RESEARCH PAPER

Signed Domination Number of Some Graphs

Saeid Alikhani¹ · Fatemeh Ramezani¹

Received: 17 February 2019 / Accepted: 26 January 2021 / Published online: 25 November 2021 - Shiraz University 2021

Abstract

Let $G = (V, E)$ be a simple graph. A function $f : V \longrightarrow \{-1, 1\}$ is a signed dominating function if for every vertex $v \in V$, the closed neighborhood of v contains more vertices with function value 1 than with -1 . The weight of a function f is $\omega(f) = \sum_{v \in V} f(v)$. The signed domination number of G, $\gamma_s(G)$, is the minimum weight of a signed dominating function on G. A signed dominating function of weight $\gamma_s(G)$ is called $\gamma_s(G)$ -function. A $\gamma_s(G)$ -function can also be represented by a set of ordered pairs $S_f = \{ (v, f(v)) : v \in V \}$. A subset T of S_f is called a forcing subset of S_f if S_f is the unique extension of T to a $\gamma_s(G)$ -function. The forcing signed domination number of $S_f f(S_f, \gamma_s) = \min\{|T| : T$ is a forcing subset of $S_f\}$ and the forcing signed domination number of G, $f(G, \gamma_s)$, is defined by $f(G, \gamma_s) = \min\{f(S_f, \gamma_s) : S_f$ is a $\gamma_s(G)$ -function}. In this paper, we deal with the signed domination number of several classes of graph. Also the forcing signed domination number of some graphs are determined.

Keywords Signed domination number \cdot Forcing signed domination number \cdot Cartesian product \cdot Direct product \cdot Join graph

1 Introduction

Let G be a simple graph with vertex set V and edge set E . The graph G is a complete t -partite graph if there is a partition $V = V_1 \cup ... \cup V_t$ of the vertex set, such that two vertices v_1 and v_2 are adjacent if and only if v_1 and v_2 are in the different parts of the partition. If $|V_k| = n_k (1 \le k \le t)$, then G is denoted by $K_{n_1,...,n_t}$. Let G_1 and G_2 be two graphs with vertex sets V_1 and V_2 and edge sets E_1 and E_2 , respectively. The Cartesian product $G = G_1 \Box G_2$ has the vertex set $V_1 \times V_2$, and two vertices (u_1, u_2) and (v_1, v_2) of G are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E_2$ or $u_2 = v_2$ and $u_1v_1 \in E_1$. The *direct product* of G and H, denoted by $G \times H$ whose vertex set is $V(G) \times V(H)$, and for which vertices (g, h) and (g', h') are adjacent precisely if $gg' \in E(G)$ and $hh' \in E(H)$. We say that $G = (V, E)$ is a join graph if G is the complete union of two graphs $G_1 =$

 \boxtimes Fatemeh Ramezani f.ramezani@yazd.ac.ir

> Saeid Alikhani alikhani@yazd.ac.ir

¹ Department of Mathematics, Yazd University, 89195-741 Yazd, Iran

 (V_1, E_1) and $G_2 = (V_2, E_2)$. In other words, $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup \{uv | u \in V_1, v \in V_2\}$. If G is the join graph of G_1 and G_2 , then we write $G = G_1 + G_2$.

For a vertex $v \in V$, the closed neighborhood $N[v]$ of v is the set consisting of v and all of its neighbors. For a function $g: V \longrightarrow \{-1, 1\}$ and a vertex $v \in V$ we define $g(N[v]) = \sum_{u \in N[v]} g(u)$. A signed dominating function of G is a function $g: V \longrightarrow \{-1, 1\}$ such that $g(N[v]) > 0$ for all $v \in V$. The weight of a function g is $\omega(g) = \sum_{v \in V} g(v)$. The signed domination number, $\gamma_s(G)$, is the minimum weight of all signed dominating functions on G. A signed dominating function of weight $\gamma_s(G)$ is called a $\gamma_s(G)$ function. This concept was defined in Dunbar et al. ([1995\)](#page-5-0) and has been studied by several authors (see for instance Dunbar et al. [1995](#page-5-0); Favaron [1996;](#page-5-0) Füredi and Mubayi [1999](#page-5-0); Haas and Wexler [2004;](#page-5-0) Volkman and Zelinka [2005](#page-5-0); Zelinka [2006\)](#page-5-0). We denote $g(N[v])$ by $g[v]$. Also for signed dominating function g, the set $\{v \in V : g(v) = -1\}$ denoted by V_g^- .

A signed dominating function g of G can also be represented by $S_g = \{(v, g(v)) | v \in V\}$. Let g be a $\gamma_s(G)$ – function. A subset T of S_g is called a *forcing subset* of S_g , if S_g is the unique extension of T to a $\gamma_s(G)$ -function. The forcing signed domination number of S_g ,

 $f(S_g, \gamma_s)$, is defined by $f(S_g, \gamma_s) = \min\{|T| | T$ is a forcing subset of S_g . The forcing signed domination number of G is defined by $f(G, \gamma_s) = \min \{f(S_g, \gamma_s) | S_g$ is a $\gamma_s(G)$ – function }. The forcing signed domination number was introduced by Sheikholeslami in Sheikholeslami [\(2007](#page-5-0)) in which $f(G, \gamma_s)$ determined for several classes of graphs.

In this paper, we compute the signed domination number of several classes of graph, including $P_n + K_1$, $P_2 \square K_{1,n}$, $P_2 \square K_n$, $K_n \times K_m$ and $K_{n,\dots,n}$. Also, the forcing signed domination numbers of some graphs are determined.

2 Main Results

We begin with the following lemma to obtain the forcing signed domination number of complete graph K_n .

Lemma 1 Füredi and Mubayi ([1999\)](#page-5-0) Let G be a complete graph of order n. Then

 $\gamma_s(G) = \begin{cases} 1 & \text{if } n \text{ is odd}; \\ 2 & \text{if } n \text{ is even}. \end{cases}$ 2 if *n* is even. ϵ

Theorem 1 The forcing signed domination number of complete graph K_n is $\lceil \frac{n}{2} \rceil - 1$.

Proof Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ and f be a γ_s -function of K_n . We have $|V_f^-| = \lceil \frac{n}{2} \rceil - 1$. Without loss of generality, suppose that $f(v_i) = -1$ for $i = 1, 2, ..., \lceil \frac{n}{2} \rceil - 1$ which implies that $T = V_f^-$ is a forcing set of S. Hence, $f(G, \gamma_S) \leq \lceil \frac{n}{2} \rceil - 1$. On the contrary, assume that T' is a forcing subset and $|T'| < |\frac{n}{2}| - 1$. Since all vertices are adjacent, there are at least $\lceil \frac{n}{2} \rceil + 1$ distinct extensions of T' to a γ_s -function. This is a contradiction.

In the following two theorems, we consider the join graph of P_n and K_1 and we determine the signed domination number as well as the forcing signed domination number of $P_n + K_1$. Let $V(P_n + K_1) = v_0, v_1, ..., v_n$ where $deg(v_0) = n$. If $n = 1, 2$, then $P_n + K_1$ is isomorphic to P_2, K_3 and so $\gamma_s(P_n + K_1) = 2, 1$, respectively. Also it is not hard to see that $\gamma_s(P_3 + K_1) = 2$. For $n \geq 4$, we deduce the following theorem.

Theorem 2 For $n \ge 4$, $\gamma_S(P_n + K_1) = n + 1 - 2\lceil \frac{n}{3} \rceil$.

Proof Define $g: V \longrightarrow \{-1, 1\}$ where $g(v_i) = -1$ if and only if $i = 3k + 1$ and $0 \le k \le \lfloor \frac{n-1}{3} \rfloor$. For any $1 \le i \le n$, $N[v_i] \cap V_g^ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 1$ and $deg(v_i) \geq 2$, so g is a signed dominating function and $\omega(g) = n + 1 - 2\left[\frac{n}{3}\right]$. Hence, $\gamma_S(P_n + K_1) \le n + 1 - 2\lceil \frac{n}{3} \rceil$. On the other side, let h be a

 γ_s -function of $P_n + K_1$ where $h(v_0) = -1$. Since $2 \le deg(v_i) \le 3$ for $1 \le i \le n$, so $h(v_i) = 1$. Hence, $\omega(h) =$ $n-1$ and as a result of that $\omega(h) > n + 1 - 2\left[\frac{n}{3}\right]$. This is a contradiction. Thus, $h(v_0) = 1$. If $h(v_i) = h(v_j) = -1$, then $|i-j| \ge 3$. As a consequence $|V_h^-| \le \lceil \frac{n}{3} \rceil$. Therefore, $\omega(h) \ge n + 1 - 2\lceil \frac{n}{3} \rceil$. This completes the proof.

Lemma 2 Sheikholeslami ([2007\)](#page-5-0) For a graph G, $f(G, \gamma_s) = 0$ if and only if G has a unique γ_s -function. Moreover, $f(G, \gamma_s) = 1$ if and only if G does not have a unique γ_s -function but some pair $(v, \pm 1)$ belongs to exactly one γ_s -function.

Theorem 3 For $n \geq 1$, $f(P_n + K_1, \gamma_S) = \begin{cases} 0 & n \equiv 1 \pmod{3}; \\ 1 & \text{otherwise}. \end{cases}$ -

Proof Let k be a positive integer. There are three cases:

Case 1: Let $n = 3k + 1$ and consider the γ_s -function g which is defined in proof of Theorem 2. Let h be another γ_s -function of $P_n + K_1$. We show that $h = g$. On the contrary, suppose that $g \neq h$. So for some $0 \le i \le k - 1$, $V_h^- \cap \{v_{3i}, v_{3i+2}\} \ne \emptyset$. Hence, $h(v_{3i\pm 1}) = h(v_{3i\pm 2}) = 1$ or $h(v_{3i}) = h(v_{3i\pm 1}) = 1$. So $|V_h^-| \le k$. Thus, $\omega(h) > \gamma_s(P_h + K_1)$. This is a contradiction. Thus, $g = h$ and by Lemma 2, $f(P_n + K_1, \gamma_s) = 0.$

Case 2: Let $n = 3k$ and let h be a γ_s -function of $P_n + K_1$ such that $V_h^- = \{v_3, v_6, \ldots, v_n\}$. Then, in each induced subgraph of $\{v_1, v_2, \ldots, v_n\}$ which is isomorphic to P_3 , there is exactly one vertex with label -1 . Let $T = \{(v_3, -1)\}$. Then, T is a forcing subset of h and $f(P_n + K_1, \gamma_s) \leq 1$. Since there are more than one γ_s -function for $P_n + K_1$, $f(P_n +$ K_1 , γ_s) ≥ 1 and so $f(P_n + K_1, \gamma_s) = 1$.

Case 3: Let $n = 3k + 2$ and let g, h be two γ_s -functions of $P_n + K_1$ such that $V_g^- = \{v_2, v_5, ..., v_n\}$ and $V_h^- = \{v_1, v_4, \ldots, v_{n-1}\}$ By Lemma 2, $f(P_n + K_1, \gamma_s) \ge 1$. Let $T = \{(v_2, -1)\}\)$ be a subset of g. Since $|V_g^-| = \lceil \frac{n}{3} \rceil$, so T is a forcing subset. Thus, $f(P_n + K_1, \gamma_s) \leq 1$. This completes the proof.

 \Box

Now we consider the Cartesian product of P_2 and $K_{1,n}$. Let $V = \{u_0, \ldots, u_n, v_0, v_1, \ldots, v_n\}$ be the vertex set of $P_2 \square K_{1,n}$ where the induced subgraph on $\{u_0, u_1, \ldots, u_n\}$ and $\{v_0, v_1, \ldots, v_n\}$ are $K_{1,n}$. In Theorems [4](#page-2-0) and [7,](#page-2-0) we determine signed domination and forcing signed domination numbers of $P_2\square K_{1,n}$.

Theorem 4 For $n \geq 1$, $\gamma_S(P_2 \square K_{1,n}) = 2$.

Proof Let $g: V \longrightarrow \{-1, 1\}$ such that $g(v) = -1$ if and only if $v \in \{v_1, \ldots v_{[\frac{n}{2}]}, u_{[\frac{n}{2}]+1}, \ldots, u_n\}.$ Since $1 \leq g[u_i], g[v_i] \leq 3$ for $0 \leq i \leq n$, g is a signed dominating function. Hence, $\gamma_s(P_2 \Box K_{1,n}) \leq \omega(g) = 2$. Let h be a γ_s function and $\omega(h)$ < 2. Then, $|V_h^-| > n$. So $h[u_0] = 0$ or $h[v_0] = 0$. This is a contradiction. Therefore, $\gamma_s(P_2 \Box K_{1,n}) = 2.$

Theorem 5 Zelinka ([2006\)](#page-5-0) Let $K_{a,b}$ be a complete bipartite graph with $b \le a$. Then

$$
\gamma_s(K_{a,b}) = \begin{cases}\na+1 & \text{if } b=1; \\
b & \text{if } 2 \le b \le 3 \text{ and } a \text{ is even;} \\
b+1 & \text{if } 2 \le b \le 3 \text{ and } a \text{ is odd;} \\
4 & \text{if } b \ge 4 \text{ and } a,b \text{ are both even;} \\
6 & \text{if } b \ge 4 \text{ and } a,b \text{ are both odd;} \\
5 & \text{if } b \ge 4 \text{ and } a,b \text{ have different parity.}\n\end{cases}
$$

Theorems 4 and 5 imply the following Corollary.

Corollary 1 For every positive integer n, $\gamma_s(P_2 \Box K_{1,n}) < \gamma_s(P_2) \times \gamma_s(K_{1,n}).$

Theorem 6 Sheikholeslami [\(2007](#page-5-0)) For $n \in \{3, 4, 5\}$, $f(\mathcal{C}_n, \gamma_s) = 1$ and for $n \geq 6$,

 $f(C_n, \gamma_s) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3}; \\ 2 & \text{if } n \equiv 1, 2 \pmod{3}. \end{cases}$ ϵ

Theorem 7 For $n \geq 1$, $f(P_2 \square K_{1,n}, \gamma_s) = \lceil \frac{n}{2} \rceil$.

Proof Let f be a γ_s -function of $P_2 \square K_{1,n}$. Then, $|V_f^-| = n$. If $n = 1$, then $P_2 \square K_{1,n} \simeq C_4$ and by Theorem 6, $f(P_2 \Box K_{1,n}, \gamma_s) = 1$. Let $n \geq 2$. Since $|V_f^-| = n$ and $deg(v_i) = deg(u_i) = 2$ for $1 \le i \le n$, so $u_0, v_0 \notin V_f^-$. On the other hand, $|N(x) \cap V_f^-| \leq \lceil \frac{n}{2} \rceil$ where $x \in \{u_0, v_0\}$. It is clear that $f(v_i) = -f(u_i)$ for $1 \le i \le n$. Hence, $(v_i, f(v_i))$ forces $(u_i, f(u_i))$. Let $T \subseteq S_f$ where $|T| < \lceil \frac{n}{2} \rceil$. Then, there are at least two distinct extensions of T . Thus, T is not a forcing subset of f and so the forcing signed domination number of $P_2 \times K_{1,n}$ is $\left[\frac{n}{2}\right]$. $\frac{n}{2}$.

Theorem 8 Sheikholeslami [\(2007](#page-5-0)) Let G be a graph with $\Delta \leq 3$, g be a signed dominating function of G and $u, v \in V(G)$. If $g(u) = g(v) = -1$, then $d(u, v) \geq 3$.

Let $V = V_1 \cup V_2$ be the vertices set of $P_2 \square K_n$ such that $V_1 = \{v_1, \ldots, v_n\}$ and $V_2 = \{u_1, \ldots, u_n\}$ where induced subgraph on V_i is K_n for $1 \le i \le 2$. Also u_j, v_j are adjacent for $1 \leq j \leq n$. Now, we obtain the signed domination number of $P_2\Box K_n$.

Theorem 9 For any positive integer n ,

$$
\gamma_s(P_2 \Box K_n) = \begin{cases} 2 & n = 2; \\ 4 & 2 < n \text{ is even or } n = 3; \\ 6 & 3 < n \text{ is odd.} \end{cases}
$$

Proof If $n = 2$, then $P_2 \square K_n \simeq C_4$ and so $\gamma_s(P_2 \square K_n) = 2$. If $n = 3$, then $P_2 \square K_n$ is a 3-regular graph of diameter two. Let f be a γ_s -function of $P_2 \square K_n$. By Theorem 8, $|V_f^-| = 1$. Thus, $\gamma_s(P_2 \square K_n) = 4$.

Consider two following cases when $n > 3$.

- Case 1: Let *n* be even. Define $f: V(P_2 \square K_n) \longrightarrow \{-1, 1\},\$ where $f(v) = -1$ if and only if $v \in \{v_1, \ldots, v_{\frac{n}{2}-1}\} \cup \{u_{\frac{n}{2}}, \ldots, u_{n-1}\}$ For each $v \in V$, $1 \le f[v] \le 3$ and also $\omega(f) = 4$. Thus, $\gamma_s(P_2 \Box K_n) \leq 4$. Let g be a γ_s -function of $P_2 \Box K_n$. If $n = 4$, then $|V_i \cap V_g^-| \le 2$ for $1 \le i \le 2$. Also if $|V_1 \cap V_g^-| = 2$, then $V_2 \cap V_g^- = \emptyset$ and so $\omega(g) = 4$. Hence, $\gamma_s(P_2 \square K_4) = 4$. Let $n > 4$. Since the Cartesian product of P_2 and K_n is nregular graph, so there are at most $\frac{n}{2}$ vertices of label -1 in the closed neighborhood of each vertex. Without loss of generality, let $|V_1 \cap V_g^-| = \frac{n}{2}$. Then, $V_2 \cap V_g^- = \emptyset$. Hence, $\omega(g) = n > 4$. This is contradiction by $\gamma_s(P_2 \Box K_n) \leq 4$. Thus, for $1 \leq i \leq 2$, $|V_i \cap$ $V_g^- \leq \frac{n}{2} - 1$ and so $\omega(g) = \gamma_s(P_2 \square K_n) \geq 4$.
- Case Let *n* be odd. Define $f: V(P_2 \square K_n) \longrightarrow \{-1, 1\}$, where $f(v) = -1$ if and only if $v \in \{v_1, \ldots, v_{\lfloor \frac{n}{2} \rfloor - 1}\} \cup \{u_{\lfloor \frac{n}{2} \rfloor}, \ldots, u_{n-3}\}.$ For each $v \in V$, $2 \le f[v] \le 4$ and also $\omega(f) = 6$. Thus, $\gamma_s(P_2 \Box K_n) \leq 6$. Let h be a γ_s -function of $P_2 \Box K_n$. If $n = 5$, then $|V_i \cap V_h^-| \le 2$ for $1 \le i \le 2$. Also if $|V_1 \cap V_h^-| = 2$, then $V_2 \cap V_h^- = \emptyset$ and so $\gamma_s(P_2 \Box K_4) = 6.$ Let $n > 5.$ Let $|V_1 \cap V_n^-| = \lfloor \frac{n}{2} \rfloor$. If for some $1 \leq j \leq n$, $h(u_j) = -1$, then $h[v_j] = 0$ which is a contradiction. Hence, $V_2 \cap V_h^- = \emptyset$ and so $\omega(h) = n + 1 > 6$. This is not true. Thus, for $1 \leq i \leq 2, \qquad |V_i \cap V_h^-| \leq \lfloor \frac{n}{2} \rfloor$ and so $\gamma_s(P_2 \Box K_n) \geq 6$. This completes the proof.

2:

 \Box

By Theorems [1](#page-1-0) and 9, we have following Corollary.

Corollary 2 For $n > 2$, $\gamma_s(P_2 \square K_n) \geq \gamma_s(P_2) \times \gamma_s(K_n)$.

Theorem 10 Let G be a complete n-partite graph with n^2 vertices where $n \geq 3$. Then

$$
\gamma_s(G) = \begin{cases} 3 & \text{if } n \text{ is odd;} \\ 4 & \text{if } n \text{ is even.} \end{cases}
$$

Proof Let G be a complete *n*-partite graph. Let $V =$ $A_1 \cup \ldots \cup A_n$ where $A_i = \{v_{ij} : 1 \leq j \leq n\}$ and induced subgraph on A_i has no edge for $1 \le i \le n$. Let n be odd. We define $f: V \to \{-1, 1\}$ such that $f(v) = -1$ if and only if $v \in \{v_{ij} : 1 \le i \le \lfloor \frac{n}{2} \rfloor - 1 \text{ and } 1 \le j \le \lceil \frac{n}{2} \rceil \} \cup \{v_{ij} :$ $\lfloor \frac{n}{2} \rfloor \leq i \leq n$ and $1 \leq j \leq \lfloor \frac{n}{2} \rfloor$. It is not hard to see that for any $v \in V$, $|N[v] \cap V_f^-| = |V_f^-| - \lfloor \frac{n}{2} \rfloor + 1$ and $f[v] \ge 1$ and so f is a signed dominating function of weight $\omega(f) = 3$. As a consequence, $\gamma_S(G) \leq 3$. On the contrary, suppose that there is a γ_s -function g such that $\omega(g) < 3$. Hence, $|V_g^-| > \frac{1}{2}(n^2 - 3)$. Let $|V_g^-| = \frac{1}{2}(n^2 - 1)$. Two following steps help us to reach the result.

- $-If A_i \cap V_g^- = \emptyset$ for some $1 \le i \le n$, then $g[v] = 2 n$ for any $v \in A_i$ and since $n \geq 3$, $g[v] < 0$. This is not true. Hence, $A_i \cap V_g^- \neq \emptyset$ for every $1 \le i \le n$.
- If $|A_i \cap V_g^-| \geq \lceil \frac{n}{2} \rceil$ for every $1 \leq i \leq n$, then $|V_g^-| \ge \frac{1}{2}(n^2 + n)$. This is impossible. So there is $1 \leq j \leq n$ such that $|A_j \cap V_g^-| \leq \lfloor \frac{n}{2} \rfloor$. Let $u \in A_j \cap V_g^-$. Then,

$$
g[u] = n^2 - n + 1 - 2\left(\frac{1}{2}(n^2 - 1) - |A_j \cap V_g^-| + 1\right)
$$

$$
\leq 2\left\lfloor\frac{n}{2}\right\rfloor - n \leq -1.
$$

This is a contradiction. Therefore, $\gamma_S(G) = 3$ when n is odd.

Now suppose that *n* is even and we define $f: V \longrightarrow$ $\{-1, 1\}$ such that $f(v) = -1$ if and only if $v \in \{v_{ij} :$ $1 \le i \le n - 2$ and $1 \le j$

 $\leq \frac{n}{2}$ \cup { v_{ij} : $n-1 \leq i \leq n$ and $1 \leq j \leq \frac{n}{2}-1$ }. It is easily

seen that $1 \le f[v] \le 5$ for each $v \in V$. Hence, f is a signed dominating function and $\omega(f) = 4$.

Let g be a γ_s -function where $|V_g^-| = |V_f^-| + 1$. We show that for any $1 \le i \le n$, $A_i \cap V_g^- \neq \emptyset$. On the contrary, let $A_k \cap V_g^- = \emptyset$ for some $1 \le k \le n$ and $u \in A_k$. Then, $g[u] = 3 - n \leq 0$. This is a contradiction. Thus, for any $1 \le i \le n$, $A_i \cap V_g^- \neq \emptyset$. Let $w \in A_i \cap V_g^-$. Then, $g[w] = n^2 - n + 1 - 2||V_g^-| - |A_i \cap V_g^-| + 1$ $\overline{}$ $\Big|\geq 1.$ So $|A_i \cap$ $|V_g^-| \ge \frac{n}{2}$ for any $1 \le i \le n$ and so $\frac{n^2}{2} - 1 = |V_g^-| \ge n(\frac{n}{2})$ which is impossible. Therefore, $\gamma_s(G) = 4$ where *n* is even. This completes the proof. \Box

Theorem 11 Dunbar et al. ([1995\)](#page-5-0), Henning and Slater [\(1996](#page-5-0)) Let G be a k -regular graph of order n. If k is odd, then $\gamma_s(G) \geq \frac{2n}{k+1}$ and if k is even, then $\gamma_s(G) \geq \frac{n}{k+1}$.

Let $V = \{v_{ij} : 1 \le i \le n, 1 \le j \le m\}$ be the vertex set of $K_n \times K_m$ for any positive integers $1 \lt n \lt m$. Then, v_{ii} and v_{ks} are adjacent if and only if $i \neq k$ and $j \neq s$. Also for any $1 \le i \le n$ and $1 \le j \le m$, the induced subgraphs on $A_i =$ $\{v_{ij} : 1 \le j \le m\}$ and $B_i = \{v_{ij} : 1 \le i \le n\}$ are empty. With these notations in mind, we will prove the following result:

Theorem 12 For any positive integers $1\lt n\lt m$,

$$
\gamma_s(K_n \times K_m) = \begin{cases}\n2 & n = 2, m \text{ is odd;} \\
4 & n = 2, m \text{ is even;} \\
3 & n = 3, m \text{ is odd;} \\
5 & n \neq 3, mn \text{ is odd;} \\
6 & 3 < n < m \text{ have different parity;} \\
8 & 2 \neq n, m \text{ are both even.}\n\end{cases}
$$

Proof Consider following cases:

- Case 1. If $n = 2$, then $K_n \times K_m$ is a bipartite graph and $(m-1)$ -regular. Define $f: V \longrightarrow \{-1, 1\}$ such that $f(v_{ij}) = -1$ if and only if $1 \le i \le 2$ and $1 \le j \le \lceil \frac{m}{2} \rceil - 1$. Since for any *i* and *j*, $N[v_{ij}] \cap V_f^ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ $\left| \leq \lceil \frac{m}{2} \rceil - 1$, so $f[v_{ij}] \geq 1$. Thus, f is a signed dominating function and $\omega(f) = 2, 4$ and so $\gamma_s(K_n \times K_m) \leq 2, 4$ depending on m is odd or even, respectively. On the other hand, by Theorem [11,](#page-3-0) if *m* is odd, then $\gamma_s(K_n \times K_m) \geq 2$, otherwise $\gamma_s(K_n \times K_m) \geq 4$.
- Case 2. If $n = 3$ and m is odd. Define $f : V \longrightarrow \{-1, 1\}$ such that $f(v_{ij}) = -1$ if and only if $1 \le i \le 3$ and $1 \le j \le \lfloor \frac{m}{2} \rfloor$. Hence, $|N[v_{ij}] \cap V_f^-| \le 2\lfloor \frac{m}{2} \rfloor$ for any i and j . So f is a signed dominating function of weight $\omega(f) = 3$.

If g is a γ_s -function and $\gamma_s(K_3 \times K_m) < \omega(f)$, then $|V_g^-| > |V_f^-|$. Let $|V_g^-| = |V_f^-| + 1 = \frac{3m-1}{2}$. Let $1 \leq i \leq 3$ and $A_i \cap V_g^- = \emptyset$. Then, $g[u] =$ $3-m$ for each $u \in A_i$. So for any $1 \le i \le 3$, $A_i \cap V_g^- \neq \emptyset$. The same argument shows $B_j \cap$ $V_g^- \neq \emptyset$ for any $1 \leq j \leq m$. If there is $1 \leq \ell \leq m$ such that $|B_\ell \cap V_g^-| = 2$, then for $v_{i\ell} \in V_g^-$ we have

$$
g[v_{i\ell}] = 2m - 1
$$

- 2(|V_g| - |A_i \cap V_g| - |B_{\ell} \cap V_g| + 2) \ge 1

As a consequence $|A_i \cap V_g^-| \ge \frac{m+1}{2}$. Since $|V_g^-| = \sum_{i=1}^3 |A_i \cap V_g^-|$, so $|V_g^-| \ge \frac{3m+3}{2}$. This is not true. Thus, for any $1 \le j \le m$, $|B_j \cap V_g^-| = 1$ and so $|V_g^-| = m$. Again this is not true. Therefore, $\gamma_s(K_3 \times K_m) = 3$.

Case 3. Let $n \neq 3$ and mn is odd. Define $f: V \longrightarrow$ $\{-1, 1\}$ such that $f(v) = -1$ if and only if $v \in$ $\{v_{ij} : i \equiv 1 + k \pmod{n}, j \equiv 1 + k \pmod{m}\},$ $1 \leq k \leq \frac{mn-5}{2}$. Thus, for any $i, j, \lfloor \frac{m}{2} \rfloor \leq |A_i \cap$ $|V_f^-| \leq |\frac{m}{2}|$ and $|\frac{n}{2}| \leq |B_f \cap V_f^-| \leq |\frac{n}{2}|$. Hence, for $v \in V$, $|N[v] \cap V_f^-| \leq \frac{mn-1}{2} - \lfloor \frac{m}{2} \rfloor - \lfloor \frac{n}{2} \rfloor$ and so $f[v] \geq 1$. So f is a signed dominating function of weight $\omega(f) = 5$. Hence, $\gamma_s(K_n \times K_m) \leq 5$. Let g be a signed dominating function where

 $\omega(g)$ < 5. Then, $|V_g^-| > \frac{mn-5}{2}$. Let $|V_g^-| = \frac{mn-3}{2}$. Suppose that $A_i \cap V_g^- = \emptyset$. If there is B_j for some $1 \le j \le m$ such that $|B_j \cap V_g^-| \le \lfloor \frac{n}{2} \rfloor$, then

$$
g[v_{ij}] = (m-1)(n-1) + 1 - 2(|V_g^-| - |B_j \cap V_g^-|) \le 4 - n < 0.
$$

Hence, for any $1 \le j \le m$, $|B_j \cap V_g^-| \ge \lceil \frac{n}{2} \rceil$ and then $|V_g^-| \ge m \lceil \frac{n}{2} \rceil$. This makes a contradiction. Therefore, $A_i \cap V_g^- \neq \emptyset$ for any $1 \le i \le n$. By similar argument, we can see $B_j \cap V_g^- \neq \emptyset$ for $1 \le j \le m$. If there are i and j such that $|A_i \cap V_g^-| \leq \lfloor \frac{m}{2} \rfloor$, $|B_j \cap V_g^-| \leq \lfloor \frac{n}{2} \rfloor$ and also $v_{ij} \in V_g^-$, then

$$
g[v_{ij}] = (m-1)(n-1) + 1 - 2(|V_g^-| - |A_i \cap V_g^-| - |B_j \cap V_g^-| + 2).
$$

Thus $g[v_{ij}] \leq -1$. This is a contradiction. Otherwise, i.e., for any i, j , where $|A_i \cap V_g^-| \leq \lfloor \frac{m}{2} \rfloor$ $\left|B_j \cap V_g^-\right| \leq \left\lfloor \frac{n}{2} \right\rfloor,$ $g(v_{ii}) = +1$, then $\left|\sum_{g}\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil$ which is not true. Therefore, for any $1 \le i \le n$, $|A_i \cap V_g^-| \geq \lceil \frac{m}{2} \rceil$ or $|B_j \cap V_g^-| \geq \lceil \frac{n}{2} \rceil$ for any $1 \le j \le m$. But both cases are impossible. Hence, $\gamma_s(K_n \times K_m) = 5$.

Case 4. Let $n > 3$ and m, n have different parity. We define function $f: V \longrightarrow \{-1,1\}$ such that $f(v) = -1$ if and only if

$$
v \in \{v_{ij} : i \equiv 1 + k \pmod{n},
$$

$$
j \equiv 1 + k \pmod{m}, 1 \le k \le \frac{mn - 6}{2}.
$$

Likewise Case 3, for any *i*, *j* we have $\lceil \frac{m}{2} \rceil$ – $1 \leq |A_i \cap V_f^-| \leq \lceil \frac{m}{2} \rceil$ and $\left\lfloor \frac{n}{2} \right\rfloor - 1 \leq |B_j \cap$ $|V_f^-| \leq \lceil \frac{n}{2} \rceil$. Thus, $|N[v] \cap V_f^-| \leq \frac{mn}{2} - \lfloor \frac{m}{2} \rfloor - \lfloor \frac{n}{2} \rfloor$ for any $v \in V$. So f is a signed dominating function of weight $\omega(f) = 6$. Hence, $\gamma_s(K_n \times K_m) \leq 6$. As above we can see $\gamma_s(K_n \times K_m) = 6.$

Case 5. Let $2 < n < m$ are both even. Define $f : V \longrightarrow$ $\{-1, 1\}$ such that $f(v) = -1$ if and only if

$$
v \in \left\{v_{ij} : i \equiv 1 + k \text{ (mod n)}, j \equiv 1 + k \right\}
$$

(mod m), $1 \le k \le \frac{mn - 8}{2}$

With the same argument in Case 3, it is easily seen that $\gamma_s(K_n \times K_m) = 8$.

By Theorem [12](#page-3-0) and Lemma [1,](#page-1-0) we deduce the following Corollary.

Corollary 3 For $2 \le n \le m$, $\gamma_s(K_n \times K_m) \ge \gamma_s(K_n)$ $\times \gamma_s(K_m)$.

Acknowledgements The authors would like to express their gratitude to the referee for her/his helpful comments. The research of the second author was in part supported by a grant from Yazd University research council.

References

 \Box

- Dunbar JE, Hedetniemi ST, Henning MA, Slater PJ (1995) Signed domination in graphs. In: Graph theory, combinatorics, and applications, vol 1. Wiley, pp 311–322
- Favaron O (1996) Signed domination in regular graphs. Discrete Math 158:287–293
- Füredi Z, Mubayi D (1999) Signed domination in regular graphs and set-systems. J Combin Theory Ser B 76:223–239
- Haas R, Wexler TB (2004) Signed domination numbers of a graph and its complement. Discrete Math 283:87–92
- Henning MA, Slater PJ (1996) Inequalities relating domination parameters in cubic graphs. Discrete Math 158:87–98
- Sheikholeslami SM (2007) Forcing signed domination numbers in graphs. Matematički Vesnik 59:171-179
- Vatandoost E, Ramezani F (2016) On the domination and signed domination numbers of zero-divisor graph. Electron J Gr Theory Appl 4(2):148–156
- Vatandoost E, Ramezani F. Domination and signed domination number of Cayley graphs. Iran J Math Sci Inform (to appear)
- Volkman L, Zelinka B (2005) Signed domatic number of a graph. Discrete Appl Math 150:261–267
- Zelinka B (2006) Signed and minus domination in bipartite graphs. Czechoslovak Math J 56:587–590

