) measurement data, the derivation of an one-dimensional (1D) turbocharger heat transfer model and a method to physically extend the turbine map range. The adiabatic efficiencies of the turbocharger are determined with a model-based heat transfer correction of the conventional measured efficiencies from HGS measurement data. These adiabatic efficiency maps were used as a baseline to extend the conventional TC model with a heat transfer model taking into account of the engine boundary conditions in terms of temperature, pressure and mass flow rate. To assess the temperature distribution and the thermal inertia of the TC main components, in both stationary and transient engine operations, the variable geometry turbine (VGT) turbocharger hardware, installed on a medium-duty diesel engine, was equipped with several thermocouples on all accessible surfaces to make comprehensive surface temperature surveys. A 1D lumped capacitance heat transfer model (HTM) of the VGT TC was developed and validated against the experimental data from the engine test bench. To complete the advanced TC modeling, the turbine map is extended using experimental measurement data, based on extended HGS measurements, in combination with mathematically supported extrapolation. The results from the advanced turbocharger simulation methodology significantly improves the prediction of the temperature drop over the turbine in comparison to the conventional adiabatic TC simulation methodology. The validated heat transfer model also allows the analysis of the heat flow breakdown of the turbocharger. Based on the advanced turbocharger model, a tool for the improved transient turbocharger-engine matching process is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

1D:

One-dimensional

1D-CFD:

One-dimensional computational fluid dynamics

BMEP:

Brake mean effective pressure

BH:

Bearing housing

BP:

Back plate

BSR:

Blade speed ratio

CAD:

Computer-aided design

CARB:

California air resources board

CH:

Compressor housing

\(\hbox {CO}_{2}\) :

Carbon dioxide

CV:

Commercial vehicle

EGR:

Exhaust gas recirculation

EGT:

Exhaust gas aftertreatment

EPA:

Environment Protection Agency

EPS:

Engine process simulation

EU:

European Union

GHG:

Greenhouse gas

HGS:

Hot gas test stand

HTM:

Lumped capacitance heat transfer model

MCE:

Multi-cylinder engine

\(\hbox {NO}_{{x}}\) :

Nitrogen oxides

TC:

Turbocharger

TH:

Turbine housing

VGT:

Variable geometry turbine

WPR:

Windage pressure ratio

\(\alpha\) :

Convection heat transfer coefficient

\(\beta _\text {2,b}\) :

Geometrical impeller blade outlet angle

\(\delta _i\) :

Distance from mass center to the contact area

\(\varDelta h^{\star }_\text {C,adi}\) :

Adiabatic compressor enthalpy rise

\(\varDelta h_\text {C,is}\) :

Isentropic compressor enthalpy rise

\(\varDelta h_\text {C,dia}\) :

Diabatic compressor enthalpy rise

\(\varDelta \dot{H}_\text {Oil}\) :

Oil enthalpy change over the turbocharger

\(\varepsilon\) :

Emissivity of surface

\(\eta _\text {C,is}\) :

Isentropic compressor efficiency

\(\eta _\text {C,is,adi}\) :

Isentropic adiabatic compressor efficiency

\(\eta _\text {TC}\) :

Overall turbocharger efficiency

\(\eta _\text {TC,mech}\) :

Mechanical turbocharger efficiency

\(\eta _\text {T,comb}\) :

Combined turbine efficiency

\(\eta _\text {T,comb,adi}\) :

Combined adiabatic turbine efficiency

\(\eta _\text {T,is,adi}\) :

Isentropic adiabatic turbine efficiency

\(\theta\) :

Specific heat transfer coefficient of the turbocharger

\(\lambda\) :

Thermal conductivity

\(\lambda _\text {adi}\) :

Adiabatic work coefficient

\(\lambda _\text {dia}\) :

Apparent work coefficient

\(\lambda _\text {Euler,m}\) :

Theoretical Euler work coefficient determined out of hot gas stand measurement

\(\lambda _\text {Euler,th}\) :

Theoretical ideal Euler work coefficient

\(\lambda _\text {q}\) :

Heat transfer coefficient

\(\mu\) :

Slip factor

\(\varPi _{\text {C}}\) :

Compressor pressure ratio

\(\varPi _{\text {T}}\) :

Turbine pressure ratio

\(\rho _\text {t1}\) :

Density at the compressor inlet

\(\sigma\) :

Stefan–Boltzmann constant

\(\varphi _2\) :

Flow coefficient at impeller outlet

\(\phi _\text {t1}\) :

Global flow number at the compressor inlet

\(\dot{m}_\text {C}\) :

Compressor mass flow rate

\(\dot{m}_\text {C,cor}\) :

Corrected compressor mass flow rate

\(\dot{m}_\text {T}\) :

Turbine mass flow rate

\(\dot{m}_\text {T,red}\) :

Reduced turbine mass flow rate

\(\dot{Q}\) :

Heat flow

\(\dot{Q}_\text {BH,C}\) :

Heat flow from bearing housing to compressor via conduction

\(\dot{Q}_\text {BH,Dif}\) :

Heat flow from bearing housing into the working fluid via forced convection

\(\dot{Q}_\text {BH,ext}\) :

External bearing housing heat flow

\(\dot{Q}_\text {BH,Oil}\) :

Heat flow from bearing housing into turbocharger oil circuit via forced convection

\(\dot{Q}_\text {C,total}\) :

Total heat flow into the compressor

\(\dot{Q}_\text {CH,Vol}\) :

Heat flow from compressor housing into working fluid via forced convection

\(\dot{Q}_\text {CH,ext}\) :

External compressor housing heat flow

\(\dot{Q}_\text {enb}\) :

Measured energy balance

\(\dot{Q}_\text {TC,ext,meas}\) :

Determined external turbocharger heat transfer

\(\dot{Q}_\text {TC,ext,model}\) :

Modeled external turbocharger heat transfer

\(\dot{Q}_\text {T,BH}\) :

Heat flow from turbine to bearing housing via conduction

\(\dot{Q}_\text {TH,ext}\) :

External turbine housing heat flow

\(\dot{Q}_\text {Vol,TH}\) :

Heat flow from turbine volute to turbine housing via forced convection

\(a_x\) :

Correlation coefficient

A :

Contact area

\(A_\text {in}\) :

Internal surface area

\(A_\text {out}\) :

Outer surface area

\(c_e\) :

Local speed of sound at the compressor inlet

\(c_\text {p,C}\) :

Specific heat capacity at constant pressure of compressed air

\(c_\text {p,T}\) :

Specific heat capacity at constant pressure of exhaust gas

\(D_2\) :

Impeller tip diameter

Gr:

Grashof number

k :

Thermal conductivity

\(k_{\text {c}}\) :

Heat transfer parameter

\(k_\text {df}\) :

Disc friction parameter

\(L_\text {Char}\) :

Characteristic length

\(M_{\text {u}}\) :

Tip speed Mach number

\(n_\text {Eng}\) :

Engine speed

\(n_\text {TC}\) :

Turbocharger speed

\(n_\text {T,red}\) :

Reduced turbine speed

Nu:

Nusselt number

\(P_{\text {C}}\) :

Compressor power

\(P_\text {C,is,adi}\) :

Isentropic adiabatic compressor power

\(P_{\text {F}}\) :

Friction power of the turbocharger

Pr:

Prandtl number

\(P_{\text {T}}\) :

Turbine power

\(P_\text {T,is}\) :

Isentropic turbine power

\(q_\text {C,a}\) :

Specific heat flow into the compressor after compression

\(q_\text {C,b}\) :

Specific heat flow into the compressor before compression

\(q_\text {C,total}\) :

Total specific heat flow into the compressor

Re:

Reynolds number

\(T_\text {1,b.C}\) :

Charge air temperature before compressor

\(T_\text {2,a.C}\) :

Charge air temperature after compressor

\(T_\text {3,b.T}\) :

Exhaust temperature before turbine

\(T_\text {4,a.T}\) :

Turbine outlet temperature

\(T_\text {Amb}\) :

Ambient temperature

\(T_\text {BH,CS}\) :

Bearing housing surface temperature on the compressor side

\(T_\text {BH,TS}\) :

Bearing housing surface temperature on the turbine side

\(T_\text {BP}\) :

Surface thermocouple temperature on the compressor back plate

\(T_\text {CH}\) :

Surface thermocouple temperature on the compressor housing

\(T_\text {CH,mean}\) :

Mean surface thermocouple temperature on the compressor housing

\(T_{\text {F}}\) :

Fluid temperature

\(T_\text {Oil,in}\) :

Turbocharger oil circuit inlet temperature

\(T_\text {Oil,out}\) :

Turbocharger oil circuit outlet temperature

\(T_\text {t1}\) :

Total temperature at compressor inlet

\(T_\text {t2}\) :

Total temperature at compressor outlet

\(T_\text {t2,is}\) :

Total temperature at compressor outlet in isentropic state of change

\(T_\text {t3}\) :

Total temperature at turbine inlet

\(T_\text {TH}\) :

Surface thermocouple temperature on the turbine housing

\(T_\text {TH,mean}\) :

Mean surface thermocouple temperature on the turbine housing

\(T_W\) :

Wall temperature

\(T_1\)/\(T_2\) :

Wall-face temperature

\(u_\text {2}\) :

Impeller blade tip speed

\(u_\text {C,cor}\) :

Corrected compressor impeller blade tip speed

References

  1. Walter, L., Wagner, T., Theissl, H., Flitsch, S., Hasenbichler, G.: Impact of CO\(_2\) and ultra—low NO\(_x\) legislation on commercial vehicle base engine. In: 4th International Engine Congress, 21–22 February 2017, Baden, Baden (2017)

  2. Kumar, P., Pei, Y., Traver, M., Watson, J.P.: System level 1-D analysis of an air-system for a heavy-duty gasoline compression ignition engine. SAE Technical Paper 2019-01-0240. https://doi.org/10.4271/2019-01-0240

  3. Pedrozo, V.B., May, I., Lanzanova, T., Guan, W., Zhao, H.: The effective use of ethanol for GHG emissions reduction in a dual-fuel engine. In: 13th International MTZ Conference on Heavy-Duty Engines (2018), 6–7, Cologne (2018)

  4. Christl, W., Naber, D., Barba, C., Kufferath, A. Krüger, M., Schumacher, H.: Facing European real driving emission requirements—ways to low emission of diesel—powered on—highway vehicles. In: 13th International MTZ Conference on Heavy-Duty Engines (2018), 6–7 November 2018, Cologne

  5. Höpke, B.: Analyse und Modellierung des thermischen Verhaltens von Pkw–Abgasturboladern; Dissertation; Rheinisch–Westfälische Technische Hochschule Aachen (2017)

  6. Serrano, J.R., Olmeda, P., Arnau, F.J., Reyes-Belmonte, M., Tartoussi, H.: A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. J. Appl. Therm. Eng. 89, 587–599 (2015). https://doi.org/10.1016/j.applthermaleng.2015.06.053

    Article  Google Scholar 

  7. Serrano, J.R., Olmeda, P., Arnau, F.J., Dombrovsky, A., Smith, L.: Analysis and methodology to characterize heat transfer phenomena in automotive turbochargers. J. Eng. Gas Turbines Power 137, 11 (2015). https://doi.org/10.1115/1.4028261

    Article  Google Scholar 

  8. Burke, R.D.: Analysis and modeling of the transient thermal behavior of automotive turbochargers. J. Eng. Gas Turbines Power 136, 10 (2014). https://doi.org/10.1115/1.4027290

    Article  Google Scholar 

  9. Lüddecke, B.: Stationäres und instationäres Betriebsverhalten von Abgasturboladern; Dissertation; Universität Stuttgart (2016) https://doi.org/10.1007/9783658127817

  10. Walther, U.: Supplementäre Verfahren zur Bestimmung der thermodynamischen Eigenschaften von Abgasturboladern, Der Verbrennungsmotor - ein Antrieb mit Vergangenheit und Zukunft, 61–82. Springer, Wiesbaden (2018)

    Google Scholar 

  11. Uhlmann, A.T.: Vermessung und Modellierung von Abgasturboladern für die Motorprozessrechnung; Dissertation; Rheinisch-Westfälische Technische Hochschule Aachen (2013)

  12. Serrano, J.R., Olmeda, P., Arnau, F.J., Samala, V.: A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. Int. J. Eng. Res. (2019). https://doi.org/10.1177/1468087419834194

  13. Japikse, D., Baines, N.C.: Introduction to turbomachinery, concepts ETI, ISBN 0933283105 (1997)

  14. Casey, M.V., Fesich, T.M.: The efficiency of turbocharger compressors with diabatic flows. J. Eng. Gas Turbines Power 132, 9 (2010). https://doi.org/10.1115/1.4000300

    Article  Google Scholar 

  15. Serrano, J.R., Olmeda, P., Arnau, F.J., Reyes-Belmonte, M.Á, Lefebvre, A.: Importance of heat transfer phenomena in small turbochargers for passenger car applications. SAE Int. J. Eng. (2013). https://doi.org/10.4271/2013-01-057

  16. Romagnoli, A., Martinez-Botas, R.F.: Heat transfer analysis in a turbocharger turbine: an experimental and computational evaluation. Appl. Therm. Eng. 38, 58–77 (2012). https://doi.org/10.1016/j.applthermaleng.2011.12.022

    Article  Google Scholar 

  17. Cormerais, M., Chesse, P., Hetet, J.-F.: Turbocharger heat transfer modeling under steady and transient conditions. Int. J. Thermodyn. 12(4), 193–202 (2009)

    Google Scholar 

  18. Bohn, D., Heuer, T., Kusterer, K.: Conjugate flow and heat transfer investigation of a turbo charger: Part I: numerical results. Proc. ASME Turbo Expo 2003(GT2003–38445), 715–722 (2003)

    Google Scholar 

  19. Baines, N., Wygant, K.D., Dris, A.: The analysis of heat transfer in automotive turbochargers. J. Eng. Gas Turbines Power 132(4), 8 (2010). https://doi.org/10.1115/1.3204586

    Article  Google Scholar 

  20. Romagnoli, A., Manivannan, A., Rajoo, S., Chiong, M.S., Feneley, A., Pesiridis, A., Martinez-Botas, R.F.: A review of heat transfer in turbochargers. Renew. Sustain. Energy Rev. 79, 1442–1460 (2017). https://doi.org/10.1016/j.rser.2017.04.119

    Article  Google Scholar 

  21. Westin, F., Rosenqvist, J., Ångström, H.-E.: Heat losses from the turbine of a turbocharged SI-engine—measurements and simulation, SAE Technical Paper 2004-01-0996 (2004). https://doi.org/10.4271/2004-01-0996

  22. Shaaban, S.: Experimental investigation and extended simulation of turbocharger non-adiabatic performance. Dissertation; Universität Hannover (2004)

  23. Aghaali, H., Ångström, H.-E.: Improving turbocharged engine simulation by including heat transfer in the turbocharger. SAE Technical Paper 2012-01-0703 (2012). https://doi.org/10.4271/2012-01-0703

  24. Heuer, T.: Wechselwirkung zwischen Strömung und Wärmetransport an Gasturbinenschaufeln und einem ölgekühlten Abgasturbolader. Dissertation; Rheinisch-Westfälische Technische Hochschule Aachen (2005)

  25. Bohn, D., Moritz, N., Wolff, M.: Conjugate flow and heat transfer investigation of a turbo charger: part II: experimental results. Proc. ASME Turbo Expo 2003(GT2003–38449), 723–729 (2003)

    Google Scholar 

  26. Rautenberg, M., Mobarak, A., Malobabic, M.: Influence of heat transfer between turbine and compressor on the performance of small turbochargers. 1983 Tokyo International Gas Turbine Congress, pp. 567–574 (1984)

  27. Sirakov, B., Casey, M.V.: Evaluation of heat transfer effects on turbocharger performance. J. Turbomach. 135(2), 10 (2013). https://doi.org/10.1115/1.4006608

    Article  Google Scholar 

  28. Shaaban, S., Seume, J.R.: Analysis of turbocharger non-adiabatic performance. In: 8th International Conference on Turbochargers and Turbocharging, London, pp. 119–130 (2006)

  29. Berndt, R.: Einfluss eines diabaten Turboladermodells auf die Gesamtprozess–Simulation abgasturboaufgeladener PKW–Dieselmotoren. Dissertation; Technische Universität Berlin (2009)

  30. Burke, R.D., Vagg, C.R.M., Chalet, D., Chesse, P.: Heat transfer in turbocharger turbines under steady, pulsating and transient conditions. Int. J. Heat Fluid Flow 52, 185–197 (2015). https://doi.org/10.1016/j.ijheatfluidflow.2015.01.004

    Article  Google Scholar 

  31. Serrano, J.R., Olmeda, P., Páez, A., Vidal, F.: An experimental procedure to determine heat transfer properties of turbochargers. Meas. Sci. Technol. 21, 035109 (2010). https://doi.org/10.1088/0957-0233/21/3/035109

    Article  Google Scholar 

  32. Zimmermann, R., Baar, R., Biet, C.: Determination of the isentropic turbine efficiency due to adiabatic measurements and the validation of the conditions via a new criterion. J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406216670683

  33. Scharf, J.S.: Extended turbocharger mapping and engine simulation. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen (2010)

  34. Lüddecke, B., Filsinger, D., Bargende, M.: On wide mapping of a mixed flow turbine with regard to compressor heat flows during turbocharger testing. In: International Conference on Turbochargers and Turbocharging, London, pp. 185–202 (2012)

  35. Seume, J., Vorreiter, A., Ziesenis, B.: Untersuchung und empirische Modellbildung des Reibmomentes von Turboladerlagerungen. Abschlussbericht FVV-Vorhaben Nr. 754 (2007)

  36. Kaufmann, A.: Using turbocharger maps in gas exchange simulation and engine control units. Forschung Ingenieurwesen 78, 45–57 (2014). https://doi.org/10.1007/s10010-014-0171-0

    Article  Google Scholar 

  37. Smiljanovski, V., Schorn, N., Scharf, J.S., Funken, B., Pischinger, S.: Messung des Turbinenwirkungsgrades bei niedrigen Turboladerdrehzahlen. In: 13th Supercharging Conference (2012), 25–26 September 2008, Dresden

  38. Vogt, M., Frese F., Mai, H., Baar, R.: Improving the application of Turbine Maps in 1D Engine Process Modelling. In: Proceedings of ASME Turbo Expo, 2011, GT2011-45500, pp. 759–769. https://doi.org/10.1115/GT2011-45500

  39. Reuter, S.: Erweiterung des Turbinenkennfeldes von Pkw-Abgasturboladern durch Impulsbeaufschlagung; Dissertation; Technische Universität Dresden (2010)

  40. Inhestern, L.B.: Measurement, simulation, and 1D-modeling of turbocharger radial turbines at design and extreme off—design conditions. Doctoral Thesis Universitat Politècnica de València (2019)

  41. SAE Recommended Practice, Turbocharger Gas Stand Test Code SAE J1826. Technical Report, Society of Automotive Engineers Inc (1995)

  42. Nakhjiri, M.: Physikalische Modelle und Skalierungsmethoden zur effizienteren Applikation von Turboladern, Dissertation; Technische Universität Darmstadt (2015)

  43. Marelli, S., Marmorato, G., Capobianco, M.: Evaluation of heat transfer effects in small turbochargers by theoretical model and ist experimental validation. Energy 112, 264–272 (2016). https://doi.org/10.1016/j.energy.2016.06.067

    Article  Google Scholar 

  44. Marelli, S., Gandolfi, S., Capobianco, M.: Heat transfer effect on performance map of a turbocharger turbine for automotive application. SAE Technical Paper 2017-01-1036 (2017). https://doi.org/10.4271/2017-01-1036

  45. Schottmüller, P.: Separation der bestimmten Wirkungsgrade eines Nutzfahrzeug–Abgasturboladers von diabaten Effekten der Heißgasvermessung am Abgasturboladerprüfstand. Bachelor Thesis Technische Hochschule Friedberg (2019)

  46. Eckert, B., Schnell, E.: Axial- und Radialkompressoren. Springer, New York (1961). https://doi.org/10.1007/978-3-642-80543-1

  47. Casey, M.V., Schlegel, M.: Estimation of the performance of turbocharger compressors at extremely low pressure ratios. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 239–250 (2010). https://doi.org/10.1243/09576509JPE810

    Article  Google Scholar 

  48. Schinnerl, M., Ehrhard, J., Bogner, M., Seume, J.: Correcting turbocharger performance measurements for heat and friction. J. Eng. Gas Turbines Power 140, 9 (2018). https://doi.org/10.1115/1.403758686

    Article  Google Scholar 

  49. Aungier, R.H.: Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis. ASME Press, New York (2000). https://doi.org/10.1115/1.800938

  50. Serrano, J.R., Guardiola, C., Dolz, V., Tiseira, A., Cervelló, C.: Experimental study of the turbine inlet gas temperature influence on turbocharger performance. SAE Technical Paper 2007-01-1559 (2007). https://doi.org/10.4271/2007-01-1559

  51. Konishi, K., Tashiro, S., Yoshiki, H.: Characteristics of radial inward turbines for exhaust gas turbochargers under nonsteady flow conditions (approximation of turbine performance by equivalent nozzle). J. Trans. Jpn. Soc. Mech. Eng. Ser. B 60, 176–182 (1994). https://doi.org/10.1299/kikaib.60.176

    Article  Google Scholar 

  52. Baines, N.C.: Fundamentals of Turbocharging. Concept ETI, ISBN 0933283148 (2005)

  53. Watson, N.: Transient performance simulation and analysis of turbocharged diesel engines. SAE Trans. 90, 19 (1981). https://doi.org/10.4271/810338

    Article  Google Scholar 

  54. Verein Deutscher Ingenieure, VDI-Wärmeatlas, Springer Vieweg Verlag, 11 Auflage (2013). https://doi.org/10.1007/978-3-642-19981-3

  55. Holman, J.P.: Heat Transfer, 10th Edn. McGraw-Hill series in mechanical engineering (2010)

  56. Reyes-Belmonte, M.Á.: Contribution to the experimental characterization and 1-D modelling of turbochargers for IC engines; Doctoral Thesis Universitat Politècnica de València (2013)

  57. Churchill, S.W., Chu, H.H.: Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J. Heat Mass Transf. 18, 1049–1053 (1975). https://doi.org/10.1016/0017-9310(75)90222-7

    Article  Google Scholar 

  58. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 7th edn. Wiley, Hoboken (2011)

    Google Scholar 

  59. Lang, M., Bloch, P., Koch, T., Eggert, T., Schifferdecker, R.: Application of a combined physical and data-based model for improved numerical simulation of a medium-duty diesel engine. Autom. Eng. Technol. (2019). https://doi.org/10.1007/s41104-019-00054-w

  60. Dombrovsky, A.: Synthesis of the 1D modelling of turbochargers and its effects on engine performance prediction; Doctoral Thesis Universitat Politècnica de València (2017)

  61. Franzke, B.M.: Numerische Untersuchung des Auslassvorgangs und der Abgastemperatur an turboaufgeladenen Ottomotoren; Dissertation; Rheinisch–Westfälische Technische Hochschule Aachen (2016)

  62. Serrano, J.R., Olmeda, P., Arnau, F.J., Dombrovsky, A., Smith, L.: Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy 86, 204–218 (2015). https://doi.org/10.1016/j.energy.2015.03.130

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank John P. Watson from BorgWarner Turbo Systems for his great support by providing the hot gas test bench measurements, the empirical turbocharger friction power correlation and the CAD model of the turbocharger hardware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Lang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Koch, T., Eggert, T. et al. A holistic consideration of turbocharger heat transfer analysis and advanced turbocharging modeling methodology in a 1D engine process simulation context. Automot. Engine Technol. 5, 113–136 (2020). https://doi.org/10.1007/s41104-020-00062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-020-00062-1

Keywords

Navigation