1 The theorem of Gambaudo–Ghys and Fathi

Let \(\mathcal {G}= Ham_c({\mathbb {D}},\omega )\) be the group of compactly supported Hamiltonian diffeomorphisms of the standard disc \({\mathbb {D}}= \{z \in {\mathbb {C}}:|z| < 1\}\) endowed with the standard symplectic form \(\omega = \frac{i}{2}dz \wedge d\overline{z}.\) The Calabi homomorphism [2] from \(\mathcal {G}\) to \({\mathbb {R}}\) is defined as

$$\begin{aligned} {{\mathrm{{\mathrm {Cal}}}}}(\phi ) = \int _0^1 \left( \int _{{\mathbb {D}}} H_t \,\omega \right) \, dt , \end{aligned}$$

where \(H_t\) is the compactly supported Hamiltonian of a Hamiltonian isotopy \(\{\phi _t\}_{t\in [0,1]}\) with \(\phi _1 = \phi .\) In other words this isotopy is generated by a time-dependent vector field \(X_t,\) that satisfies the relation

$$\begin{aligned} \iota _{X_t} \omega = - d H_t. \end{aligned}$$

The mean rotation number is defined in terms convenient for the proof as follows. Consider the differential form

$$\begin{aligned} \alpha =\frac{1}{2\pi }\frac{d(z_1 -z_2)}{z_1 - z_2} \end{aligned}$$

(used by Arnol’d [1] in his study of the cohomology of the pure braid groups) on the configuration space \(X_2 = X_2({\mathbb {D}}) = \{(z_1,z_2)| z_j \in {\mathbb {D}}, \; z_1 \ne z_2\} = {\mathbb {D}}\times {\mathbb {D}}{\setminus } \Delta ,\) where \(\Delta \subset {\mathbb {D}}\times {\mathbb {D}}\) is the diagonal. Denote by

$$\begin{aligned} \theta = Im(\alpha ) \end{aligned}$$

its imaginary part. Note that the two forms \(\alpha \) and \(\theta \) are closed. For each pair of points \((z_1,z_2) \in {\mathbb {D}}\times {\mathbb {D}}\) such that \(z_1 \ne z_2,\) that is for each point \(x = (z_1,z_2) \in X_2,\) consider the curve \(\{\phi _t \cdot x\}\) in \(X_2\) defined by

$$\begin{aligned} \phi _t \cdot x = (\phi _t(z_1), \phi _t(z_2)) \end{aligned}$$

for each \(t \in [0,1].\) The average rotation number is

$$\begin{aligned} \Phi (\phi ) = \int _{X_2} dm ^2(x) \int _{\{\phi _t \cdot x\}} \theta , \end{aligned}$$

where \( dm ^2(x) = dm (z_1) dm (z_2)\) is the Lebesgue measure on \({\mathbb {D}}\times {\mathbb {D}}\) restricted to \(X_2\) (here \( dm (z)\) denotes the Lebesgue measure on \({\mathbb {D}}\)). By preservation of volume, it is clear that \(\Phi \) is a homomorphism \(\mathcal {G}\rightarrow {\mathbb {R}}.\)

The theorem of Gambaudo and Ghys [5] and Fathi [4] is the following equality.

Theorem 1

$$\begin{aligned} \Phi = -2{{\mathrm{{\mathrm {Cal}}}}}, \end{aligned}$$

as homomorphisms \(\mathcal {G}\rightarrow {\mathbb {R}}.\)

Gambaudo and Ghys have presented several proofs of this result, and in [4] a different proof of Fathi is found. More proofs of this result are known today (cf. [3]). Here we present an alternative short proof, which is in fact a complex-variable version of the proof of Fathi.

2 The alternative proof

Put \(\xi _t = dz(X_t),\) for the natural complex coordinate z on \({\mathbb {D}}.\) Hence \(\xi _t\) is a smooth compactly supported complex-valued function on \({\mathbb {D}}.\) The computations

$$\begin{aligned} \iota _{X_t} \left( \frac{i}{2} dz\wedge d\overline{z}\right) = \frac{i}{2} \xi _t d\overline{z} - \frac{i}{2} \overline{\xi }_t dz \end{aligned}$$

and

$$\begin{aligned} -dH_t = - \frac{\partial H_t}{\partial \overline{z}} d\overline{z}- \frac{\partial H_t}{\partial z} dz \end{aligned}$$

give us

$$\begin{aligned} \xi _t = 2i \frac{\partial H_t}{ \partial \overline{z}}. \end{aligned}$$
(1)

Now

$$\begin{aligned} \Phi (\phi ) = Im\left( \int _{X_2} dm ^2(x) \int _{\{\phi _t \cdot x\}} \alpha \right) , \end{aligned}$$

and hence it is sufficient to compute

$$\begin{aligned}&\int _{X_2} dm ^2(x) \int _{\{\phi _t \cdot x\}} \alpha = \frac{1}{2\pi } \int _{X_2} dm ^2(x) \int _{\{\phi _t \cdot x\}} \frac{d(z_1 - z_2)}{z_1 - z_2}=\\&\quad = \frac{1}{2\pi } \int _{X_2} dm (z_1) dm (z_2)\int _0^1 dt \; \frac{\xi _t(\phi _t(z_1)) - \xi _t(\phi _t(z_2))}{\phi _t(z_1) - \phi _t(z_2)}=\\&\quad \text {as the function is absolutely integrable (see Lemma 1), by Fubini,}\\&\quad =\frac{1}{2\pi } \int _0^1 dt \; \int _{X_2} dm (z_1) dm (z_2) \; \frac{\xi _t(\phi _t(z_1)) - \xi _t(\phi _t(z_2))}{\phi _t(z_1) - \phi _t(z_2)} \\&\quad = \frac{1}{2\pi } \int _0^1 dt \; \int _{X_2} dm (z_1) dm (z_2) \; \frac{\xi _t(z_1) - \xi _t(z_2)}{z_1 - z_2} =\\&\quad \text {as both terms of the sum are absolutely integrable (a consequence of the proof}\\&\qquad \text {of Lemma 1 as well),}\\&\quad = 2 \cdot \frac{1}{2\pi } \int _0^1 dt \; \int _{{\mathbb {D}}} dm (w) \int _{{\mathbb {D}}\setminus \{w\}} \frac{\xi _t(z)}{z - w} dm (z) =\\&\quad \text {by Eq. 1,}\\&\quad = - 2 i \int _0^1 dt \; \int _{{\mathbb {D}}} dm (w) \int _{{\mathbb {D}}\setminus \{w\}} \frac{1}{2 \pi i}\frac{\partial H_t}{\partial \overline{z}}\frac{dz \wedge d\overline{z}}{z - w} \\&\quad = - 2 i \int _0^1 dt \; \int _{{\mathbb {D}}} dm (w) H_t(w) = - 2 i {{\mathrm{{\mathrm {Cal}}}}}(\phi ). \end{aligned}$$

The penultimate equality is a consequence of the Cauchy formula for smooth functions [6, Theorem 1.2.1]. Indeed for any \(C^1\) function \(f:{\mathbb {D}}\rightarrow {\mathbb {C}},\) we have

$$\begin{aligned} f(w) = \frac{1}{2 \pi i} \int _{\partial {\mathbb {D}}} \frac{f(z)}{z-w} dz + \frac{1}{2\pi i} \int _{{\mathbb {D}}} \frac{\partial f}{\partial \overline{z}} \frac{dz \wedge d\overline{z}}{z-w}. \end{aligned}$$

It remains to note that as \(H_t\) is zero near the boundary, the first term of the sum vanishes.

Now we show the absolute integrability that we use to change the order of integration.

Lemma 1

$$\begin{aligned} \int _{X_2}\int _0^1 dm (z_1) dm (z_2) dt \; \frac{|\xi _t(\phi _t(z_1)) - \xi _t(\phi _t(z_2))|}{|\phi _t(z_1) - \phi _t(z_2)|} < \infty \end{aligned}$$

By the Tonnelli theorem, the following chain of inequalities suffices:

$$\begin{aligned}&\int _0^1 dt \int _{X_2} dm (z_1) dm (z_2) \; \frac{|\xi _t(\phi _t(z_1)) - \xi _t(\phi _t(z_2))|}{|\phi _t(z_1) - \phi _t(z_2)|}\\&\quad = \int _0^1 dt \int _{X_2} dm (z_1) dm (z_2) \; \frac{|\xi _t(z_1) - \xi _t(z_2)|}{|z_1 - z_2|}\\&\quad \le 2 \int _0^1 dt \int _{{\mathbb {D}}} dm (z) |\xi _t(z)| \int _{{\mathbb {D}}\setminus \{z\}} \; \frac{1}{|z - w|} dm (w)\\&\quad \le 8\pi \int _0^1 dt \int _{{\mathbb {D}}} |\xi _t| dm < \infty , \end{aligned}$$

because

$$\begin{aligned} \int _{{\mathbb {D}}\setminus \{z\}} \; \frac{1}{|z - w|} dm (w) \le 4\pi , \end{aligned}$$

as one verifies by direct calculation.