1 Introduction

Let \( {\mathbb {B}}\) be the open unit ball of \( {\mathbb {C}}^n\) and \( {\mathbb {S}}\) the boundary of \( {\mathbb {B}}\). When \(n=1\), \( {\mathbb {B}}\) is the open unit disk in the complex plane \({\mathbb {C}}\) and always denoted by \({\mathbb {D}}\). Let \(H( {\mathbb {B}})\) denote the space of all holomorphic functions on \( {\mathbb {B}}\). For any two points

$$\begin{aligned} z=(z_1,z_2,\ldots ,z_n)\quad \text{ and }\quad w=(w_1,w_2,\ldots ,w_n) \end{aligned}$$

in \( {\mathbb {C}}^n\), define \(\langle z,w \rangle =z_1\overline{w_1}+\cdots +z_n\overline{w_n}\) and \(|z|=\sqrt{\langle z,z \rangle }=\sqrt{|z_1|^2+\cdots +|z_n|^2}\).

Suppose \(\omega \) is a radial weight ( i.e., \(\omega \) is a positive, measurable and integrable function on [0, 1) and \(\omega (z)=\omega (|z|)\) for all \(z\in {\mathbb {B}}\)). Let \({\hat{\omega }}(r)=\int _r^1\omega (t)dt\). We say that

  • \(\omega \) is a doubling weight, denoted by \(\omega \in \hat{{\mathcal {D}}}\), if there is a constant \(C>0\) such that

    $$\begin{aligned} {\hat{\omega }}(r)<C{\hat{\omega }}\left( \frac{1+r}{2}\right) ,\quad \text{ when } 0\le r<1; \end{aligned}$$
  • \(\omega \) is a regular weight, denoted by \(\omega \in {\mathcal {R}}\), if \(\omega \) is continuous and there exist \(C>0\) and \(\delta \in (0,1)\) such that

    $$\begin{aligned} \frac{1}{C}<\frac{{\hat{\omega }}(t)}{(1-t)\omega (t)}<C,\quad \text{ when } t\in (\delta ,1); \end{aligned}$$
  • \(\omega \) is a rapidly increasing weight, denoted by \(\omega \in {\mathcal {I}}\), if (see [10])

    $$\begin{aligned} \lim _{r\rightarrow 1} \frac{{\hat{\omega }}(r)}{(1-r)\omega (r)}=\infty ; \end{aligned}$$
  • \(\omega \) is a reverse doubling weight, denoted by \(\omega \in {\check{{\mathcal {D}}}}\), if there exist \(K>1\) and \(C>1\), such that

    $$\begin{aligned} {\hat{\omega }}(t)\ge C{\hat{\omega }}\left( 1-\frac{1-t}{K}\right) ,\quad t\in (0,1). \end{aligned}$$
    (1)

See [9, 10] and the references therein for more details about \({\mathcal {I}},{\mathcal {R}}\), \(\hat{{\mathcal {D}}}\). Let \({\mathcal {D}}=\hat{{\mathcal {D}}}\cap {\check{{\mathcal {D}}}}\). More information about \({\check{{\mathcal {D}}}}\) and \({\mathcal {D}}\) can be found in [7, 14].

Let \(d\sigma \) and dV be the normalized surface and volume measures on \( {\mathbb {S}}\) and \( {\mathbb {B}}\), respectively. For \(0<p< \infty \), the Hardy space \(H^p( {\mathbb {B}}) \)(or \(H^p\)) is the space consisting of all functions \(f\in H( {\mathbb {B}})\) such that

$$\begin{aligned} \Vert f\Vert _{H^p}=\sup _{0<r<1}M_p(r,f)<\infty , \end{aligned}$$

where

$$\begin{aligned} M_p(r,f)=\left( \int _{ {\mathbb {S}}}|f(r\xi )|^pd\sigma (\xi )\right) ^{1/p}, \quad 0<p<\infty . \end{aligned}$$

\(H^\infty \) is the space consisting of all \(f\in H( {\mathbb {B}})\) such that \(\Vert f\Vert _{H^\infty }=\sup _{z\in {\mathbb {B}}}|f(z)|<\infty \).

For any \(f\in H( {\mathbb {B}})\), let \(\Re f\) be the radial derivative of f, that is,

$$\begin{aligned} \Re f(z)=\sum _{k=1}^n z_k\frac{\partial f}{\partial z_k}(z),\quad z=(z_1,z_2,\ldots ,z_n)\in {\mathbb {B}}. \end{aligned}$$

Then the Bloch space \({\mathcal {B}}( {\mathbb {B}})\) consists of all \(f\in H( {\mathbb {B}})\) such that

$$\begin{aligned} \Vert f\Vert _{{\mathcal {B}}( {\mathbb {B}})}=|f(0)|+\sup _{z\in {\mathbb {B}}}(1-|z|^2)|\Re f(z)|<\infty . \end{aligned}$$

When \(n=1\), \(\Vert \cdot \Vert _{{\mathcal {B}}({\mathbb {D}})}\) differs from the norm defined in the classical way, but the two norms are equivalent. See [19] for example. We denote \({\mathcal {B}}( {\mathbb {B}})\) by \({\mathcal {B}}\) for simplicity.

Suppose \(\mu \) is a positive Borel measure on \( {\mathbb {B}}\) and \(0<p<\infty \). The Lebesgue space \(L^p( {\mathbb {B}},d\mu )\) consists of all measurable complex functions f on \( {\mathbb {B}}\) such that \(|f|^p\) is integrable with respect to \(\mu \), that is, \(f\in L^p( {\mathbb {B}},d\mu )\) if and only if

$$\begin{aligned} \Vert f\Vert _{L^p( {\mathbb {B}},d\mu )}=\left( \int _ {\mathbb {B}}|f(z)|^pd\mu (z)\right) ^{1/p}<\infty . \end{aligned}$$

\(L^\infty ( {\mathbb {B}},d\mu )\) consists of all measurable complex functions f on \( {\mathbb {B}}\) such that f is essentially bounded, that is, \(f\in L^\infty ( {\mathbb {B}},d\mu )\) if and only if

$$\begin{aligned} \Vert f\Vert _{L^\infty ( {\mathbb {B}}, d\mu )}=\inf _{E\subset {\mathbb {B}},\mu (E)=0}\sup _{z\in {\mathbb {B}}\backslash E}|f(z)|<\infty . \end{aligned}$$

More details about \(L^p( {\mathbb {B}},d\mu )\) can be found in [18, 20]. For a positive and measurable function \(\omega \) on \( {\mathbb {B}}\), letting \(d\mu (z)=\omega (z)dV(z)\), \(\mu \) is a Borel measure on \( {\mathbb {B}}\) if \(\omega \in L^1( {\mathbb {B}},dV)\). Then, we will write \(L^p( {\mathbb {B}},d\mu )\) as \(L^p( {\mathbb {B}},\omega dV)\). When \(n=1\) and \(z\in {\mathbb {D}}\), let \(dV(z)=\frac{1}{\pi }dA(z)\) be the normalized area measure on \({\mathbb {D}}\). Then we can define the Lebesgue space on the unit disk in the same way.

In [10], Peláez and Rättyä introduced a new class of weighted Bergman spaces \(A_\omega ^p({\mathbb {D}})\), which is induced by rapidly increasing weights \(\omega \) in \({\mathbb {D}}\). That is

$$\begin{aligned} A_\omega ^p({{\mathbb {D}}})=L^p({\mathbb {D}},\omega dA)\cap H({\mathbb {D}}),\quad \text{ where } 0<p<\infty . \end{aligned}$$

See [9,10,11,12,13, 15, 16] for more results on \(A_\omega ^p({\mathbb {D}})\) with \(\omega \in \hat{{\mathcal {D}}}\). In [4], we extended some results of the Bergman space \(A_\omega ^p({\mathbb {D}})\) to the unit ball \( {\mathbb {B}}\) of \( {\mathbb {C}}^n\). That is,

$$\begin{aligned} A_\omega ^p( {\mathbb {B}})=L^p( {\mathbb {B}},\omega dA)\cap H( {\mathbb {B}}),\quad \text{ where } 0<p<\infty . \end{aligned}$$

In brief, let \(A_\omega ^p=A_\omega ^p( {\mathbb {B}})\). As a subspace of \(L^p( {\mathbb {B}},\omega dV)\), the norm on \(A_\omega ^p\) will be written as \(\Vert \cdot \Vert _{A_\omega ^p}\). It is easy to check that \(A_\omega ^p\) is a Banach space when \(p\ge 1\) and a complete metric space with distance \(\rho (f,g)=\Vert f-g\Vert _{A_\omega ^p}^p\) when \(0<p<1\). When \(\alpha >-1\) and \(c_\alpha =\Gamma (n+\alpha +1)/[\Gamma (n+1)\Gamma (\alpha +1)]\), if \(\omega (z)=c_\alpha (1-|z|^2)^\alpha \), the space \(A_\omega ^p\) becomes the classical weighted Bergman space \(A_\alpha ^p\), and we write \(dV_\alpha (z)=c_\alpha (1-|z|^2)^\alpha dV(z)\). When \(\alpha =0\), \(A^p_0=A^p\) is the standard Bergman space. See [18, 20] for the theory of \(H^p\) and \(A_\alpha ^p\).

When \(p=2\), the space \(A_\omega ^2\) is a Hilbert space with the inner product

$$\begin{aligned} \langle f,g \rangle _{A_\omega ^2}=\int _ {\mathbb {B}}f(z)\overline{g(z)}\omega (z)dV(z) \quad \text{ for } \text{ all } f,g\in A_\omega ^2. \end{aligned}$$

In a standard way, for every \(z\in {\mathbb {B}}\), the point evaluation \(L_z f=f(z)\) is a bounded linear functional on \(A_\omega ^2\). By Riesz’s Representation Theorem, we see that there exists a unique function \(B_z^\omega \) such that

$$\begin{aligned} f(z)=\langle f, B_z^\omega \rangle _{A_\omega ^2}=\int _ {\mathbb {B}}f(w)\overline{B_z^\omega (w)}\omega (w)dV(w)\quad \text{ for } \text{ all } f\in A_\omega ^2. \end{aligned}$$

For any \(f\in L^1( {\mathbb {B}},\omega dV)\), the Bergman projection \(P_\omega f\) is defined by

$$\begin{aligned} P_\omega f(z)=\int _ {\mathbb {B}}f(\xi )\overline{B_z^\omega (\xi )}\omega (\xi )dV(\xi ), \end{aligned}$$

while the maximal Bergman projection \(P_\omega ^+\) is defined by

$$\begin{aligned} P_\omega ^+(f)(z)=\int _ {\mathbb {B}}f(\xi )\left| B_z^\omega (\xi )\right| \omega (\xi )dV(\xi ). \end{aligned}$$

When \(\omega (z)=c_\alpha (1-|z|^2)^\alpha (\alpha >-1)\), \(P_\omega \) and \(P_\omega ^+\) will be denoted by \(P_\alpha \) and \(P_\alpha ^+\), respectively.

The study of the Bergman projection has a long history. If \(s\in {\mathbb {C}}\) such that \(\Re s>-1\) for all \(f\in L^1( {\mathbb {B}},dV)\), let

$$\begin{aligned} T_s f (z)=\frac{\Gamma (n+s+1)}{\Gamma (n+1)\Gamma (s+1)}\int _{ {\mathbb {B}}}\frac{(1-|w|^2)^s}{(1-\langle z,w\rangle )^{n+1+s}}f(w)dV(w). \end{aligned}$$

Obviously, when \(s=0\), we have \(T_0=P_0\). In [5], Forelli and Rudin proved that \(T_s\) is bounded on \(L^p( {\mathbb {B}},dV)\) if and only if \((1+\Re s)p>1\) under the assumption that \(1\le p<\infty \). In [3], Choe proved that \(T_s\) is bounded on \(L^p( {\mathbb {B}}, dV_\alpha )\) if and only if \((1+\Re s)p>1+\alpha \) when \( p\ge 1\) and \(\alpha >-1\). From [20, Thm. 2.11], we see that \(P_\alpha \) is bounded on \(L^p( {\mathbb {B}},dV_\beta )\) if and only if \(p(\alpha +1)>\beta +1\) when \(p\ge 1, \alpha ,\beta \in (-1,\infty )\). In [8], Liu gave a sharp estimate for the norm of \(P_0\) on \(L^p( {\mathbb {B}},dV)\).

In the setting of the unit disk, Bekollé and Bonami showed that, if \(1<p<\infty \), \(\upsilon \) is positive on \({\mathbb {D}}\) and \(\int _{\mathbb {D}}\upsilon (z)dA_\alpha (z)<\infty \), \(P_\alpha : L^p({\mathbb {D}}, \upsilon dA_\alpha )\rightarrow L^p({\mathbb {D}}, \upsilon dA_\alpha )\) is bounded if and only if \(\upsilon \) satisfies the Bekollé–Bonami condition, see [1, 2]. The result was extended in [17] for some \(\omega \in {\mathcal {R}}\). In [13], the Bergman projections \(P_\omega \) and the maximal Bergman projection \(P_\omega ^+\) on some function spaces on \({\mathbb {D}}\) were studied when \(\omega \in {\mathcal {R}}\). In [14], Peláez and Rättyä studied Bergman projections and the maximal Bergman projection \(P_\omega ^+\) induced by radial weights \(\omega \) on some function spaces on \({\mathbb {D}}\).

Motivated by [13, 14], in this paper we investigate the boundedness of \(P_\omega :L^\infty ( {\mathbb {B}},dV)\rightarrow {\mathcal {B}}( {\mathbb {B}})\) and \(P_\omega (P_\omega ^+):L^p( {\mathbb {B}},\upsilon dV)\rightarrow L^p( {\mathbb {B}},\upsilon dV)\) on the unit ball of \( {\mathbb {C}}^n\) with \(p>1\) and \(\omega ,\upsilon \in {\mathcal {D}}\).

This paper is organized as follows. In Sect. 2, we recall some results and notation. In Sect. 3, we give some estimates for \(B_z^\omega \) with \(\omega \in \hat{{\mathcal {D}}}\). In Sect. 4, we investigate the boundedness of \(P_\omega \) and \(P_\omega ^+\) with \(\omega \in {\mathcal {D}}\).

Throughout this paper, the letter C will denote a constant which may differ from one occurrence to the other. The notation \(A \lesssim B\) means that there is a positive constant C such that \(A\le CB\). The notation \(A \approx B\) means \(A\lesssim B\) and \(B\lesssim A\).

2 Preliminary Results

For any \(\xi ,\tau \in {\overline{ {\mathbb {B}}}}\), let \(d(\xi ,\tau )=|1-\langle \xi ,\tau \rangle |^{1/2}\). Then \(d(\cdot ,\cdot )\) is the non-isotropic metric. For \(r>0\) and \(\xi \in {\mathbb {S}}\), let

$$\begin{aligned} Q(\xi ,r)=\left\{ \eta \in {\mathbb {S}}:|1-\langle \xi ,\eta \rangle |\le r^2\right\} . \end{aligned}$$

\(Q(\xi ,r)\) is a ball in \( {\mathbb {S}}\) for all \(\xi \in {\mathbb {S}}\) and \(r\in (0,1)\). More information about \(d(\cdot ,\cdot )\) and \(Q(\xi ,r)\) can be found in [18, 20].

For any \(a\in {\mathbb {B}}\backslash \{0\}\), let \(Q_a=Q({a}/{|a|},\sqrt{1-|a|})\) and

$$\begin{aligned} S_a=S(Q_{a})=\left\{ z\in {\mathbb {B}}:\frac{z}{|z|}\in Q_{a},|a|<|z|<1\right\} . \end{aligned}$$

When \(a=0\), let \(Q_a= {\mathbb {S}}\) and \(S_a= {\mathbb {B}}\). We call \(S_a\) the Carleson block. See [4] for more information about the Carleson block. As usual, for a measurable set \(E\subset {\mathbb {B}}\), \(\omega (E)=\int _E \omega (z)dV(z)\).

Lemma 1

Let \(\omega \) be a radial weight.

  1. (i)

    The following statements are equivalent.

    1. (a)

      \(\omega \in \hat{{\mathcal {D}}}\);

    2. (b)

      there is a constant \(b>0\) such that \({\hat{\omega }}(t)/(1-t)^b\) is essentially increasing;

    3. (c)

      for all \(x\ge 1\), \(\int _0^1 s^x\omega (s)ds\approx {\hat{\omega }}(1-1/x)\).

  2. (ii)

    \(\omega \in {\check{{\mathcal {D}}}}\) if and only if there is a constant \(a>0\) such that \({\hat{\omega }}(t)/(1-t)^a\) is essentially decreasing.

  3. (iii)

    If \(\omega \) is continuous, then \(\omega \in {\mathcal {R}}\) if and only if there are \(-1<a<b<+\infty \) and \(\delta \in [0,1)\), such that

    $$\begin{aligned} \frac{{\omega }(t)}{(1-t)^b} \nearrow \infty , \quad \text{ and }\quad \frac{{\omega }(t)}{(1-t)^a}\searrow 0,\quad \text{ when } \delta \le t<1 . \end{aligned}$$
    (2)

Lemma 1 plays an important role in this research and can be found in many papers. Here, we refer to [7, Lem. B, Lem. C] and observation (v) in [10, Lem. 1.1].

For any radial weight \(\omega \), its associated weight \(\omega ^*\) is defined by

$$\begin{aligned}\omega ^*(z)=\int _{|z|}^1 \omega (s)\log \frac{s}{|z|}sds, \quad z\in {\mathbb {D}}\backslash \{0\}.\end{aligned}$$

The following lemma gives some properties and applications of \(\omega ^*\).

Lemma 2

Let \(\omega \in \hat{{\mathcal {D}}}\). The following statements hold.

  1. (i)

    \(\omega ^*(r)\approx (1-r)\int _r^1 \omega (t)dt\) when \(r\in (1/2,1)\).

  2. (ii)

    For any \(\alpha >-2\), \((1-t)^\alpha \omega ^*(t)\in {\mathcal {R}}\).

  3. (iii)

    \(\omega (S_a)\approx (1-|a|)^n\int _{|a|}^1 \omega (r)dr\).

  4. (iv)

    \({\hat{\omega }}(z)\approx {\hat{\omega }}(a)\), if \(1/C<(1-|z|)/(1-|a|)<C\) for some fixed \(C>1\).

Proof

(i) and (ii) are [10, Lem. 1.6, Lem. 1.7], respectively. (iii) was proved in [4]. (iv) can be proved directly by (i), (ii) and Lemma 1. For the benefit of readers, we give a proof here.

Suppose \(\omega \in \hat{{\mathcal {D}}}\). Then there exist \(a,b>-1\) and \(\delta \in (0,1)\) such that (2) holds for \(\omega ^*\). Then, for all \(\delta<x\le y<1\) such that \(1/C\le (1-x)/(1-y)\le C\), we have

$$\begin{aligned} 1\approx \left( \frac{1-x}{1-y}\right) ^a \le \frac{\omega ^*(x)}{\omega ^*(y)} \le \left( \frac{1-x}{1-y}\right) ^b \approx 1. \end{aligned}$$

If \(x\le \delta \) and \(1/C\le (1-x)/(1-y)\le C\), \({\hat{\omega }}(x)\approx {\hat{\omega }}(y)\) is obvious. So,

$$\begin{aligned} {\hat{\omega }}(z)\approx {\hat{\omega }}(a),\quad \text{ if } \frac{1}{C}<\frac{1-|z|}{1-|a|}<C. \end{aligned}$$

The proof is complete. \(\square \)

For a Banach space or a complete metric space X and a positive Borel measure \(\mu \) on \( {\mathbb {B}}\), we say that \(\mu \) is a q-Carleson measure for X if the identity operator \(I_d:X\rightarrow L_\mu ^q\) is bounded. When \(0<p\le q<\infty \) and \(\omega \in \hat{{\mathcal {D}}}\), a characterization of the q-Carleson measure for \(A_\omega ^p\) was given in [4].

Theorem A

Let \(0<p\le q<\infty \), \(\omega \in \hat{{\mathcal {D}}}\), and \(\mu \) be a positive Borel measure on \( {\mathbb {B}}\). Then \(\mu \) is a q-Carleson measure for \(A_\omega ^p\) if and only if

$$\begin{aligned} \sup _{a\in {\mathbb {B}}} \frac{\mu (S_a)}{(\omega (S_a))^{\frac{q}{p}}}<\infty . \end{aligned}$$
(3)

Moreover, if \(\mu \) is a q-Carleson measure for \(A_\omega ^p\), then the identity operator \(I_d:A_\omega ^p\rightarrow L_\mu ^q\) satisfies

$$\begin{aligned} \Vert I_d\Vert _{A_\omega ^p\rightarrow L_\mu ^q}^q \approx \sup _{a\in {\mathbb {B}}} \frac{\mu (S_a)}{(\omega (S_a))^{{q/p}}}. \end{aligned}$$

3 Some Estimates About \(B_z^\omega \) with \(\omega \in \hat{{\mathcal {D}}}\)

In this section, we consider the reproducing kernel of \(A_\omega ^2\) and give some estimates for it. Let’s recall some notations. For all \(f\in H( {\mathbb {B}})\), the Taylor series of f at origin, which converges absolutely and uniformly on each compact subset of \( {\mathbb {B}}\), is

$$\begin{aligned} f(z)=\sum _{m}a_mz^m, \quad z\in {\mathbb {B}}. \end{aligned}$$

Here the summation is over all multi-indexs \(m=(m_1,m_2,\ldots ,m_n)\), \(m_k\) is a non-negative integer and \(z^m=z_1^{m_1}z_2^{m_2}\cdots z_{n}^{m_n}\). Let \(|m|=m_1+m_2+\cdots +m_n\), \(m!=m_1!m_2!\cdots m_n!\) and \(f_k(z)=\sum _{|m|=k }a_mz^m\). Then the Taylor series of f can be written as \(f(z)=\sum _{k=0}^\infty f_k(z)\), which is called the homogeneous expansion of f.

Lemma 3

Let \(\omega \in \hat{{\mathcal {D}}}\). Then

$$\begin{aligned} B_z^\omega (w)=\frac{1}{2n!}\sum _{k=0}^\infty \frac{(n-1+k)!}{k!\omega _{2n+2k-1}} \langle w,z\rangle ^k \end{aligned}$$

and

$$\begin{aligned} \Vert B_z^\omega \Vert _{{\mathcal {B}}}\approx \frac{1}{\omega (S_z)}\approx \Vert B_z^\omega \Vert _{H^\infty },\quad z\in {\mathbb {B}}. \end{aligned}$$

Here and henceforth, \(\omega _s=\int _0^1 r^s\omega (r)dr\).

Proof

Suppose \(f\in A_\omega ^2\) and \(f(z)=\sum _{m}a_mz^m\), \(z\in {\mathbb {B}}\). For any fixed \(z\in {\mathbb {B}}\), let

$$\begin{aligned} B_z^\omega (w)=\sum _{m}b_m(z)w^m. \end{aligned}$$

By [20, Lem. 1.8, Lem. 1.11], we have

$$\begin{aligned} f(z)&=\int _ {\mathbb {B}}f(w)\overline{B_z^\omega (w)}\omega (w)dV(w) \\&=2n\sum _{m} \frac{(n-1)!m!}{(n-1+|m|)!} a_m\overline{b_m(z)}\int _0^1 r^{2n+2|m|-1} \omega (r)dr \\&=2n!\sum _{m} \frac{m!}{(n-1+|m|)!} a_m\overline{b_m(z)}\omega _{2n+2|m|-1}. \end{aligned}$$

Set

$$\begin{aligned} z^m= \frac{2 n!m!}{(n-1+|m|)!} \omega _{2n+2|m|-1}\overline{b_m(z)}. \end{aligned}$$

Then,

$$\begin{aligned} B_z^\omega (w)&=\frac{1}{2 n!}\sum _{k=0}^\infty \frac{(n-1+k)!}{k! \omega _{2n+2k-1}} \sum _{|m|=k} \frac{|m|!}{m!} w^m\overline{z}^m \\&=\frac{1}{2n!}\sum _{k=0}^\infty \frac{(n-1+k)!}{k!\omega _{2n+2k-1}} \langle w,z\rangle ^k. \end{aligned}$$

Therefore,

$$\begin{aligned} \Re B_z^\omega (w) =\frac{1}{2n!}\sum _{k=1}^\infty \frac{(n-1+k)!}{(k-1)!\omega _{2n+2k-1}} \langle w,z\rangle ^k. \end{aligned}$$

By Stirling’s estimate and Lemma 1, when \(1/2\le |z|<1\), we obtain

$$\begin{aligned} |B_z^\omega (w)| \lesssim \sum _{k=1}^\infty \frac{k^{n-1}|z|^{k}}{\omega _{2n+2k-1}} \approx \sum _{k=n}^\infty \frac{(k+1)^{n-1}|z|^{k}}{\omega _{2k+1}} \end{aligned}$$

and

$$\begin{aligned} |\Re B_z^\omega (z)| \approx \sum _{k=1}^\infty \frac{k^n|z|^{2k}}{\omega _{2n+2k-1}} \approx \sum _{k=n+1}^\infty \frac{(k+1)^n|z|^{2k}}{\omega _{2k+1}}. \end{aligned}$$

Let \({\hat{\omega }}_\alpha (t)=(1-t)^\alpha {\hat{\omega }}(t)\) for any fixed \(\alpha \in {{\mathbb {R}}}\). Using [13, eq. (20)] and Lemma 2, we get

$$\begin{aligned} \sum _{k=n}^\infty \frac{(k+1)^{n-1}|z|^{k}}{\omega _{2k+1}} \approx \int _0^{|z|}\frac{1}{{\hat{\omega }}_{n+1}(t)}dt \lesssim \frac{1}{(1-|z|)^n{\hat{\omega }}(z)} \approx \frac{1}{\omega (S_z)} \end{aligned}$$

and

$$\begin{aligned} \sum _{k=n+1}^\infty \frac{(k+1)^n|z|^{2k}}{\omega _{2k+1}} \approx \int _0^{|z|^2}\frac{1}{(1-t)^{n+2}{\hat{\omega }}(t)}dt. \end{aligned}$$

By Lemma 1, there exists a constant \(b>0\) such that \({\hat{\omega }}(t)/(1-t)^b\) is essentially increasing. So, by Lemma 2,

$$\begin{aligned} \int _0^{|z|^2}\frac{1}{(1-t)^{n+2}{\hat{\omega }}(t)}dt \gtrsim \frac{(1-|z|^2)^b}{{\hat{\omega }}(|z|^2)} \int _0^{|z|^2}\frac{1}{(1-t)^{n+2+b}}dt \gtrsim \frac{1}{(1-|z|)\omega (S_z)}. \end{aligned}$$

Therefore, when \(1/2\le |z|<1\), we have

$$\begin{aligned} \Vert B_z^\omega \Vert _{H^\infty } \lesssim \frac{1}{\omega (S_z)}, \quad \frac{1}{\omega (S_z)}\lesssim \Vert B_z^\omega \Vert _{\mathcal {B}}. \end{aligned}$$
(4)

When \(|z|<1/2\), since \(\omega (S_z)\approx 1\), \(\Vert B_z^\omega \Vert _{{\mathcal {B}}}\ge |B_z^\omega (0)|\gtrsim 1\), and

$$\begin{aligned} |B_z^\omega (w)|\le \frac{1}{2n!}\sum _{k=0}^\infty \frac{(n-1+k)!}{k!\omega _{2n+2k-1}}\frac{1}{2^k}<\infty , \end{aligned}$$

(4) also holds. By the fact that \(\Vert f\Vert _{{\mathcal {B}}}\lesssim \Vert f\Vert _{H^\infty }\), we obtain the desired result. The proof is complete. \(\square \)

Lemma 4

Let \(0<p<\infty \), \(\omega ,\upsilon \in \hat{{\mathcal {D}}}\). Then the following assertions hold.

  1. (i)

    When \(|rz|>1/4\),

    $$\begin{aligned} M_p^p(r, B_z^\omega ) \approx \int _{0}^{r|z|} \frac{1}{{\hat{\omega }}(t)^p (1-t)^{np-n+1}}dt \end{aligned}$$

    and

    $$\begin{aligned} M_p^p(r, \Re B_z^\omega ) \approx \int _{0}^{r|z|} \frac{1}{{\hat{\omega }}(t)^p (1-t)^{(n+1)p-n+1}}dt. \end{aligned}$$
  2. (ii)

    When \(|z|>6/7\),

    $$\begin{aligned} \Vert B_z^\omega \Vert _{A_\upsilon ^p}^p \approx \int _{0}^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{np-n+1}}dt \end{aligned}$$

    and

    $$\begin{aligned} \Vert \Re B_z^\omega \Vert _{A_\upsilon ^p}^p\approx \int _0^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{(n+1)p-n+1}}dt. \end{aligned}$$

Proof

When \(n=1\), the lemma was proved in [13], so we always assume \(n\ge 2\). Since we will use some results on \(A_\omega ^p({\mathbb {D}})\), for brief, the symbol \(A_\omega ^p\) only means \(A_\omega ^p( {\mathbb {B}})\) with \(n\ge 2\). Meanwhile, let \(B_z^{\omega ,1}\) denote the reproducing kernel of \(A_\omega ^2({\mathbb {D}})\). Recall that, on the unit disk, \(dA_\alpha (z)=c_\alpha (1-|z|^2)^\alpha dA(z)\), where dA(z) is the normalized area measure on \({\mathbb {D}}\).

By Lemma 3,

$$\begin{aligned} \Re B_z^\omega (w)=\frac{1}{2n!}\sum _{k=1}^\infty \frac{(n-1+k)!}{(k-1)!\omega _{2n+2k-1}}\langle w,z\rangle ^k. \end{aligned}$$

Let \(e_1=(1,0,\ldots ,0)\). When \(|rz|>0\), by a rotation transformation and [20, Lem. 1.9], we have

$$\begin{aligned} M_p^p(r, \Re B_z^\omega )= & {} M_p^p(r, \Re B_{|z|e_1}^\omega ) {=}\frac{1}{2n!}\int _{ {\mathbb {S}}}\left| \sum _{k=1}^\infty \frac{(n-1+k)!}{(k-1)!\omega _{2n+2k-1}}\langle r\eta ,|z|e_1\rangle ^k\right| ^p d\sigma (\eta ) \\\approx & {} \int _{{\mathbb {D}}} \left| \sum _{k=1}^\infty \frac{(n-1+k)! }{(k-1)!\omega _{2n+2k-1}}(r|z|\xi )^k\right| ^p (1-|\xi |^2)^{n-2}dA(\xi ) \\= & {} \frac{1}{|rz|^{(n-1)p}} \int _{{\mathbb {D}}} \left| \sum _{k=1}^\infty \frac{|rz|^{n+k-1}(\xi ^{n+k-1})^{(n)} }{\omega _{2(n+k-1)+1}}\right| ^p |\xi |^pdA_{n-2}(\xi ) \\\approx & {} \frac{1}{|rz|^{(n-1)p}} \int _{{\mathbb {D}}} \left| \sum _{k=0}^\infty \frac{|rz|^{k}(\xi ^{k})^{(n)} }{\omega _{2k+1}}\right| ^p dA_{n-2}(\xi ) \\= & {} \frac{1}{|rz|^{(n-1)p}} \Vert (B_{r|z|}^{\omega ,1})^{(n)}\Vert _{A_{n-2}^p({\mathbb {D}})}^p. \end{aligned}$$

When \(r|z|>1/4\), by [13, Thm. 1],

$$\begin{aligned} M_p^p(r, \Re B_z^\omega ) \approx \int _{0}^{r|z|} \frac{(1-t)^{n-1}}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)}}dt =\int _{0}^{r|z|} \frac{1}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}}dt. \end{aligned}$$

Therefore, when \(|z|>6/7\), by Fubini’s theorem we obtain

$$\begin{aligned} \Vert \Re B_z^\omega \Vert _{A_\upsilon ^p}^p&\approx \int _{1/2}^1 r^{2n-1}\upsilon (r)M_p^p(r,\Re B_z^\omega )dr =\int _0^{|z|} \frac{\int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt. \end{aligned}$$

When \(0\le t\le |z|/2\),

$$\begin{aligned} \int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr =\int _\frac{1}{2}^1 r^{2n-1}\upsilon (r)dr\approx 1\approx {\hat{\upsilon }}(t). \end{aligned}$$
(5)

When \(|z|/2\le t\le |z|\), we get

$$\begin{aligned} \int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr =\int _\frac{t}{|z|}^1 r^{2n-1}\upsilon (r)dr \le {\hat{\upsilon }}(t). \end{aligned}$$
(6)

By Lemma 1 and the fact that \(\upsilon \in \hat{{\mathcal {D}}}\), there exists a constant \(b>0\) such that \(\frac{{\hat{\upsilon }}(t)}{(1-t)^b}\) is essentially increasing. So,

$$\begin{aligned} \int _{|z|/2}^{|z|} \frac{\int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt \gtrsim&\int _{|z|/2}^{2|z|-1} \frac{{\hat{\upsilon }}(\frac{t}{|z|})}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt \nonumber \\ \gtrsim&\int _{|z|/2}^{2|z|-1} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} \left( \frac{1-\frac{t}{|z|}}{1-t}\right) ^b dt \nonumber \\ \gtrsim&\int _{|z|/2}^{2|z|-1} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt, \end{aligned}$$
(7)

where the last estimate follows from

$$\begin{aligned} \frac{1}{|z|}\frac{|z|-t}{1-t}\ge \frac{1}{|z|}\frac{|z|-(2|z|-1)}{1-(2|z|-1)}\gtrsim 1\quad \text{ for } \text{ all } t\in \left( \frac{|z|}{2},2|z|-1\right) \text{ and } |z|>\frac{6}{7}. \end{aligned}$$

Meanwhile, \(\omega ,\upsilon \in \hat{{\mathcal {D}}}\) and Lemma 2 imply

$$\begin{aligned} \int _{|z|/2}^{2|z|-1} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}}dt\ge & {} \int _{4|z|-3}^{2|z|-1} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}}dt \nonumber \\\approx & {} \frac{{\hat{\upsilon }}(2|z|-1)}{{\hat{\omega }}(2|z|-1)^p (1-|z|)^{p(n+1)-n}} \nonumber \\\approx & {} \int _{2|z|-1}^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}}dt. \end{aligned}$$
(8)

Then (7) and (8) imply that

$$\begin{aligned} \int _{|z|/2}^{|z|} \frac{\int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt&\gtrsim 2\int _{|z|/2}^{2|z|-1} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt \nonumber \\&\gtrsim \left( \int _{|z|/2}^{2|z|-1}+\int _{2|z|-1}^{|z|}\right) \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt \nonumber \\&= \int _{|z|/2}^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt. \end{aligned}$$
(9)

So, if \(|z|>6/7\), by (5) and (6),

$$\begin{aligned} \int _0^{|z|} \frac{\int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt \lesssim \int _0^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt. \end{aligned}$$

By (5) and (9), we get

$$\begin{aligned} \int _0^{|z|} \frac{\int _{\max \{t/|z|,1/2\}}^1 r^{2n-1}\upsilon (r)dr}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt&\gtrsim \int _0^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}} dt. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \Re B_z^\omega \Vert _{A_\upsilon ^p}^p&\approx \int _0^{|z|} \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p (1-t)^{p(n+1)-n+1}}dt. \end{aligned}$$

The rest of the lemma can be proved in the same way. The proof is complete. \(\square \)

4 Main Results and Proofs

In this section, we give the main results and proofs of this paper. We note that

$$\begin{aligned} \Vert f\Vert _{L^\infty ( {\mathbb {B}},\omega dV)}=\Vert f\Vert _{L^\infty ( {\mathbb {B}},dV)}, \end{aligned}$$

when \(\omega \in \hat{{\mathcal {D}}}\). So, let \(L^\infty = L^\infty ( {\mathbb {B}},\omega dV)=L^\infty ( {\mathbb {B}},dV)\) in this section.

Theorem 1

When \(\omega \in {\mathcal {D}}\), \(P_\omega :L^\infty \rightarrow {\mathcal {B}}\) is bounded and onto.

Proof

For all \(f\in L^\infty \), by Lemma 4,

$$\begin{aligned} |\Re (P_\omega f)(z)| \le \int _ {\mathbb {B}}|f(w)||\Re B_z^\omega (w)|\omega (w)dV(w) \le \Vert f\Vert _{L^\infty }\Vert \Re B_z^\omega \Vert _{A_\omega ^1} \lesssim \frac{\Vert f\Vert _{L^\infty }}{1-|z|}. \end{aligned}$$

So, \(P_\omega :L^\infty \rightarrow {\mathcal {B}}\) is bounded.

By [4, eq. (14)], we see that

$$\begin{aligned} \Vert f\Vert _{A_\omega ^2}^2 =\omega ( {\mathbb {B}})|f(0)|^2+ 4 \int _{ {\mathbb {B}}}\frac{|\Re f(z)|^2 }{|z|^{2n}} \omega ^{n*}(z)dV(z), \end{aligned}$$

where

$$\begin{aligned} \omega ^{n*}(z):=\int _{|z|}^1 r^{2n-1}\log \frac{r}{|z|}\omega (r)dr. \end{aligned}$$

So, for \(f,g\in A_\omega ^2\),

$$\begin{aligned} \langle f,g\rangle _{A_\omega ^2}=\omega ( {\mathbb {B}})f(0)\overline{g(0)} + 4\int _{ {\mathbb {B}}} \frac{\Re f(z)\overline{\Re g(z)}}{|z|^{2n}}\omega ^{n*}(z)dV(z). \end{aligned}$$
(10)

Let

$$\begin{aligned} W_1(t):=\frac{{\hat{\omega }}(t)}{1-t},\quad \text{ and } W_1(z):=W_1(|z|). \end{aligned}$$

Since \(\omega \in {\mathcal {D}}\), by Lemma 1, there are constants \(a,b>0\) such that \({\hat{\omega }}(t)/(1-t)^a\) is essentially decreasing and \({\hat{\omega }}(t)/(1-t)^b\) is essentially increasing. Thus,

$$\begin{aligned} \int _r^1 \frac{{\hat{\omega }}(t)}{1-t}dt\lesssim \frac{{\hat{\omega }}(r)}{(1-r)^a}\int _r^1 (1-t)^{a-1}dt\approx {\hat{\omega }}(r) \end{aligned}$$

and

$$\begin{aligned} \int _r^1 \frac{{\hat{\omega }}(t)}{1-t}dt\gtrsim \frac{{\hat{\omega }}(r)}{(1-r)^b}\int _r^1 (1-t)^{b-1}dt\approx {\hat{\omega }}(r). \end{aligned}$$

Then,

$$\begin{aligned} \hat{W_1}(r)=\int _r^1 \frac{{\hat{\omega }}(t)}{1-t}dt \approx {\hat{\omega }}(r)=(1-r)W_1(r). \end{aligned}$$

Therefore, \(W_1\in {\mathcal {R}}\). By Lemma 2 and Theorem A, \(\Vert \cdot \Vert _{A_\omega ^p}\approx \Vert \cdot \Vert _{A_{W_1}^p}\). Then for all \(p>0\), by [6, Thm. 1], we get

$$\begin{aligned} \Vert f\Vert _{A_\omega ^p}^p\approx \Vert f\Vert _{A_{W_1}^p}^p\approx |f(0)|^p+\int _ {\mathbb {B}}|\Re f(z)|^p(1-|z|)^p W_1(z)dV(z). \end{aligned}$$
(11)

For any \(f\in H( {\mathbb {B}})\) and \(|z|\le 1/2\), let \(f_r(z)=f(rz)\) for \(r\in (0,1)\). By Cauchy’s fomula, see [20, Thm. 4.1] for example, we have

$$\begin{aligned} f(z)=f_{3/4}\left( \frac{4z}{3}\right) =\int _ {\mathbb {S}}\frac{f_{{3/4}}(\eta )}{\left( 1-\langle \frac{4z}{3},\eta \rangle \right) ^n}d\sigma (\eta ). \end{aligned}$$

After a calculation, when \(|z|\le 1/2\),

$$\begin{aligned} |f(z)|\lesssim \Vert f\Vert _{A_\omega ^1},\quad |\Re f(z)|\lesssim |z|\Vert f_{{3/4}}\Vert _{H^\infty },\quad \text{ and }\quad |\Re f(z)|\lesssim |z|\Vert f\Vert _{A_\omega ^1}. \end{aligned}$$

We note that, when \(|z|\ge 1/2\),

$$\begin{aligned} \omega ^{n*}(z)=\int _{|z|}^1 t^{2n-1}\log \frac{t}{|z|}\omega (t)dt\approx \int _{|z|}^1 t\log \frac{t}{|z|}\omega (t)dt=\omega ^*(z). \end{aligned}$$

So, when \(g\in {\mathcal {B}}\) and \(f\in A_\omega ^1\), by (10), (11) and Lemma 2, there exists a \(C=C(n,\omega ,g)\), such that

$$\begin{aligned} |\langle f_r,g\rangle _{A_\omega ^2}|&\le C\left( \Vert f_r\Vert _{A_\omega ^1}+\Vert f_r\Vert _{A_\omega ^1}\int _{\frac{1}{2} {\mathbb {B}}} \frac{\omega ^{n*}(z)}{|z|^{2n-2}}dV(z) +\int _{ {\mathbb {B}}\backslash \frac{1}{2} {\mathbb {B}}} \frac{|\Re f_r(z){\Re g(z)}|}{|z|^{2n}}\omega ^{n*}(z)dV(z) \right) \\&\approx \Vert f_r\Vert _{A_\omega ^1}+ \int _{ {\mathbb {B}}\backslash \frac{1}{2} {\mathbb {B}}} {|\Re f_r(z){\Re g(z)}|}(1-|z|){\hat{\omega }}(z)dV(z) \\&\le \Vert f_r\Vert _{A_\omega ^1}+ \Vert g\Vert _{\mathcal {B}}\int _{ {\mathbb {B}}} {|\Re f_r(z)|}{\hat{\omega }}(z)dV(z) \\&\approx \Vert f_r\Vert _{A_\omega ^1}+ \Vert g\Vert _{\mathcal {B}}\int _{ {\mathbb {B}}} {|\Re f_r(z)|}(1-|z|)W_1(z)dV(z) \\&\lesssim \Vert f\Vert _{A_\omega ^1}+\Vert g\Vert _{\mathcal {B}}\Vert f\Vert _{A_\omega ^1}. \end{aligned}$$

Therefore, \(g\in {\mathcal {B}}\) induces a bounded linear functional on \( A_\omega ^1 \) defined by \(F_g(f)=\lim \nolimits _{r\rightarrow 1}\langle f_r,g\rangle _{A_\omega ^2}\) for all \(f\in A_\omega ^1\).

On the other hand, the Hahn–Banach theorem and the well known fact (see [19, Thm. 1.1] for example) that

$$\begin{aligned} (L^1( {\mathbb {B}},\omega dV))^*\simeq L^\infty ( {\mathbb {B}},\omega dV) \end{aligned}$$

guarantee the existence of \(\varphi \in L^\infty \) such that

$$\begin{aligned} \lim \limits _{r\rightarrow 1}\langle f_r,g\rangle _{A_\omega ^2}= F_g(f)=\int _ {\mathbb {B}}f(z)\overline{\varphi (z)}\omega (z)dV(z) =\lim _{r\rightarrow 1}\int _ {\mathbb {B}}f_r(z)\overline{\varphi (z)}\omega (z)dV(z) \end{aligned}$$

for all \(f\in A_\omega ^1\). Since \(P_\omega \) is self-adjoint and \(P_\omega (f_r)=f_r\), we have

$$\begin{aligned} \int _ {\mathbb {B}}f_r(z)\overline{\varphi (z)}\omega (z)dV(z) =\int _ {\mathbb {B}}P_\omega (f_r)(z)\overline{\varphi (z)}\omega (z)dV(z) =\int _ {\mathbb {B}}f_r(z)\overline{P_\omega (\varphi )(z)}\omega (z)dV(z). \end{aligned}$$

By the first part of the proof, \(P_\omega \varphi \in {\mathcal {B}}\). Thus, \(g-P_\omega \varphi \in {\mathcal {B}}\) and represents the zero functional. So, \(g=P_\omega \varphi \). The proof is complete. \(\square \)

Remark 1

By the above proof, we see that \(P_\omega :L^\infty \rightarrow {\mathcal {B}}\) is bounded when \(\omega \in \hat{{\mathcal {D}}}\).

Theorem 2

Suppose \(1<p<\infty \) and \(\omega ,\upsilon \in {\mathcal {D}}\). Let \(q=p/(p-1)\). Then the following statements are equivalent:

  1. (i)

    \(P_\omega ^+: L_\upsilon ^p\rightarrow L_\upsilon ^p\) is bounded;

  2. (ii)

    \(P_\omega : L_\upsilon ^p\rightarrow L_\upsilon ^p\) is bounded;

  3. (iii)

    \(\displaystyle M:=\sup \limits _{0\le r<1} \frac{{\hat{\upsilon }}(r)^{1/p}}{{\hat{\omega }}(r)} \left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}<\infty ;\)

  4. (iv)

    \(\displaystyle N:=\sup \limits _{0\le r<1} \left( \int _0^r \frac{\upsilon (s)}{{\hat{\omega }}(s)^p}s^{2n-1}ds+1\right) ^{1/p}\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}<\infty \).

Proof

When \(n=1\), the theorem was first proved in [13] and improved in [7, 14]. So, we always assume that \(n\ge 2\).

\((i)\Rightarrow (ii)\). It is obvious.

\((ii)\Rightarrow (iii)\). Suppose that (ii) holds. Let \(P_\omega ^*\) be the adjoint of \(P_\omega \) with respect to \(\langle \cdot ,\cdot \rangle _{L_\upsilon ^2}\). For all \(f,g\in L^\infty \), by Fubini’s Theorem,

$$\begin{aligned} \langle f, P_\omega ^*g\rangle _{L_\upsilon ^2}&=\langle P_\omega f,g\rangle _{L_\upsilon ^2} =\int _{ {\mathbb {B}}} P_\omega f(z)\overline{g(z)}\upsilon (z)dV(z)\\&=\int _ {\mathbb {B}}\left( \int _ {\mathbb {B}}f(\xi )\overline{B_z^\omega (\xi )}\omega (\xi )dV(\xi )\right) \overline{g(z)}\upsilon (z)dV(z) \\&=\int _ {\mathbb {B}}\left( \int _ {\mathbb {B}}\overline{g(z)B_z^\omega (\xi )}\upsilon (z)dV(z)\right) f(\xi )\omega (\xi )dV(\xi )\\&=\int _ {\mathbb {B}}\left( \overline{\frac{\omega (\xi )}{\upsilon (\xi )}\int _ {\mathbb {B}}{g(z)B_z^\omega (\xi )}\upsilon (z)dV(z)}\right) f(\xi )\upsilon (\xi )dV(\xi ). \end{aligned}$$

Since \(L^\infty \) is dense in \(L^p_\upsilon \) and \(L_\upsilon ^q\), by the last equality we get

$$\begin{aligned} P_\omega ^*(g)(\xi )=\frac{\omega (\xi )}{\upsilon (\xi )}\int _ {\mathbb {B}}{g(z)B_z^\omega (\xi )}\upsilon (z)dV(z),\quad g\in L_\upsilon ^q. \end{aligned}$$
(12)

By the assumption, \(P_\omega ^*\) is bounded on \(L_\upsilon ^q\). Let \(g_j(z)=z_1^j\), where \(z=(z_1,z_2,\ldots ,z_n)\) and \(j\in {\mathbb {N}}\cup \{0\}\). By [20, Lem. 1.11] and Lemma 3,

$$\begin{aligned} P_\omega ^*(g_j)(\xi )&=\frac{\omega (\xi )}{\upsilon (\xi )}\int _ {\mathbb {B}}{g_j(z)B_z^\omega (\xi )}\upsilon (z)dV(z) \\&=\frac{1}{2n!}\frac{\omega (\xi )}{\upsilon (\xi )}\sum _{k=0}^\infty \frac{(n-1+k)!}{k!\omega _{2n+2k-1}} \int _ {\mathbb {B}}g_j(z) \langle \xi ,z\rangle ^k\upsilon (z)dV(z) \\&=\frac{2n}{2n!}\frac{\omega (\xi )}{\upsilon (\xi )}\sum _{k=0}^\infty \frac{(n-1+k)!}{k!\omega _{2n+2k-1}} \int _0^1 r^{2n+k+j-1} \upsilon (r)dr\int _ {\mathbb {S}}\eta _1^j \langle \xi ,\eta \rangle ^kd\sigma (\eta ) \\&=\xi _1^j\frac{\omega (\xi )}{\upsilon (\xi )} \frac{\upsilon _{2n+2j-1}}{\omega _{2n+2j-1}}\frac{(n-1+j)!}{j!(n-1)!}\frac{(n-1)!j!}{(n-1+j)!}\\&=\xi _1^j\frac{\omega (\xi )}{\upsilon (\xi )} \frac{\upsilon _{2n+2j-1}}{\omega _{2n+2j-1}}. \end{aligned}$$

By Lemmas 1 and 2, we obtain

$$\begin{aligned} \Vert g_j\Vert _{L_\upsilon ^q}^q&=\int _{ {\mathbb {B}}}|z_1|^{qj}\upsilon (z)dV(z) =2n\int _0^1 r^{2n+qj-1}\upsilon (r)dr\int _{ {\mathbb {S}}}|\eta _1|^{qj}d\sigma (\eta ) \\&=2n {\upsilon }_{2n+qj-1} \int _{ {\mathbb {S}}}|\eta _1|^{qj}d\sigma (\eta )\\&\approx {\upsilon }_{2n+2j-1} \int _{ {\mathbb {S}}}|\eta _1|^{qj}d\sigma (\eta ), \end{aligned}$$

which implies that

$$\begin{aligned} \Vert P_\omega ^*(g_j)\Vert _{L_\upsilon ^q}^q&=\left( \frac{\upsilon _{2n+2j-1}}{\omega _{2n+2j-1}}\right) ^q\int _{ {\mathbb {B}}} |\xi _1|^{jq}\frac{\omega ^q(\xi )}{\upsilon ^{q-1}(\xi )} dV(\xi ) \\&\approx \left( \frac{\upsilon _{2n+2j-1}}{\omega _{2n+2j-1}}\right) ^q\int _0^1 r^{2n+qj-1}\frac{\omega ^q(r)}{\upsilon ^{q-1}(r)}dr\int _ {\mathbb {S}}|\eta _1|^{jq} d\sigma (\eta ) \\&\gtrsim \Vert g_j\Vert _{L_\upsilon ^q}^q\frac{\upsilon _{2n+2j-1}^{q-1}}{\omega _{2n+2j-1}^q}\int _{1-\frac{1}{2j+1}}^1 \frac{\omega ^q(r)}{\upsilon ^{q-1}(r)}r^{2n-1}dr \\&\approx \Vert g_j\Vert _{L_\upsilon ^q}^q\frac{\upsilon _{2j+1}^{q-1}}{\omega _{2j+1}^q}\int _{1-\frac{1}{2j+1}}^1 \frac{\omega ^q(r)}{\upsilon ^{q-1}(r)}r^{2n-1}dr. \end{aligned}$$

Let \(r_j=1-1/(2j+1)\). We get

$$\begin{aligned} \Vert P_\omega ^*(g_j)\Vert _{L_\upsilon ^q}^q \gtrsim \Vert g_j\Vert _{L_\upsilon ^q}^q\frac{{\hat{\upsilon }}(r_j)^{q-1}}{{\hat{\omega }}(r_j)^q}\int _{r_j}^1 \frac{\omega ^q(r)}{\upsilon ^{q-1}(r)}r^{2n-1}dr . \end{aligned}$$

Let

$$\begin{aligned} H(t)=\frac{{\hat{\upsilon }}(t)^{q-1}}{{\hat{\omega }}(t)^q}\int _{t}^1 \frac{\omega ^q(r)}{\upsilon ^{q-1}(r)}r^{2n-1}dr. \end{aligned}$$

When \(r_j\le t< r_{j+1}\), \(H(t)\lesssim H(r_j)\). Thus, by the assumption, we get \(\sup _{t\ge 0} H(t)<\infty \), as desired.

\((iii)\Rightarrow (i)\). Suppose that (iii) holds. For \(z\in {\mathbb {B}}\), let

$$\begin{aligned} h(z)=\upsilon (z)^{1/p}\left( \int _{|z|}^1 \frac{\omega (s)^{q}}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/(pq)}. \end{aligned}$$

By the assumption we have

$$\begin{aligned} \int _t^1 \left( \frac{\omega (s)}{h(s)}\right) ^q s^{2n-1}ds = q\left( \int _t^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}} s^{2n-1}ds\right) ^{1/q} \lesssim M\frac{{\hat{\omega }}(t)}{{\hat{\upsilon }}(t)^{1/p}}. \end{aligned}$$
(13)

If \(r|z|\le 1/4\), by Lemma 3,

$$\begin{aligned} M_1(r,B_z^\omega )\le \Vert B_{rz}^\omega \Vert _{H^\infty }\approx \frac{1}{{\hat{\omega }}(S_{rz})}\approx 1. \end{aligned}$$

If \(r|z|>1/4\), by Lemma 1, there exists a constant \(a>0\) such that \({\hat{\omega }}(t)/(1-t)^a\) is essentially decreasing. Then by Lemma 4,

$$\begin{aligned} M_1(r,B_z^\omega )\lesssim \int _0^{r|z|}\frac{dt}{{\hat{\omega }}(t)(1-t)}\lesssim \frac{(1-r|z|)^a}{{\hat{\omega }}(r|z|)}\int _0^{r|z|}\frac{dt}{(1-t)^{a+1}}\approx \frac{1}{{\hat{\omega }}(r|z|)}. \end{aligned}$$

So, for all \(r\in (0,1)\) and \(z\in {\mathbb {B}}\),

$$\begin{aligned} M_1(r,B_z^\omega )\lesssim 1+ \int _0^{r|z|}\frac{1}{{\hat{\omega }}(t)(1-t)}dt\lesssim \frac{1}{{\hat{\omega }}(r|z|)}. \end{aligned}$$
(14)

Hence, by (13), (14), Fubini’s theorem and Lemma 1, we obtain

$$\begin{aligned} \int _ {\mathbb {B}}|B_z^\omega (\xi )|\left( \frac{\omega (\xi )}{h(\xi )}\right) ^qdV(\xi )&=2n \int _0^1 \left( \frac{\omega (r)}{h(r)}\right) ^q r^{2n-1} M_1(r, B_z^\omega )dr \\&\lesssim \int _0^1 \left( \frac{\omega (r)}{h(r)}\right) ^q r^{2n-1}\left( 1+ \int _0^{r|z|}\frac{1}{{\hat{\omega }}(t)(1-t)}dt\right) dr \\&\lesssim M\frac{{\hat{\omega }}(0)}{{\hat{\upsilon }}(0)^{1/p}}+\int _0^{|z|}\frac{1}{{\hat{\omega }}(t)(1-t)}\int _{\frac{t}{|z|}}^1 \left( \frac{\omega (r)}{h(r)}\right) ^q r^{2n-1} drdt \\&\le M\frac{{\hat{\omega }}(0)}{{\hat{\upsilon }}(0)^{1/p}}+\int _0^{|z|}\frac{1}{{\hat{\omega }}(t)(1-t)}\int _{t}^1 \left( \frac{\omega (r)}{h(r)}\right) ^q r^{2n-1} drdt \\&\lesssim M+M \int _0^{|z|}\frac{1}{{\hat{\upsilon }}(t)^{1/p}(1-t)}dt \lesssim \frac{M}{{\hat{\upsilon }}(|z|)^{1/p}}. \end{aligned}$$

Therefore, Hölder’s inequality and Fubini’s theorem imply that

$$\begin{aligned} \Vert P_\omega ^+(f)\Vert _{L_\upsilon ^p}^p&=\int _ {\mathbb {B}}\upsilon (z)\left| \int _ {\mathbb {B}}f(\xi ) |B_z^\omega (\xi )|\omega (\xi )dV(\xi ) \right| ^pdV(z) \nonumber \\&\le \int _ {\mathbb {B}}\left( \int _ {\mathbb {B}}|f(\xi )|^p h(\xi )^p |B_z^\omega (\xi )|dV(\xi )\right) \nonumber \\&\quad \times \left( \int _ {\mathbb {B}}|B_z^\omega (\xi )|\left( \frac{\omega (\xi )}{h(\xi )}\right) ^qdV(\xi )\right) ^{p/q}\upsilon (z)dV(z) \nonumber \\&\lesssim M^\frac{p}{q}\int _ {\mathbb {B}}\left( \int _ {\mathbb {B}}|f(\xi )|^p h(\xi )^p |B_z^\omega (\xi )|dV(\xi )\right) \frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z) \nonumber \\&=M^\frac{p}{q}\int _ {\mathbb {B}}|f(\xi )|^p h(\xi )^p\left( \int _ {\mathbb {B}}|B_z^\omega (\xi )|\frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z) \right) dV(\xi ). \end{aligned}$$
(15)

Since \(|B_z^\omega (\xi )|=|B_\xi ^\omega (z)|\), by (14) we get

$$\begin{aligned} \int _{ {\mathbb {B}}\backslash |\xi | {\mathbb {B}}} |B_z^\omega (\xi )|\frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z)&\lesssim \int _{|\xi |}^1 \frac{\upsilon (r)}{{\hat{\upsilon }}(r)^{1/q}}M_1(r,B_\xi ^\omega )dr \lesssim \frac{{\hat{\upsilon }}(\xi )^{1/p}}{{\hat{\omega }}(\xi )}, \end{aligned}$$
(16)

and

$$\begin{aligned}&\int _{ |\xi | {\mathbb {B}}} |B_z^\omega (\xi )|\frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z) \lesssim \int _0^{|\xi |}\frac{\upsilon (r)}{{\hat{\upsilon }}(r)^{1/q}}\frac{1}{{\hat{\omega }}(r|\xi |)}r^{2n-1}dr\nonumber \\&\quad \lesssim \int _0^{|\xi |} \frac{\upsilon (r)}{{\hat{\upsilon }}(r)^{1/q}{\hat{\omega }}(r)}r^{2n-1}dr. \end{aligned}$$
(17)

By the assumption, we have

$$\begin{aligned} \int _0^1\frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds<\infty ,\quad \int _0^{1/2} \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt>0,\quad \int _{1/2}^1 \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt>0. \end{aligned}$$
(18)

When \(r\le 1/2\),

$$\begin{aligned} {\hat{\omega }}(r)\approx 1\approx {\hat{\upsilon }}(r)^{1/p}\left( \int _r^{1} \frac{\omega (t)^q}{\upsilon (t)^{q-1}} t^{2n-1}dt\right) ^{1/q}. \end{aligned}$$

When \(r>1/2\), by Hölder’s inequality,

$$\begin{aligned} {\hat{\omega }}(r)= & {} \int _r^1\omega (t)dt \le {\hat{\upsilon }}(r)^{1/p}\left( \int _r^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}dt\right) ^{1/q}\\\approx & {} {\hat{\upsilon }}(r)^{1/p}\left( \int _r^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}t^{2n-1}dt\right) ^{1/q}. \end{aligned}$$

Then, for all \(r\in (0,1)\),

$$\begin{aligned} \frac{{\hat{\omega }}(r)^p}{{\hat{\upsilon }}(r)}\int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt \lesssim \left( \int _r^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}t^{2n-1}dt\right) ^{p/q}\int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt. \end{aligned}$$
(19)

Now, we claim that

$$\begin{aligned} K_*:=\sup _{0\le r<1} \left( \int _r^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}t^{2n-1}dt\right) ^{1/q} \left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p}<\infty . \end{aligned}$$
(20)

Take this for granted for a moment. Using (19) and (20), we have

$$\begin{aligned} \int _0^{|\xi |} \frac{\upsilon (r)}{{\hat{\upsilon }}(r)^{1/q}{\hat{\omega }}(r)}r^{2n-1}dr&\le \int _0^{|\xi |} \frac{\upsilon (r)}{{\hat{\omega }}(r)} \left( \frac{K_*^p}{{\hat{\omega }}(r)^p\int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt}\right) ^{1/q}r^{2n-1}dr \nonumber \\&=K_*^{p-1}\int _0^{|\xi |} \frac{\upsilon (r)}{{\hat{\omega }}(r)^p} \left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{{-1/q}}r^{2n-1}dr \nonumber \\&\approx K_*^{p-1} \left( \int _0^{|\xi |} \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p}. \end{aligned}$$
(21)

By (16), (17), (20) and (21),

$$\begin{aligned}&h(\xi )^p\int _{ {\mathbb {B}}\backslash |\xi | {\mathbb {B}}} |B_z^\omega (\xi )|\frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z)\nonumber \\&\lesssim \upsilon (\xi ) \left( \int _{|\xi |}^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}t^{2n-1}dt\right) ^{1/q} \frac{{\hat{\upsilon }}(\xi )^{1/p}}{{\hat{\omega }}(\xi )} \le M \upsilon (\xi ), \end{aligned}$$
(22)

and

$$\begin{aligned}&h(\xi )^p\int _{ |\xi | {\mathbb {B}}} |B_z^\omega (\xi )|\frac{\upsilon (z)}{{\hat{\upsilon }}(z)^{1/q}}dV(z)\nonumber \\&\lesssim K_*^{p-1} \upsilon (\xi ) \left( \int _{|\xi |}^1 \frac{\omega (t)^q}{\upsilon (t)^{q-1}}t^{2n-1}dt\right) ^{1/q} \left( \int _0^{|\xi |} \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p} \nonumber \\&\le K_*^p\upsilon (\xi ). \end{aligned}$$
(23)

So, by (15), (22) and (23),

$$\begin{aligned} \Vert P_\omega ^+(f)\Vert _{L_\upsilon ^p}^p&\lesssim \int _ {\mathbb {B}}|f(\xi )|^p \upsilon (\xi ) dV(\xi )=\Vert f\Vert _{L_\upsilon ^p}^p. \end{aligned}$$

Now, we prove that (20) holds. Assume \(r>1/2\). An integration by parts and Hölder’s inequality give

$$\begin{aligned} \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt&\le \int _0^{1/2} \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}dt +\int _\frac{1}{2}^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}dt \\&\lesssim 1+\int _{1/2}^r \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p} \frac{\omega (t)}{\upsilon (t)^{1/p}} \frac{\upsilon (t)^{1/p}}{{\hat{\omega }}(t)}t^{2n-1} dt \\&\le 1+ \left( \int _0^r \left( \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p} \frac{\omega (t)}{\upsilon (t)^{1/p}} \right) ^q t^{2n-1}dt\right) ^{1/q} \left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt\right) ^{1/p} \\&= 1+ J_1^{1/q} \left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt\right) ^{1/p}, \end{aligned}$$

where

$$\begin{aligned} J_1=\int _0^r \left( \frac{{\hat{\upsilon }}(t)}{{\hat{\omega }}(t)^p} \frac{\omega (t)}{\upsilon (t)^{1/p}} \right) ^q t^{2n-1}dt. \end{aligned}$$

Since

$$\begin{aligned} J_1&=\int _0^r \left( \frac{{\hat{\upsilon }}(t)^{1/p}}{{\hat{\omega }}(t)}\left( \int _t^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}\right) ^{pq} \frac{ \frac{\omega (t)^q}{\upsilon (t)^{q-1}} }{\left( \int _t^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^p}t^{2n-1} dt \\&\lesssim \frac{M^{pq} }{\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{p-1}}, \end{aligned}$$

we obtain

$$\begin{aligned} \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt \lesssim 1+ M^p {\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt\right) ^{1/p} } {\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{-p/q^2}}. \end{aligned}$$

Hence

$$\begin{aligned}&\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p}\\&\quad \lesssim 1+ M {\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt\right) ^{1/p^2} } {\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{-1/q^2}}. \end{aligned}$$

Multiplying the expression by \(\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}\), we have

$$\begin{aligned} J_2(r) \lesssim&\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q} +MJ_2(r)^{1/p}, \end{aligned}$$

where

$$\begin{aligned} J_2(r)=\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p}. \end{aligned}$$

Using (18), we get

$$\begin{aligned} J_2(r)^{1/q} \lesssim {\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q^2}}{\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p} t^{2n-1}dt\right) ^{-1/p^2}} +M<\infty . \end{aligned}$$

Therefore,

$$\begin{aligned} \sup _{r>1/2} \left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}\left( \int _0^r \frac{\upsilon (t)}{{\hat{\omega }}(t)^p}t^{2n-1}dt\right) ^{1/p} <\infty . \end{aligned}$$

When \(r\le 1/2\), (20) holds obviously.

\((iii)\Rightarrow (iv)\). Using (18) and (20), we get the desired result.

\((iv)\Rightarrow (iii)\). Assume that (iv) holds, that is,

$$\begin{aligned} N:=\sup \limits _{0\le r<1} \left( \int _0^r \frac{\upsilon (s)}{{\hat{\omega }}(s)^p}s^{2n-1}ds+1\right) ^{1/p}\left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}<\infty . \end{aligned}$$

Since \(\omega \in {\mathcal {D}}\), by Lemma 1, there exists \(b>0\) such that \({\hat{\omega }}(r)^p/(1-r)^b\) is essentially increasing. Then

$$\begin{aligned} \int _0^r \frac{\upsilon (s)}{{\hat{\omega }}(s)^p}s^{2n-1}ds\gtrsim \frac{(1-r)^b}{{\hat{\omega }}(r)^p}\int _0^r \frac{\upsilon (s)}{(1-s)^b}s^{2n-1}ds. \end{aligned}$$

Since \(\upsilon \in {\mathcal {D}}\), there exist \(C>1\) and \(K>1\) such that

$$\begin{aligned} {\hat{\upsilon }}(r)\ge C{\hat{\upsilon }}\left( 1-\frac{1-r}{K}\right) . \end{aligned}$$

Let \(r_k=1-K^{-k}\), \(k=0,1,2,\ldots \). For any \(r_2\le r<1\), there is an integer \(x=x(r)\) such that \(r_x\le r<r_{x+1}\). Then

$$\begin{aligned} (1-r)^b\int _0^r \frac{\upsilon (s)}{(1-s)^b}s^{2n-1}ds&\ge \sum _{k=0}^{x-1}\int _{r_{k}}^{r_{k+1}} \left( \frac{1-r}{1-s}\right) ^b\upsilon (s)s^{2n-1}ds\\&\ge \sum _{k=0}^{x-1}r_k^{2n-1}\left( \frac{1-r_{x+1}}{1-r_k}\right) ^b\left( {\hat{\upsilon }}(r_k)-{\hat{\upsilon }}(r_{k+1})\right) \\&\ge \sum _{k=0}^{x-1}r_k^{2n-1}\frac{C-1}{CK^{(x+1-k)b}}{\hat{\upsilon }}(r_k)\\&\ge \sum _{k=0}^{x-1}r_k^{2n-1}\frac{(C-1)C^{x-1-k}}{K^{(x+1-k)b}}{\hat{\upsilon }}(r_x)\\&\ge {\hat{\upsilon }}(r)\frac{C-1}{C^2}\sum _{s=2}^{x+1} r_{x+1-s}^{2n-1}\left( \frac{C}{K^b}\right) ^s \\&\ge r_{x-1}^{2n-1}{\hat{\upsilon }}(r)\frac{C-1}{K^{2b}} \ge r_1^{2n-1}{\hat{\upsilon }}(r)\frac{C-1}{K^{2b}}. \end{aligned}$$

So, when \(r\ge r_2\),

$$\begin{aligned} \int _0^r \frac{\upsilon (s)}{{\hat{\omega }}(s)^p}s^{2n-1}ds\gtrsim \frac{{\hat{\upsilon }}(r)}{{\hat{\omega }}(r)^p}. \end{aligned}$$

Therefore,

$$\begin{aligned} \sup \limits _{r_2\le r<1} \frac{{\hat{\upsilon }}(r)^{1/p}}{{\hat{\omega }}(r)} \left( \int _r^1 \frac{\omega (s)^q}{\upsilon (s)^{q-1}}s^{2n-1}ds\right) ^{1/q}<\infty . \end{aligned}$$

When \(r< r_2\), (iii) holds obviously. The proof is complete. \(\square \)