1 Introduction

Let G be a simple graph with vertex set V and edge set E. The graph G is a complete t-partite graph if there is a partition \(V=V_1 \cup \ldots \cup V_t\) of the vertex set, such that two vertices \(v_1\) and \(v_2\) are adjacent if and only if \(v_1\) and \(v_2\) are in the different parts of the partition. If \(|V_k|=n_k\) \((1\le k\le t)\), then G is denoted by \(K_{n_1,\ldots ,n_t}\). Let \(G_1\) and \(G_2\) be two graphs with vertex sets \(V_1\) and \(V_2\) and edge sets \(E_1\) and \(E_2\), respectively. The Cartesian product \(G=G_1 \square G_2\) has the vertex set \(V_1\times V_2\), and two vertices \((u_1,u_2)\) and \((v_1,v_2)\) of G are adjacent if and only if either \(u_1=v_1\) and \(u_2v_2 \in E_2\) or \(u_2=v_2\) and \(u_1v_1 \in E_1\). The direct product of G and H, denoted by \(G\times H\) whose vertex set is \(V(G)\times V(H)\), and for which vertices (gh) and \((g',h')\) are adjacent precisely if \(gg' \in E(G)\) and \(hh' \in E(H)\). We say that \(G= (V,E)\) is a join graph if G is the complete union of two graphs \(G_1 = (V_1,E_1)\) and \(G_2 = (V_2,E_2)\). In other words, \(V = V_1 \cup V_2\) and \(E = E_1 \cup E_2 \cup \{uv \vert u \in V_1, v \in V_2\}\). If G is the join graph of \(G_1\) and \(G_2\), then we write \(G = G_1 +G_2\).

For a vertex \(v \in V\), the closed neighborhood N[v] of v is the set consisting of v and all of its neighbors. For a function \(g:V\longrightarrow \{-1,1\}\) and a vertex \(v \in V\) we define \(g(N[v])= \sum _{u \in N[v]} g(u)\). A signed dominating function of G is a function \(g : V \longrightarrow \{-1,1\}\) such that \(g (N[v])>0\) for all \(v \in V\). The weight of a function g is \(\omega (g)= \sum _{v \in V} g(v)\). The signed domination number, \(\gamma _s(G)\), is the minimum weight of all signed dominating functions on G. A signed dominating function of weight \(\gamma _s(G)\) is called a \(\gamma _s(G)\)-function. This concept was defined in Dunbar et al. (1995) and has been studied by several authors (see for instance Dunbar et al. 1995; Favaron 1996; Füredi and Mubayi 1999; Haas and Wexler 2004; Volkman and Zelinka 2005; Zelinka 2006). We denote g(N[v]) by g[v]. Also for signed dominating function g, the set \(\{v \in V: g(v)=-1 \}\) denoted by \(V^-_g\).

A signed dominating function g of G can also be represented by \(S_g =\{ (v,g(v)) \, |\, v \in V \}\). Let g be a \(\gamma _s(G)-\)function. A subset T of \(S_g\) is called a forcing subset of \(S_g\), if \(S_g\) is the unique extension of T to a \(\gamma _s(G)-\)function. The forcing signed domination number of \(S_g\), \(f(S_g,\gamma _s)\), is defined by \(f(S_g,\gamma _s) = {\rm min} \{ |T|\, | \, T\) is a forcing subset of \(S_g\}\). The forcing signed domination number of G is defined by \(f(G,\gamma _s) = {\rm min} \{f(S_g,\gamma _s) \,|\, S_g\) is a \(\gamma _s(G)-\)function \(\}\). The forcing signed domination number was introduced by Sheikholeslami in Sheikholeslami (2007) in which \(f(G,\gamma _s)\) determined for several classes of graphs.

In this paper, we compute the signed domination number of several classes of graph, including \(P_n + K_1\), \(P_2 \Box K_{1,n}\), \(P_2 \Box K_n\), \(K_n \times K_m\) and \(K_{n,\ldots ,n}\). Also, the forcing signed domination numbers of some graphs are determined.

2 Main Results

We begin with the following lemma to obtain the forcing signed domination number of complete graph \(K_n\).

Lemma 1

Füredi and Mubayi (1999) Let G be a complete graph of order n. Then

$$\begin{aligned} \gamma _s(G)= \left\{ \begin{array}{ll} 1 & \quad \text {if}\ n\ \text {is odd}; \\ 2 & \quad \text {if}\ n\ \text {is even}. \end{array} \right. \end{aligned}$$

Theorem 1

The forcing signed domination number of complete graph \(K_n\) is \(\lceil \frac{n}{2} \rceil -1\).

Proof

Let \(V(K_n)=\{v_1,v_2, \ldots , v_n \}\) and f be a \(\gamma _s-\)function of \(K_n\). We have \(|V^-_f|=\lceil \frac{n}{2}\rceil -1\). Without loss of generality, suppose that \(f(v_i)=-1\) for \(i=1,2,\ldots ,\lceil \frac{n}{2} \rceil -1\) which implies that \(T=V^-_f\) is a forcing set of S. Hence, \(f(G,\gamma _S)\le \lceil \frac{n}{2} \rceil -1\). On the contrary, assume that \(T'\) is a forcing subset and \(|T'|<\lceil \frac{n}{2} \rceil -1\). Since all vertices are adjacent, there are at least \(\lceil \frac{n}{2} \rceil +1\) distinct extensions of \(T'\) to a \(\gamma _S\)-function. This is a contradiction. \(\square\)

In the following two theorems, we consider the join graph of \(P_n\) and \(K_1\) and we determine the signed domination number as well as the forcing signed domination number of \(P_n+K_1\). Let \(V(P_{n}+K_{1})\;=\;{v_{0},v_{1}, \ldots, v_{n}}\) where \(deg(v_0)=n\). If \(n=1,2\), then \(P_n+K_1\) is isomorphic to \(P_2,K_3\) and so \(\gamma _s(P_n+K_1)=2,1\), respectively. Also it is not hard to see that \(\gamma _s(P_3+K_1)=2\). For \(n \ge 4\), we deduce the following theorem.

Theorem 2

For \(n \ge 4\), \(\gamma _S(P_n + K_1)=n+1-2 \lceil \frac{n}{3} \rceil\).

Proof

Define \(g:V\longrightarrow \{-1,1\}\) where \(g(v_i)=-1\) if and only if \(i=3k+1\) and \(0\le k \le \left\lfloor \frac{n-1}{3} \right\rfloor\). For any \(1 \le i \le n\), \(\left| N[v_i]\cap V^-_g \right| =1\) and \(deg(v_i)\ge 2\), so g is a signed dominating function and \(\omega (g)=n+1-2\lceil \frac{n}{3}\rceil\). Hence, \(\gamma _S(P_n + K_1)\le n+1-2\lceil \frac{n}{3}\rceil\). On the other side, let h be a \(\gamma _s\)-function of \(P_n+K_1\) where \(h(v_0)=-1\). Since \(2\le deg(v_i)\le 3\) for \(1\le i\le n\), so \(h(v_i)=1\). Hence, \(\omega (h)=n-1\) and as a result of that \(\omega (h)>n+1-2\lceil \frac{n}{3}\rceil\). This is a contradiction. Thus, \(h(v_0)=1\). If \(h(v_i)=h(v_j)=-1\), then \(|i-j|\ge 3\). As a consequence \(|V^-_h| \le \lceil \frac{n}{3}\rceil\). Therefore, \(\omega (h) \ge n+1-2\lceil \frac{n}{3}\rceil\). This completes the proof. \(\square\)

Lemma 2

Sheikholeslami (2007) For a graph G, \(f(G,\gamma _s)=0\) if and only if G has a unique \(\gamma _s\)-function. Moreover, \(f(G,\gamma _s)=1\) if and only if G does not have a unique \(\gamma _s\)-function but some pair \((v,\pm 1)\) belongs to exactly one \(\gamma _s\)-function.

Theorem 3

For \(n \ge 1\),

$$f(P_{n} + K_{1} ,\gamma _{S} ) = \left\{ {\begin{array}{*{20}l} 0 \hfill & {n \equiv 1\quad \left( {\bmod 3} \right);} \hfill \\ 1 \hfill & {{\text{otherwise}}.} \hfill \\ \end{array} } \right.$$

Proof

Let k be a positive integer. There are three cases:

Case 1::

Let \(n=3k+1\) and consider the \(\gamma _s\)-function g which is defined in proof of Theorem 2. Let h be another \(\gamma _s\)-function of \(P_n+K_1\) . We show that \(h=g\). On the contrary, suppose that \(g \ne h\). So for some \(0\le i \le k-1\), \(V^-_h \cap \{v_{3i},v_{3i+2}\} \ne \emptyset\). Hence, \(h(v_{3i\pm 1})=h(v_{3i\pm 2})=1\) or \(h(v_{3i})=h(v_{3i\pm 1})=1\). So \(|V^-_h|\le k\). Thus, \(\omega (h) > \gamma _s(P_n+K_1)\). This is a contradiction. Thus, \(g=h\) and by Lemma 2, \(f(P_n+K_1,\gamma _s)=0\).

Case 2::

Let \(n=3k\) and let h be a \(\gamma _s\)-function of \(P_n+K_1\) such that \(V^-_h=\{v_3, v_6, \ldots , v_n\}\). Then, in each induced subgraph of \(\{v_1,v_2, \ldots , v_n\}\) which is isomorphic to \(P_3\), there is exactly one vertex with label \(-1\). Let \(T=\{(v_3,-1)\}\). Then, T is a forcing subset of h and \(f(P_n+K_1, \gamma _s)\le 1\). Since there are more than one \(\gamma _s\)-function for \(P_n+K_1\), \(f(P_n+K_1, \gamma _s)\ge 1\) and so \(f(P_n+K_1,\gamma _s)=1\).

Case 3::

Let \(n=3k+2\) and let gh be two \(\gamma _s\)-functions of \(P_n+K_1\) such that \(V^-_g=\{v_2,v_5, \ldots , v_n\}\) and \(V^-_h=\{v_1,v_4 , \ldots , v_{n-1}\}\). By Lemma 2, \(f(P_n+K_1, \gamma _s)\ge 1\). Let \(T=\{(v_2,-1)\}\) be a subset of g. Since \(|V^-_g|=\lceil \frac{n}{3}\rceil\), so T is a forcing subset. Thus, \(f(P_n+K_1,\gamma _s)\le 1\). This completes the proof.

\(\square\)

Now we consider the Cartesian product of \(P_2\) and \(K_{1,n}\). Let \(V=\{ u_0,\dots , u_n, v_0, v_1, \dots , v_n \}\) be the vertex set of \(P_2\square K_{1,n}\) where the induced subgraph on \(\{ u_0,u_1, \dots , u_n\}\) and \(\{ v_0, v_1, \dots , v_n \}\) are \(K_{1,n}\). In Theorems 4 and 7, we determine signed domination and forcing signed domination numbers of \(P_2\square K_{1,n}\).

Theorem 4

For \(n\ge 1\), \(\gamma _S(P_2 \square K_{1,n})=2\).

Proof

Let \(g:V\longrightarrow \{-1,1\}\) such that \(g(v)=-1\) if and only if \(v \in \{v_1, \ldots v_{\lceil \frac{n}{2}\rceil }, u_{\lceil \frac{n}{2}\rceil +1}, \ldots , u_n\}\). Since \(1 \le g[u_i],g[v_i]\le 3\) for \(0\le i\le n\), g is a signed dominating function. Hence, \(\gamma _s(P_2\square K_{1,n})\le \omega (g)=2\). Let h be a \(\gamma _s\)-function and \(\omega (h)<2\). Then, \(|V^-_h|>n\). So \(h[u_0]=0\) or \(h[v_0]=0\). This is a contradiction. Therefore, \(\gamma _s(P_2\square K_{1,n})=2\). \(\square\)

Theorem 5

Zelinka (2006) Let \(K_{a,b}\) be a complete bipartite graph with \(b \le a\). Then

$$\gamma _{s} (K_{{a,b}} ) = \left\{ {\begin{array}{*{20}l} {a + 1} \hfill & {{\text{if }}\;b = 1;} \hfill \\ b \hfill & {{\text{if}}\;{\text{ }}2 \le b \le 3{\text{ }}\;{\text{and}}\;{\text{ }}a\;{\text{ is}}\;{\text{ even}};} \hfill \\ {b + 1} \hfill & {{\text{if }}\;2 \le b \le 3{\text{ }}\;{\text{and}}\;{\text{ }}a\;{\text{ is }}\;{\text{odd}};} \hfill \\ 4 \hfill & {{\text{if }}\;b \ge 4{\text{ }}\;{\text{and}}\;{\text{ }}a,b{\text{ }}\;{\text{are}}\;{\text{ both}}\;{\text{ even}};} \hfill \\ 6 \hfill & {{\text{if }}\;b \ge 4{\text{ }}\;{\text{and}}\;{\text{ }}a,b\;{\text{ are}}\;{\text{ both }}\;{\text{odd}};} \hfill \\ 5 \hfill & {{\text{if }}\;b \ge 4{\text{ }}\;{\text{and}}\;{\text{ }}a,b\;{\text{ have }}\;{\text{different}}\;{\text{ parity}}.} \hfill \\ \end{array} } \right.$$

Theorems 4 and 5 imply the following Corollary.

Corollary 1

For every positive integer n, \(\gamma _s(P_2 \square K_{1,n})< \gamma _s(P_2)\times \gamma _s(K_{1,n})\).

Theorem 6

Sheikholeslami (2007) For \(n \in \{3,4,5\}\), \(f(C_n, \gamma _s)=1\) and for \(n \ge 6\),

$$f(C_{n} ,\gamma _{s} ) = \left\{ {\begin{array}{*{20}l} 1 \hfill & {{\text{if }}n \equiv 0\quad \left( {\bmod 3} \right);} \hfill \\ 2 \hfill & {{\text{if }}n \equiv 1,2\quad \left( {\bmod 3} \right).} \hfill \\ \end{array} } \right.$$

Theorem 7

For \(n\ge 1\), \(f(P_2 \square K_{1,n},\gamma _s)=\lceil \frac{n}{2}\rceil\).

Proof

Let f be a \(\gamma _s\)-function of \(P_2 \square K_{1,n}\). Then, \(|V^-_f|=n\). If \(n=1\), then \(P_2 \square K_{1,n}\simeq C_4\) and by Theorem 6, \(f(P_2 \square K_{1,n}, \gamma _s)=1\). Let \(n \ge 2\). Since \(|V^-_f|=n\) and \(deg(v_i)=deg(u_i)=2\) for \(1 \le i \le n\), so \(u_0,v_0 \not \in V^-_f\). On the other hand, \(|N(x) \cap V^-_f|\le \lceil \frac{n}{2}\rceil\) where \(x \in \{u_0,v_0\}\). It is clear that \(f(v_i)=-f(u_i)\) for \(1\le i\le n\). Hence, \((v_i,f(v_i))\) forces \((u_i, f(u_i))\). Let \(T\subseteq S_f\) where \(|T|<\lceil \frac{n}{2}\rceil\). Then, there are at least two distinct extensions of T. Thus, T is not a forcing subset of f and so the forcing signed domination number of \(P_2\times K_{1,n}\) is \(\lceil \frac{n}{2}\rceil\). \(\square\)

Theorem 8

Sheikholeslami (2007) Let G be a graph with \(\Delta \le 3\), g be a signed dominating function of G and \(u,v \in V(G)\). If \(g(u)=g(v)=-1\), then \(d(u,v) \ge 3\).

Let \(V=V_1 \cup V_2\) be the vertices set of \(P_2\square K_n\) such that \(V_1=\{v_1, \dots , v_n\}\) and \(V_2=\{ u_1, \dots , u_n\}\) where induced subgraph on \(V_i\) is \(K_n\) for \(1 \le i \le 2\). Also \(u_j,v_j\) are adjacent for \(1 \le j \le n\). Now, we obtain the signed domination number of \(P_2\square K_n\).

Theorem 9

For any positive integer n,

$$\begin{aligned} \gamma _s(P_2 \square K_n)= \left\{ \begin{array}{ll} 2 & \quad n=2;\\ 4 & \quad 2<n \, \text { is even or } n=3 ;\\ 6 & \quad 3<n \, \text { is odd}. \end{array}\right. \end{aligned}$$

Proof

If \(n=2\), then \(P_2 \square K_n \simeq C_4\) and so \(\gamma _s(P_2 \square K_n)=2\). If \(n=3\), then \(P_2 \square K_n\) is a 3-regular graph of diameter two. Let f be a \(\gamma _s\)-function of \(P_2 \square K_n\). By Theorem 8, \(|V^-_f|=1\). Thus, \(\gamma _s(P_2 \square K_n)=4\).

Consider two following cases when \(n>3\).

Case 1::

Let n be even. Define \(f: V(P_2 \square K_n) \longrightarrow \{-1 , 1\}\), where \(f(v)=-1\) if and only if \(v \in \{v_1, \ldots , v_{\frac{n}{2}-1}\}\cup \{u_{\frac{n}{2}}, \ldots , u_{n-2} \}\). For each \(v \in V\), \(1 \le f[v] \le 3\) and also \(\omega (f)=4\). Thus, \(\gamma _s(P_2 \square K_n ) \le 4\). Let g be a \(\gamma _s\)-function of \(P_2 \square K_n\). If \(n=4\), then \(|V_i \cap V^-_g| \le 2\) for \(1 \le i \le 2\). Also if \(|V_1 \cap V^-_g|=2\), then \(V_2 \cap V^-_g=\emptyset\) and so \(\omega (g)=4\). Hence, \(\gamma _s(P_2 \square K_4)=4\). Let \(n>4\). Since the Cartesian product of \(P_2\) and \(K_n\) is n-regular graph, so there are at most \(\frac{n}{2}\) vertices of label \(-1\) in the closed neighborhood of each vertex. Without loss of generality, let \(|V_1 \cap V^-_g|=\frac{n}{2}\). Then, \(V_2 \cap V^-_g =\emptyset\). Hence, \(\omega (g)=n > 4\). This is contradiction by \(\gamma _s(P_2 \square K_n)\le 4\). Thus, for \(1 \le i \le 2\), \(|V_i \cap V^-_g| \le \frac{n}{2} -1\) and so \(\omega (g)=\gamma _s(P_2 \square K_n) \ge 4\).

Case 2::

Let n be odd. Define \(f: V(P_2 \square K_n) \longrightarrow \{-1 , 1\}\), where \(f(v)=-1\) if and only if \(v \in \{v_1, \ldots , v_{\lfloor \frac{n}{2}\rfloor -1}\}\cup \{u_{\lfloor \frac{n}{2}\rfloor }, \ldots , u_{n-3} \}\). For each \(v \in V\), \(2 \le f[v] \le 4\) and also \(\omega (f)=6\). Thus, \(\gamma _s(P_2 \square K_n ) \le 6\). Let h be a \(\gamma _s\)-function of \(P_2 \square K_n\). If \(n=5\), then \(|V_i \cap V^-_h| \le 2\) for \(1 \le i \le 2\). Also if \(|V_1 \cap V^-_h|=2\), then \(V_2 \cap V^-_h=\emptyset\) and so \(\gamma _s(P_2 \square K_4)=6\). Let \(n>5\). Let \(|V_1 \cap V^-_h|=\lfloor \frac{n}{2}\rfloor\). If for some \(1 \le j \le n\), \(h(u_j)=-1\), then \(h[v_j]=0\) which is a contradiction. Hence, \(V_2 \cap V^-_h=\emptyset\) and so \(\omega (h)=n+1 >6\). This is not true. Thus, for \(1 \le i \le 2\), \(|V_i \cap V^-_h| \le \lfloor \frac{n}{2} \rfloor -1\) and so \(\gamma _s(P_2 \square K_n) \ge 6\). This completes the proof.

\(\square\)

By Theorems 1 and 9, we have following Corollary.

Corollary 2

For \(n>2\), \(\gamma _S(P_2 \square K_n)\ge \gamma _s(P_2)\times \gamma _s(K_n)\).

Theorem 10

Let G be a complete n-partite graph with \(n^2\) vertices where \(n \ge 3\). Then

$$\begin{aligned} \gamma _s(G )= \left\{ \begin{array}{ll} 3 & \quad \text {if n is odd};\\ 4 & \quad \text {if n is even}. \end{array} \right. \end{aligned}$$

Proof

Let G be a complete n-partite graph. Let \(V=A_1\cup \ldots \cup A_n\) where \(A_i=\{ v_{ij}:\, 1\le j \le n\}\) and induced subgraph on \(A_i\) has no edge for \(1 \le i \le n\). Let n be odd. We define \(f:V\rightarrow \{-1,1 \}\) such that \(f(v)=-1\) if and only if \(v \in \left\{ v_{ij}: 1\le i \le \lfloor \frac{n}{2}\rfloor -1 \text { and } 1 \le j \le \lceil \frac{n}{2}\rceil \right\} \cup \left\{ v_{ij}: \lfloor \frac{n}{2}\rfloor \le i \le n \text { and } 1 \le j \le \lfloor \frac{n}{2}\rfloor \right\}\). It is not hard to see that for any \(v \in V\), \(|N[v] \cap V^-_f|=|V^-_f|- \lfloor \frac{n}{2}\rfloor +1\) and \(f[v] \ge 1\) and so f is a signed dominating function of weight \(\omega (f)=3\). As a consequence, \(\gamma _S(G)\le 3\). On the contrary, suppose that there is a \(\gamma _s\)-function g such that \(\omega (g) <3\). Hence, \(|V^-_g|> \frac{1}{2}(n^2-3)\). Let \(|V^-_g|=\frac{1}{2}(n^2-1)\). Two following steps help us to reach the result.

  • If \(A_i \cap V^-_g=\emptyset\) for some \(1\le i \le n\), then \(g[v]=2-n\) for any \(v \in A_i\) and since \(n \ge 3\), \(g[v] < 0\). This is not true. Hence, \(A _i \cap V^-_g \ne \emptyset\) for every \(1 \le i \le n\).

  • If \(|A_i \cap V^-_g| \ge \lceil \frac{n}{2}\rceil\) for every \(1 \le i \le n\), then \(|V^-_g| \ge \frac{1}{2}(n^2+n)\). This is impossible. So there is \(1 \le j \le n\) such that \(|A_j \cap V^-_g| \le \lfloor \frac{n}{2}\rfloor\). Let \(u \in A_j \cap V^-_g\). Then,

    $$\begin{aligned} g[u]&= n^2-n+1-2\left( \frac{1}{2} (n^2-1) -|A_j \cap V^-_g|+1 \right) \\ &\quad \le 2 \lfloor \frac{n}{2} \rfloor -n \le -1. \end{aligned}$$

This is a contradiction. Therefore, \(\gamma _S(G)=3\) when n is odd.

Now suppose that n is even and we define \(f:V \longrightarrow \{-1,1\}\) such that \(f(v)=-1\) if and only if \(v \in \{v_{ij}: 1 \le i \le n-2 \text { and } 1\le j \le \frac{n}{2} \} \cup \{ v_{ij}: n-1 \le i \le n \text { and } 1 \le j \le \frac{n}{2} -1\}\). It is easily seen that \(1 \le f[v] \le 5\) for each \(v \in V\). Hence, f is a signed dominating function and \(\omega (f)=4\).

Let g be a \(\gamma _s\)-function where \(|V^-_g|=|V^-_f|+1\). We show that for any \(1 \le i \le n\), \(A_i \cap V^-_g \ne \emptyset\). On the contrary, let \(A_k\cap V^-_g =\emptyset\) for some \(1 \le k \le n\) and \(u \in A_k\). Then, \(g[u]=3-n\le 0\). This is a contradiction. Thus, for any \(1 \le i \le n\), \(A_i \cap V^-_g \ne \emptyset\). Let \(w \in A_i \cap V^-_g\). Then, \(g[w]=n^2-n+1-2 \left| |V^-_g|-|A_i\cap V^-_g|+1 \right| \ge 1\). So \(|A_i \cap V^-_g| \ge \frac{n}{2}\) for any \(1 \le i \le n\) and so \(\frac{n^2}{2}-1=|V^-_g|\ge n(\frac{n}{2})\) which is impossible. Therefore, \(\gamma _s(G)=4\) where n is even. This completes the proof. \(\square\)

Theorem 11

Dunbar et al. (1995), Henning and Slater (1996) Let G be a \(k-\)regular graph of order n. If k is odd, then \(\gamma _{_S}(G )\ge \frac{2n}{k+1}\) and if k is even, then \(\gamma _{_S}(G)\ge \frac{n}{k+1}\).

Let \(V=\{v_{ij}:1\le i \le n \, , \, 1 \le j \le m \}\) be the vertex set of \(K_n \times K_m\) for any positive integers \(1<n < m\). Then, \(v_{ij}\) and \(v_{ks}\) are adjacent if and only if \(i \ne k\) and \(j \ne s\). Also for any \(1 \le i \le n\) and \(1 \le j \le m\), the induced subgraphs on \(A_i=\{v_{ij}: 1\le j \le m \}\) and \(B_j =\{v_{ij}: 1 \le i \le n\}\) are empty. With these notations in mind, we will prove the following result:

Theorem 12

For any positive integers \(1<n < m\),

$$\begin{aligned} \gamma _s(K_n \times K_m)= \left\{ \begin{array}{ll} 2 & \quad n=2, m \text { is odd}; \\ 4 & \quad n=2, m \text { is even};\\ 3 & \quad n=3, m \text { is odd};\\ 5 & \quad n\ne 3, mn\text { is odd} ;\\ 6 & \quad 3< n <m \text { have different parity};\\ 8 & \quad 2 \ne n , m \text { are both even}. \end{array} \right. \end{aligned}$$

Proof

Consider following cases:

Case 1.:

If \(n=2\), then \(K_n \times K_m\) is a bipartite graph and \((m-1)\)-regular. Define \(f:V \longrightarrow \{-1,1\}\) such that \(f(v_{ij})=-1\) if and only if \(1 \le i \le 2\) and \(1 \le j \le \lceil \frac{m}{2}\rceil -1\). Since for any i and j, \(\left| N[v_{ij}] \cap V^-_f \right| \le \lceil \frac{m}{2}\rceil -1\), so \(f[v_{ij}] \ge 1\). Thus, f is a signed dominating function and \(\omega (f)=2,4\) and so \(\gamma _s(K_n \times K_m) \le 2,4\) depending on m is odd or even, respectively. On the other hand, by Theorem 11, if m is odd, then \(\gamma _s(K_n \times K_m) \ge 2\), otherwise \(\gamma _s(K_n \times K_m) \ge 4\).

Case 2.:

If \(n=3\) and m is odd. Define \(f:V\longrightarrow \{-1,1\}\) such that \(f(v_{ij})=-1\) if and only if \(1 \le i \le 3\) and \(1 \le j \le \lfloor \frac{m}{2}\rfloor\). Hence, \(|N[v_{ij}] \cap V^-_f| \le 2\lfloor \frac{m}{2}\rfloor\) for any i and j. So f is a signed dominating function of weight \(\omega (f)=3\).

If g is a \(\gamma _s\)-function and \(\gamma _s(K_3 \times K_m) < \omega (f)\), then \(|V^-_g| > |V^-_f|\). Let \(|V^-_g|=|V^-_f|+1=\frac{3m-1}{2}\). Let \(1 \le i \le 3\) and \(A_i \cap V^-_g = \emptyset\). Then, \(g[u]=3-m\) for each \(u \in A_i\). So for any \(1 \le i \le 3\), \(A_i \cap V^-_g \ne \emptyset\). The same argument shows \(B_j \cap V^-_g \ne \emptyset\) for any \(1 \le j \le m\). If there is \(1 \le \ell \le m\) such that \(|B_{\ell }\cap V^-_g|=2\), then for \(v_{i\ell } \in V^-_g\) we have

$$\begin{aligned} g[v_{i\ell }]= & 2m-1\\&-2 \left( |V^-_g|-|A_i\cap V^-_g|-|B_{\ell }\cap V^-_g|+2 \right) \ge 1 \end{aligned}$$

As a consequence \(|A_i \cap V^-_g|\ge \frac{m+1}{2}\). Since \(|V^-_g|= \sum _{i=1}^{3} |A_i \cap V^-_g|\), so \(|V^-_g| \ge \frac{3m+3}{2}\). This is not true. Thus, for any \(1 \le j \le m\), \(|B_j \cap V^-_g|=1\) and so \(|V^-_g|=m\). Again this is not true. Therefore, \(\gamma _s(K_3\times K_m)=3\).

Case 3.:

Let \(n \ne 3\) and mn is odd. Define \(f:V\longrightarrow \{-1,1\}\) such that \(f(v)=-1\) if and only if \(v \in \left\{ v_{ij}: \, i\equiv 1+k \pmod n \, , \, j \equiv 1+k \pmod m \, , \, 1 \le k \le \frac{mn-5}{2} \right\}\). Thus, for any ij, \(\lfloor \frac{m}{2}\rfloor \le |A_i \cap V^-_f| \le \lceil \frac{m}{2}\rceil\) and \(\lfloor \frac{n}{2}\rfloor \le |B_j\cap V^-_f| \le \lceil \frac{n}{2}\rceil\). Hence, for \(v \in V\), \(|N[v] \cap V^-_f| \le \frac{mn-1}{2}- \lfloor \frac{m}{2}\rfloor - \lfloor \frac{n}{2}\rfloor\) and so \(f[v] \ge 1\). So f is a signed dominating function of weight \(\omega (f)=5\). Hence, \(\gamma _s(K_n \times K_m) \le 5\).

Let g be a signed dominating function where \(\omega (g) <5\). Then, \(|V^-_g| > \frac{mn-5}{2}\). Let \(|V^-_g|=\frac{mn-3}{2}\). Suppose that \(A_i \cap V^-_g=\emptyset\). If there is \(B_j\) for some \(1 \le j \le m\) such that \(|B_j \cap V^-_g| \le \lfloor \frac{n}{2}\rfloor\), then

$$\begin{aligned} g[v_{ij}] = (m-1)(n-1)+1-2 \left( |V^-_g|-|B_j \cap V^-_g| \right) \le 4-n <0. \end{aligned}$$

Hence, for any \(1 \le j \le m\), \(|B_j \cap V^-_g| \ge \lceil \frac{n}{2} \rceil\) and then \(|V^-_g| \ge m \lceil \frac{n}{2} \rceil\). This makes a contradiction. Therefore, \(A_i \cap V^-_g \ne \emptyset\) for any \(1 \le i \le n\). By similar argument, we can see \(B_j \cap V^-_g \ne \emptyset\) for \(1 \le j \le m\). If there are i and j such that \(|A_i \cap V^-_g| \le \lfloor \frac{m}{2}\rfloor\), \(|B_j \cap V^-_g| \le \lfloor \frac{n}{2}\rfloor\) and also \(v_{ij} \in V^-_g\), then

$$\begin{aligned} g[v_{ij}]= (m-1)(n-1)+1-2 \left( |V^-_g|-|A_i \cap V^-_g| - |B_j \cap V^-_g| +2 \right) . \end{aligned}$$

Thus \(g[v_{ij}]\le -1\). This is a contradiction. Otherwise, i.e., for any ij, where\(|A_i \cap V^-_g| \le \lfloor \frac{m}{2}\rfloor\), \(|B_j \cap V^-_g| \le \lfloor \frac{n}{2}\rfloor\), \(g(v_{ij})=+1\), then \(|V^-_g| \ge \lfloor \frac{m}{2}\rfloor \lceil \frac{n}{2}\rceil +\lfloor \frac{n}{2}\rfloor \lceil \frac{m}{2}\rceil\) which is not true. Therefore, for any \(1 \le i \le n\), \(|A_i \cap V^-_g| \ge \lceil \frac{m}{2}\rceil\) or \(|B_j \cap V^-_g| \ge \lceil \frac{n}{2} \rceil\) for any \(1 \le j \le m\). But both cases are impossible. Hence, \(\gamma _s(K_n \times K_m)=5\).

Case 4.:

Let \(n>3\) and mn have different parity. We define function \(f:V\longrightarrow \{-1,1\}\) such that \(f(v)=-1\) if and only if

$$\begin{aligned}v \in \left\{ v_{ij}: i\equiv 1+k \pmod n , j \equiv 1+k \pmod m, 1 \le k \le \frac{mn-6}{2} \right\} . \end{aligned}$$

Likewise Case 3, for any ij we have \(\lceil \frac{m}{2} \rceil -1\le |A_i \cap V^-_f| \le \lceil \frac{m}{2}\rceil\) and \(\lceil \frac{n}{2} \rceil -1 \le |B_j \cap V^-_f| \le \lceil \frac{n}{2}\rceil\) . Thus, \(|N[v] \cap V^-_f |\le \frac{mn}{2} -\lfloor \frac{m}{2}\rfloor - \lfloor \frac{n}{2}\rfloor\) for any \(v \in V\). So f is a signed dominating function of weight \(\omega (f)=6\). Hence, \(\gamma _s(K_n \times K_m) \le 6\). As above we can see \(\gamma _s(K_n \times K_m) = 6\).

Case 5.:

Let \(2<n <m\) are both even. Define \(f:V\longrightarrow \{-1,1\}\) such that \(f(v)=-1\) if and only if

$$\begin{aligned}&v \in \left\{ v_{ij}: i\equiv 1+k \pmod n , j \equiv 1+k \right. \\&\qquad \qquad \left. \pmod m, 1 \le k \le \frac{mn-8}{2}\right\} . \end{aligned}$$

With the same argument in Case 3, it is easily seen that \(\gamma _s(K_n \times K_m)=8\).

\(\square\)

By Theorem 12 and Lemma 1, we deduce the following Corollary.

Corollary 3

For \(2\le n < m\), \(\gamma _s(K_n \times K_m)\ge \gamma _s(K_n)\times \gamma _s(K_m)\).