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Abstract

Let p > 1 and w, v € D. The boundedness of P, : L®(B) — B(B) and P, (P,}) :
LP(B, vdV) — LP(B, vdV) are investigated in this paper.

Keywords Weighted Bergman space - Bergman projection - Doubling weight

Mathematics Subject Classification 32A36 - 47B33

1 Introduction
Let B be the open unit ball of C" and S the boundary of B. When n = 1, B is the open

unit disk in the complex plane C and always denoted by D. Let H (B) denote the space
of all holomorphic functions on B. For any two points

z=1(z1,22,...,20) and w = (wy, w2, ..., wy)

in C", define (z, w) = zjw; + - - - + z,wy and |z] = /{2, z) = \/|Z1|2 + 4 zal?
Suppose w is aradial weight (i.e., w is a positive, measurable and integrable function
on [0, 1) and w(z) = w(|z]) for all z € B). Let o(r) = fl w(t)dt. We say that

r

e o is a doubling weight, denoted by w € D, if there is a constant C > 0 such that
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R A1+
o@r) < Co ) when 0 <r < 1I;

e o is aregular weight, denoted by w € R, if w is continuous and there exist C > 0
and § € (0, 1) such that

1 (1)

— < ———<C, whente€(,]1);
C (I-tHo)
e w is arapidly increasing weight, denoted by w € J, if (see [10])

. (r)
lim ——— =
r—1 (1 —=r)w(r)

’

e wisareverse doubling weight, denoted by w € @, if thereexist K > land C > 1,
such that

w(t) > Co (I—Tt>, te(0,1). (1)

See [9, 10] and the referegces therein for more details about J, R, D.LetD =DND.
More information about D and D can be found in [7, 14].

Let do and dV be the normalized surface and volume measures on S and B,
respectively. For 0 < p < oo, the Hardy space H? (B)(or H?) is the space consisting
of all functions f € H(B) such that

| fllzr = sup M,(r, f) < oo,

O<r<l

where

1/p
My(r. f) = (/S If(r%‘)l”dcr(é)> L 0<p<oo.

H* is the space consisting of all f € H(B) such that || f|| g = sup,p | f(2)| < oo.
For any f € H(B), let i f be the radial derivative of f, that is,

"9
Nf(z) = ZZka—f(z), 2=1(21,22,...,2n) €B.
=1 2k

Then the Bloch space B(B) consists of all f € H(B) such that

IfllB@ = fO)]+ su]g(1 — [z f ()] < oo

Whenn =1, || - || ) differs from the norm defined in the classical way, but the two
norms are equivalent. See [19] for example. We denote B(B) by B for simplicity.
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Suppose p is a positive Borel measure on B and 0 < p < oco. The Lebesgue space
LP (B, du) consists of all measurable complex functions f on B such that | f|? is
integrable with respect to u, that is, f € L? (B, du) if and only if

1/p
I fllLr@®,aw = (/}B If(z)lpdu(z)) < 0.

L*°(B, d) consists of all measurable complex functions f on B such that f is essen-
tially bounded, that is, f € L*°(B, dw) if and only if

f sup |f(2)] < oo.

I fllLoe,an = in
M ECBW(E)=0 e\ E

More details about L? (B, dt) can be found in [18, 20]. For a positive and measurable
function w on B, letting du(z) = w(z)dV(z), i is a Borel measure on B if v €
L'(B, dV). Then, we will write L? (B, dj) as L? (B, wdV). Whenn = 1 and z € D,
letdV(z) = %dA(z) be the normalized area measure on ID. Then we can define the
Lebesgue space on the unit disk in the same way.

In [10], Peldez and Rittyi introduced a new class of weighted Bergman spaces
AP (D), which is induced by rapidly increasing weights  in ID. That is

AP(D) = LP(D, wdA) N H(D), where0 < p < oo.

See [9-13, 15, 16] for more results on A% (D) with @ € D.In [4], we extended some
results of the Bergman space A% (D) to the unit ball B of C”. That is,

AP(B) = LP(B, wdA) N H(B), where0 < p < oo.

In brief, let AZ = AP(B). As a subspace of L” (B, wdV), the norm on AP will be
written as || - ||A£. It is easy to check that AP is a Banach space when p > | and a
complete metric space with distance p(f, g) = || f — g||§£ when 0 < p < 1. When
a>—landcy =T(n+a+1)/[Tnr+ DI+ D], ifw(z) =co(1 — |z|2)°‘, the
space A% becomes the classical weighted Bergman space A%, and we write d V, (z) =
ca(1=121»)%dV (z). When @ = 0, Ag = AP is the standard Bergman space. See [18,
20] for the theory of H” and AL.
When p = 2, the space Afu is a Hilbert space with the inner product

(f 8)az = / [(g@w()dV(z) forall f,g € AL,
B

In a standard way, for every z € B, the point evaluation L, f = f(z) is a bounded
linear functional on Ai. By Riesz’s Representation Theorem, we see that there exists
a unique function BY such that

f@=(f, B;”)AZ) = / fw)B?(w)w(w)dV (w) forall f e AZ).
B
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For any f € L' (B, wdV), the Bergman projection P, f is defined by

Py f(2) =/Bf(E)B§"(§)w(§)dV(S),

while the maximal Bergman projection P! is defined by
Py (N = /Bf(é) |BY ()| w(§)aV ().

When w(z) = co(1 — |2]%)%(@ > —1), P, and P,5 will be denoted by P, and P,
respectively.

The study of the Bergman projection has a long history. If s € C such that s > —1
forall f € L'(B,dV), let

_ T+s+1) (1 — |w?)*
B O = R D6+ 1) Jo T = @ wpreres /YO

Obviously, when s = 0, we have Ty = Pp. In [5], Forelli and Rudin proved that T
is bounded on L?(B, dV) if and only if (1 + Ns)p > 1 under the assumption that
1 < p < oo. In [3], Choe proved that T is bounded on L? (B, dV,) if and only if
(1+NRs)p > 1+a when p > landa > —1.From [20, Thm. 2.11], we see that Py is
bounded on L7 (B, dVg) ifand only if p(a+1) > B+1whenp > 1, a, B € (=1, 00).
In [8], Liu gave a sharp estimate for the norm of Py on L? (B, dV).

In the setting of the unit disk, Bekollé and Bonami showed that, if 1 < p < oo,
v is positive on D and [ v(2)dAq(z) < 00, Py @ LP(D, vdAy) — LP(D, vdAy)
is bounded if and only if v satisfies the Bekollé—Bonami condition, see [1, 2]. The
result was extended in [17] for some @w € R. In [13], the Bergman projections P,
and the maximal Bergman projection P, on some function spaces on D were studied
when w € R. In [14], Peldez and Riittyi studied Bergman projections and the maximal
Bergman projection P, induced by radial weights @ on some function spaces on D.

Motivated by [13, 14], in this paper we investigate the boundedness of P, :
L®B,dV) - B(B) and Pw(PCj‘) : LP(B, vdV) — LP (B, vdV) on the unit ball of
C" with p > land w, v € D.

This paper is organized as follows. In Sect. 2, we recall some results and notation.
In Sect. 3, we give some estimates for By’ with w € D. In Sect. 4, we investigate the
boundedness of P, and P} with w € D.

Throughout this paper, the letter C will denote a constant which may differ from
one occurrence to the other. The notation A < B means that there is a positive constant
C such that A < CB. The notation A ~ Bmeans A < Band B < A.
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2 Preliminary Results

Forany &, 7 € B,letd (¢, t) = |1 — (£, T)|"/2. Thend(., -) is the non-isotropic metric.
Forr > 0and & €S, let

06N ={nes: - =}

Q(&,r)isaballin S forall £ € Sand r € (0, 1). More information about d(-, -) and
Q (&, r) can be found in [18, 20].
For any a € B\{0}, let Q, = Q(a/|a|, /T — [a[) and

Sa=S(Qa)={zeIB3:é—|eQa,|a|<|z|<l}.

Whena = 0, let Q, = S and S, = B. We call S, the Carleson block. See [4] for
more information about the Carleson block. As usual, for a measurable set E C B,

w(E) = [pw(x)dV (2).
Lemma 1 Let w be a radial weight.

(1) The following statements are equivalent.

(a) weD;
(b) there is a constant b > 0 such that o(t)/(1 — Nl is essentially increasing;
(c) forallx > 1, fol s*w(s)ds ~ o(l — 1/x).

(1) we D if and only if there is a constanta > 0 such that &(t)/(1—1)% is essentially
decreasing.

(iii) If w is continuous, then @ € R if and only if there are —1 < a < b < +00 and
6 € [0, 1), such that

w(t) w(t)
a1 S oo, and T

N0, whené <t <1. 2)

Lemma 1 plays an important role in this research and can be found in many papers.
Here, we refer to [7, Lem. B, Lem. C] and observation (v) in [10, Lem. 1.1].
For any radial weight w, its associated weight w* is defined by

1
w*(z):/ a)(s)log|s—|sds, 2 € D\{0}.
Izl <

The following lemma gives some properties and applications of w*.

Lemma2 Let w € D. The following statements hold.

() o*(r) ~ (1 —r) [ w(@)dt when r € (1/2,1).
(i) Foranya > =2, (1 —t)*w*() € R.
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(i) (S0 ~ (1~ lal)" [ o(r)dr.
(iv) &(z) = @(a), if 1/C < (1 —z|)/(1 —|a]) < C for some fixed C > 1.

Proof (i) and (ii) are [10, Lem. 1.6, Lem. 1.7], respectively. (iii) was proved in [4].
(iv) can be proved directly by (i), (ii) and Lemma 1. For the benefit of readers, we
give a proof here.

Suppose w € D. Then there exist a,b > —1andé € (0, 1) such that (2) holds for
*. Then, forall § <x <y < I suchthat 1/C < (1 —x)/(1 —y) < C, we have

(l—x)” *(x) <l—x>b
-y o*(y) -y

Ifx<8and1/C < (1—x)/(1—y) <C,d(x) ~ @(y) is obvious. So,

N N o 1—
w(z) =~ w(a), le < T ||(Z1|| <

The proof is complete. O

For a Banach space or a complete metric space X and a positive Borel measure i on
B, we say that p is a g-Carleson measure for X if the identity operator /5 : X — LZ

is bounded. When 0 < p < g <ococand w € "lA), a characterization of the g-Carleson
measure for A’ was given in [4].

TheoremA Let0 < p < g <00, w € D, and W be a positive Borel measure on B.
Then  is a q-Carleson measure for AL if and only if

sup M < 0. 3)

a€B ((S,)) 7

Moreover, if i is a q-Carleson measure for AL, then the identity operator I : AL —
L,z satisfies

Val, o~ sup 18D
Aw—> Ly acB (w(Sa))q/p

3 Some Estimates About B with @ € D
In this section, we consider the reproducing kernel of Az) and give some estimates

for it. Let’s recall some notations. For all f € H(B), the Taylor series of f at origin,
which converges absolutely and uniformly on each compact subset of B, is

f@) =) an", z€B.
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Here the summation is over all multi-indexs m = (m, ma, ..., m;), mj iS a non-
negative integer and " = z{"'z3% - z,". Let [m| = my + my + -+ + m,, m! =

milmy! - myland fx(2) = Z|m|=k anz™. Then the Taylor series of f can be written
as f(z) = Z,fio Jx(z), which is called the homogeneous expansion of f.

Lemma3 Letw € D. Then

1 S -1+,
BY (w) = —(w, 2
2n 'Z klwon+ok—1 . 2)

and

IB I3 ~ ~||BY lu~, z€B.

1
(Sz)
Here and henceforth, wg = fol rio(r)dr.

Proof Suppose f € AZ, and f(z) =), amz™, z € B. For any fixed z € B, let
BY(w) = bu()w™.
m
y [20, Lem. 1.8, Lem. 1.11], we have
f(z)=f]Bf(w)B§”(w)w(w)dV(w)

(n — 1)'m‘ ! ml—
=2n Z n—l+| bm(z)/ P2 tAm= g (rydr

=2n! b (2),
Z o1 +| am (D) w2n+2)m|—1-

Set

2n!m!
=m W2n+2|\m|— 117 (2).

m

Then,

B(w) = ~ Z(H_Hk)'z "
T k=

0 klwoni2k—1

1 X (n—1+4k)!
Zu( ).

T i Wz
n'k:O *W2n+2k—1
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Therefore,

1 —1+k)!
NBE (w) = 2‘2((’1—+]()(w,z)k.

k — D!woniox-1

By Stirling’s estimate and Lemma 1, when 1/2 < |z| < 1, we obtain

oo oo —
B (w)] < Wlmkmifkuwwﬁ
T omiu-r 0 o

and

o 2k o ny., 2k
\ Kjz] (k+ 1"z
IRBE() ~ Y ~ Y .

(o] Ontk-1 O W2kl

Let @y (1) = (1 — t)*@(¢) for any fixed @ € R. Using [13, eq. (20)] and Lemma 2,
we get

o0
k+ 1) zpk S 1 1
DT L B .
@2%+1 0 @nt+1(0) (I —=lzD"o(z)  w(S)

k=n

and

) k + 1)”|Z|2k ~ /|Z|2 1 "
S oun o (I=0m2a)

By Lemma 1, there exists a constant b > 0 such that o(¢)/(1 — NP is essentially
increasing. So, by Lemma 2,

|21 _ b plzl
/ L mN“Am)/ ' s .
o (L—=0)m"20(r) o(z») Jo (A —pnt2th (I = 1zDw(S;)

Therefore, when 1/2 < |z] < 1, we have

1
B ||g~ < , < ||B?|B. 4
1B |1 S o) o) SIB s “

When |z| < 1/2, since w(S;) ~ 1, [|BY |3 = |BL(0)| 2 1, and

1 (n —1 +k)' 1
B Kookt
|BY (w)| = n 12 klwp1ok—1 2k -

(4) also holds. By the fact that || f||s < || f||zee, we obtain the desired result. The
proof is complete. O
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Lemma4 Let0 < p <00, w,V € D. Then the following assertions hold.
(i) When |rz| > 1/4,

rlz| 1
P W\ ~
MP (r, Bz )~ /0 o)1 — t)np—n+ldt
and
» N rlz| 1
M (r, ERBZ )~ /(; )P (1 — t)(n+1)p—n+1dt‘

(i) When |z] > 6/7,

4 O(t)
v oo o@P —n)mP

and

4 O(t)
Tpw P~
9B ”Aﬁ N/O NP (1 — t)(n+1)p7n+1dl'

Proof Whenn = 1, the lemma was proved in [13], so we always assume n > 2. Since
we will use some results on A2 (ID), for brief, the symbol A% only means A% (B) with
n > 2. Meanwhile, let B;” ‘I denote the reproducing kernel of Ag) (D). Recall that,
on the unit disk, d Ay (z) = co(1 — |2|*)*d A(z), where d A(z) is the normalized area
measure on D.

By Lemma 3,

e¢]

1

RBL (w) = — E
]

2n! ‘

=1

(n—14k)!

k
—_— w,z) .
(k — D!wntor-1

Let ey = (1,0,...,0). When |rz| > 0, by a rotation transformation and [20,
Lem. 1.9], we have

P
do(n)

0]

—14+k)!
S LEDY G fefenyt

i (k= Dlw k-1

P
(n ! k)' k 2\n—2
E -~ 1 JA
k=1 (k - 1)!w2n+2k,] (r|Z|$) ( |§| ) (5)

1
MJ(r,RBY) = M} (r, RB?, ) /
S

lzlel Zz_n!
I,
o) |rZ|n+k71(€_-n+kfl)(n)

1
B Irzl("‘l)P/D g

L Irzlk gk ™

1
~ (nfl)p‘/ Z
|rz| 1] Pt

1 w,1 (n) P
= jrze e 1By o

p
§1Pd Ap—2(8)

W2(n+k—1)+1
P
dAn—Z (%_)

W2k+1
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When r|z| > 1/4, by [13, Thm. 1],

p o e (-t il 1
Mp (r, RB;") ~ /0 o)P (1 — t)p(n-l-l)dt - /0 o)1 — ;)p(n+l)—n+ldt‘

Therefore, when |z| > 6/7, by Fubini’s theorem we obtain

! ol [ P2 (r)dr
OXT 2n—1 )4 w _ max{t/|z|,1/2}
IR B, ||A5 ~ /1/2r v(r)Mp (r, RB)dr = /0 ()P (1 — )Pt

When 0 <t < |z]/2,

1 1
/ r2n_lU(r)dr — ﬁ r2ﬂ—lv(r)dr ~]l~ l’)([) (5)

ax{r/|z],1/2} 2

When |z]/2 <t < |z|, we get

1 1
/ rznflv(r)dr = / rznflv(r)dr < i)(t) (6)

max({t/|z|,1/2} ﬁ
By Lemma 1 and the fact that v € @, there exists a constant b > 0 such that (11’7(?),, is

essentially increasing. So,

!

d 2|z|-1 l’}(m) d
t - t
v/\z|/2 (’l‘)(t)p(l _ t)p(n+1)—n+l

- 1 2n—1
2l fnaxte /22y T2 0)dr
212 (f)(l‘)l’(l _ t)p(n+1)—n+l

Vv

t

“ b
212 é‘)(t)p(l _ t)p(n+1)—n+l 1—1¢

2|z]-1 50)
/‘Zl/2 )P (1 — z)p(n+1)_n+1df, @)

vV

vV

where the last estimate follows from

Llgl=t 1)zl —Qlzl—1 6
Lz LRZ@EZD Sy e (B,2|z| - 1) and |7] > -
1=t 2 1—Qlzl— 1) 2 7

Meanwhile, w, v € D and Lemma 2 imply

2|z|-1 0] 2|z|-1 10
dt > dt
/ZI/Z &P (1 — r)prth—n+l - /;zl—3 &P (1 — t)pt+D—n+l

9z - 1)
&Iz = DP(1 = [z)porsD=

~

< )
~ dr. (8
/2z|—1 )P (1 — rypnth—n+l ®)
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Then (7) and (8) imply that

1 2n—1 I .
/\zl fmax{z/|z\,l/2} re" = tu(r)dr - /ZLI 1 o(t)
| =

22 O()P (1 — typnth—ntl 20/2 O()P(1 — t)pltD—n+l

o /‘ZIZ\—1+/\ZI (1) Ut
RRVUET 2011/ OOP(1 = pyprrh=ntl

_ / . o) dr )

jzl/2 @@)P (1 — )Pt DH=nt1 70

So, if |z| > 6/7, by (5) and (6),

)P (1 — t)ypnth—n+l d )P (1 — t)prth—n+l

1 n—1 R
/zl fmax{t/\z|,1/2}r "lu(r)dr < flzl O(t) o
0 ~Jo

By (5) and (9), we get

1 2n—1 ~
/zl fmax{t/\z|,1/2}r "Lu(r)dr >/IZI O(t) s
0 ~Jo

&P (1 — t)prth—ntl O@)P (1 — t)path=n+1

Therefore,

Izl (1)
N RO P
IRB1 ~/0 o)1 — [)p(n+1)—n+1dt'

The rest of the lemma can be proved in the same way. The proof is complete. O

4 Main Results and Proofs
In this section, we give the main results and proofs of this paper. We note that
I fllL=®wavy) = I fllL=@.av).

when w € D. So, let L = LB, wdV) = L*°(B, dV) in this section.
Theorem 1 When w € D, P, : L — B is bounded and onto.
Proof For all f € L°°, by Lemma 4,

Il f 1z
1—Jz|

[R(Po ()] = /]B | f)IRBZ (W)l w)dV (w) < (| fllLe MBS

So, P, : L°° — B is bounded.
By [4, eq. (14)], we see that

R 2
1£13 = 0@ F O + 4/IB ']fﬂwn*@dvm

Z|2n
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where
1 r
" (z) = / p2n=l log —aw(r)dr.
Iz |z]

So, for f, g € A2,

- N N
(o2 = 0® £ O30 +4 [ O @ave. ao

|Z |2n
Let

Wi(t) :i= le_t)t and Wi (z) := Wi(|z)).

Since @ € D, by Lemma 1, there are constants a, b > 0 such that &(¢)/(1 — )¢ is
essentially decreasing and &(1)/(1 — 1)? is essentially increasing. Thus,

1A - 1
/ o) 4 < 20 / (1 — 0 ldr ~ &(r)
r T—=r2J,

1—1t¢
and
L o) o) (!
dt > 1= lar ~ o).
/,l—t N(l_r)b/r( ) w(r)
Then,

1 A
Wi(r) = / %dt ~ o) = (1 —r)Wi ().

Therefore, W) € R. By Lemma 2 and Theorem A, || - || ,» ~ || - ||A€V . Then for all
@ 1
p > 0,by [6, Thm. 1], we get

IIfIIZZ A ”f”Zl;V ~ | fO)° +/B|9?f(Z)|p(1 — 2D W1 (2)dV (2). (11)

For any f € H(B) and |z| < 1/2, let f,(z) = f(rz) forr € (0, 1). By Cauchy’s
fomula, see [20, Thm. 4.1] for example, we have

_ 4z\ _ fyam
@) = faa < 3 ) —fg—(l &) o (m).

T 5
After a calculation, when |z] < 1/2,

f@IS I lay, RIS Izl f3allmee,  and (R f (]S [zl AL -
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We note that, when |z| > 1/2,

! t ! t
w"*(z):/ t”’*‘log—w(t)dmf tlog —w(t)dt = w*(2).
12l || 2] |z

So, when ¢ € B and [ € A}U, by (10), (11) and Lemma 2, there exists a C =
C(n, w, g), such that

yrx N fr (2N
|<f,,g>Agj|SC<||fr|A1w+|fr|A;/ CoGave+ [ RO

1p |Z|2”_2 |Z|2n

w”*(z)dV(z)>

2

%IlfrHAlwﬂL/l 19 £ (2)Ng (@)I(1 = |z)d(z)dV (2)
B\!B

2

= I frllay + gl /B 19 fr (2)|d(2)dV (2)
~ N frllay + lglls /B RS- @1 = 1zDW1()dV ()

S lay + gl fllay-

Therefore, g € B induces a bounded linear functional on Aclu defined by F,(f) =

lim, 1 (f;, &) a2 forall f € A,
On the other hand, the Hahn—Banach theorem and the well known fact (see [19,
Thm. 1.1] for example) that

(L'B, wdV))* ~ L®@[B, wdV)

guarantee the existence of ¢ € L* such that
lim (f,, g) a2 = Fo(f) = / f @) (2)dV(z) = lim / fr@e)w(2)dV(2)
r—1 @ B r—~1JB

forall f € ALIU. Since P, is self-adjoint and P, (f,) = f,, we have

/]Bfr(z)mw(z)dV(z)Z/BPw(fr)(Z)@w(z)dV(z)=/Bfr(z)Pw(tp)(Z)w(z)dV(Z)~

By the first part of the proof, P,¢ € B. Thus, g — P,¢ € B and represents the zero
functional. So, g = P,¢. The proof is complete. O

Remark 1 By the above proof, we see that P, : L°° — B is bounded when w € D.
Theorem 2 Suppose 1 < p < oo and w,v € D. Let ¢ = p/(p — 1). Then the
following statements are equivalent:

() Pf: LY — LY is bounded;

(i) P, : LY — LY is bounded;

~ 1
(i) M = sup U(}")l/P [1 w(s)? g /q .
. 0<r<l é)(r) r U(S)q71 '
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1 1/q
(v) N := sup /r })ﬂsz”_lds +1 ! /1 00! s Lds < 0.
0<r<l 0 a)(s)l’ r U(S)qil

Proof When n = 1, the theorem was first proved in [13] and improved in [7, 14]. So,
we always assume that n > 2.

(i) = (ii). It is obvious.

(ii) = (iii). Suppose that (ii) holds. Let P} be the adjoint of P,, with respect to
(-, -)L%. For all f, g € L®, by Fubini’s Theorem,

f, P;g>L12, =(Puf, g)L% = /B ow(Z)EU(Z)dV(Z)
_ /E ( /B f(E)B_?)(S)w(é)dV(g)> eV

:A(AWU(ZMV(Z)) FE)0(E)V ()

2/ @) g(@)B2E)v(2)dV (2) ) f(E)v(E)dV(E).
B\ v(&) Jp

Since L™ is dense in L} and L}, by the last equality we get

w(§)
P(e)¢) = —= [ g@B®)v()dV(z), geLj. 12)
v(&) JB
By the assumption, P* is bounded on L7. Let g;(z) = Z{, where z = (21,22, ..., Zn)

and j € NU{0}. By [20, Lem. 1.11] and Lemma 3,

P (g,)(&) = % [ 0B @v0avE

oo

_Lw(&‘)z(n—l+k)!

~ 2nlu(E) klwan o1

g @, 2 v()dV (2)
k=0 B

— 1 : j
_ 2_}’1(1)(%‘) Z n—14+k)! f r2n+k+]—lv(r)dr / 77{ (&, r})kdO’(T])
0 S

T 2nl v(€) = Koo
joE) Vg1 (n =1+ ) (n— D!
Pu@) omgaj1 jln— D! (n—1+ j)!
_ Eljw(E) Udnt2j-1

v(§) wony2j-1

=£

By Lemmas 1 and 2, we obtain

1
||8j||(£% =/};3|Zl|q]v(z)dV(Z) =2n/0 r2"+qfflv(r)dr/S|n1|‘Ud0(n)
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2Nty / 119 do (n)
S

~ Unniaj1 / 19 do ().
S

which implies that

w
1P3 &I, (”2””’ 1) [amn =t avee

W2p42j-1 vi-1(§)

. 1 /
N (U2n+211> / 2n+qj— 1w_§r)d,/|m|md0(n)
W2n+2j-1 0 v

1 q
2n+2j—1 wi(r) 2ne1
2 ]II —/ ———r"dr

1
2n+2] 1 _ﬁ vi™ (I")
q 1
~ 21+1 : () 5,
I j” 1 q—l()r dr
2]+1 I V7

Letr; =1—-1/(2j+1). We get

G L R G
125y 2 eilly o [ 1y,

arpt ), v @)

Let

H(t) =

o) /1 @ (r)
o1 ),
Whenr; <t <rji1, H(t) S H(rj). Thus, by the assumption, we get sup,so H(#) <

00, as desired.
(iii) = (i). Suppose that (iii) holds. For z € B, let

1 1/(pq)
h(z) = v(z)'/? </ Ls)qsz"_lds> )
|

2 v(s)27!

By the assumption we have

: @(s) 1 2n—1 _ ! w(s)? -1 1/q C?)(l‘)
[ ) [ 282ea) " cn oo

If riz] < 1/4, by Lemma 3,

1
My (r, BY) < | B |l ~
(Sr2)
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If r|z| > 1/4, by Lemma 1, there exists a constant a > 0 such that ®(z)/(1 — )% is

essentially decreasing. Then by Lemma 4,

rlzl dt 1—rlzhe (= dr 1
M (r, BY) 5/ _ < - riz]) / ~
0 0

o1 =0~ a(rlz))

So, forall r € (0, 1) and z € B,

1 < 1

rlz]
M (r, Bg’) <1 +/
0

- dr < = .
o) (1 —1) w(rlzl)

Hence, by (13), (14), Fubini’s theorem and Lemma 1, we obtain

) P2, BY)dr

B w(€) /1<w<r> 4
dVv =2
/' @)'(h@)) ®=2 ] i

< /1 (M)q 201 (1 +/'"Z‘ 1 dt) o
~Jo \h(r) o O -1

)
~ 50
= 4y 00
= 50)r

|z] M
<M+ M/ - dt < = .
o vOYPA—1) O(lz)/p

Therefore, Holder’s inequality and Fubini’s theorem imply that

1Pl = [ v [ rense

p
dV(z)

sf (f |f(S)I”h(E)”IB?(E)IdV(E)>
B B

(E) r/q
Bw dVv dVv
(/ B2(®)] <h($)) (E)) V(DAY (2)

SM i’/(/ |f(é)l”h(é)plB“’(E)ldV(E)>

v(z)

()l/qu()

- 5f|f(s)|l’h(s)" (/ 1B (6] 2 dv<z>)dV(s>.

Since |BY(§)| = |B§”(z)|, by (14) we get

v(2) /1
a) V <
A;\IEIB| E—F S (2) < e

@ Springer

O(z)/4

v(r) " v(é)l/”
oy M BOdr £ =2

(=0 ozl

(14)

Iz| 1

+/ L / (w(r))qrz”*ldrdt
o o =1 Ji \hr)
Izl 1

+/ L / (w(r))qrz”’ldrdt
o o0 =0J \h()

5)

(16)
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and

51
/ B2 av(2) < / v L ey,
1§13

O(2)4 o 01 ariED

i)
gf _ VO ey, (17)
0

D(M)Vad(r)

By the assumption, we have

1 q 12yt 1 :
/ (s) 1szn*lds < 00, / &tzn*ldt > 0, / }}Ltznfldt > 0.
0o v~ 0o w@®?r 172 @()P

(18)

Whenr < 1/2,

1 q 1/q
o) ~ 1~ 0(r)/r (/ L0 tzn_ldt> .
r

v(r)a-!

When r > 1/2, by Holder’s inequality,

A 1 A U w(t)? 1/q
a)(r):/r w®)dt < 0P </r U(t)q_ldt>

1/
%f)(r)l/l’ /lLt)qﬂ"]dt q'
r U(t)q_l

Then, for all r € (0, 1),

BWP [T VO iy (/lﬂ,zn_ldt>”/q/’ VO 2y, o
. 0

o) Jo a@)? - v(t)a! ()P

Now, we claim that

1 ) 1/q r ¢ 1/p
K, := sup </ @) 1tz"_ldt> (/ })Ltzn_ldt> <oo. (20
0<r<1 \Jr v(®)I~ 0o @)’

Take this for granted for a moment. Using (19) and (20), we have

1/q
/S ] U(V)A Q2= g, < /él lf(r) KP -1y,
o omlaa(r) “Jo o) \o@yr [T YD 21y

0 o@)?
—1
= Kf_l flgl Av(r) /r Av(t) 2=t /‘1 I
o oP \Jo o@®)?P
El Lz 1/p
~ kP! / VO aurg) Q1)
0o w®)r
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By (16), (17), (20) and (21),

v(z)
O(z)V/4

L ow? o\ 0@
S () </|‘§|Wt df) HE) < Mv(§),

h(E)”/ |BY ()| ——7-dV (2)
B\|§IB

and
u(z)
we? [ 1BoE) = _av
@ [ Bl mave
1 1/q H 1/p
5Kf‘u(s>(/ OO o dt) (/ O - 1dt>
g v(e)? 0 w(z)l’

< Klv(§).

So, by (15), (22) and (23),

|IP+(f)|ILp N/ If@EIPvE)dV(E) = IIfII

(22)

(23)

Now, we prove that (20) holds. Assume r > 1/2. An integration by parts and

Holder’s inequality give

/" v(r) 214y < /1/2 v dz-}-/r v dt

) a)(t)l’ —Jo o@r IO
B +/r 00 o0 v 5,
~ 12 &P vV ()

r ~ q 1/q r
§1+(/ (}J(r) (1) ) zz"*ldt) (/ LQIPYS
o \@@®)? v(n)l/r o

r 1/p
1/q () 201
I+ (/ w(t)” d ’

oo q
J1 =[ <Av(t) (1) ) 214z,
o \o@®P u)l/r

where

Since

)I/P

N 1/q\ P4 w(1)?
T O@)/P U w(s)d _— LR -
J1 Zf o) / U(s)Q*ls n—Lds T pt n—=1.4,
0 t (ft 2n—lds>

DyT15
Pa
< M

~ 7] ’
1 o) on-1,7.)"
(fr O ds)
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we obtain

, r 1/ -plq*
/ AU(l) 2lgr <1 +Mp</ AU(I) tzn_ld,> p(/l a)(s)i sz”_lds) _
0 o) 0o )P r u(s)d7!

Hence
r I/p
/ Av(f) 21,
o ()P
1/p? -1/4*
<14 M frﬁﬂ”—ldt . /lﬂszn_lds "
~ 0 G)P IO

1/q
Multiplying the expression by ( fr] LS)qsz"_lds) , we have

v(s)q—1

1 1/q
L(r) S (/ %s”’%) + ML(r)VP,

where

J( )_ 1 w(s)l] 2n_1d 1/q r U([) t2n—1dt 1/p
2= vt o )P '

Using (18), we get

1 q /4> , .r —1/p?
()4 < (/ &sznlds> </ ﬂt2"1dt) + M < co.
r 0

v(s)q—! ot)P

Therefore,

1 q 1/q r ‘ 1/p
sup (/ &)lszn_lds) (/ &tzn_ldt) < 00.
r>172 \Jr V()17 0o @)’

When r < 1/2, (20) holds obviously.
(iii) = (iv). Using (18) and (20), we get the desired result.
(iv) = (iii). Assume that (iv) holds, that is,

r 1/p 1 q 1/a
N := sup / }J(—s)sh_lds +1 / &szn_lds < 00.
0<r<1 \Jo @(s)? r U(s)!

Since w € D, by Lemma 1, there exists b > 0 such that @ (r)? /(1 — r)?bis essentially
increasing. Then

r _ b r
/ _v(s) s2n=lgg > (1-n / v(s) sy,
0 0

a(s)P ool (1 —s)
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Since v € D, there exist C > 1 and K > 1 such that

N - o 1_l—r
u(r) > U( K)

Letry =1—K X% k=0,1,2,....Forany r, <r < 1, there is an integer x = x(r)

such that ry <r < ryy1. Then
x—1

r — Tk+1 — b
a —r)b/ —(IU(S))bsz’“lds > Z/ k <i r) v(s)s>" " ds
0 - Tk -

k=0

b
> Zr2n 1 <¢> (f)(rk) — o(rk+l))

Tk

—1
2n—1
= Z CK(x+l o5 V(%)

= 1 (C—DC1F
-

> — 15 V)
- k (x+1-=k)b X
k=0 K
) C _ 1 x+1 —_ C K
> u(r) C2 erilfs (ﬁ)
s=2
1A . . C—1
>r§f11 ) el >r12” Y5ar) e

So, when r > rp,

Therefore,

~eal/p 1 q 1/q
sup U(Ar) (/ a)(s)_ S2"1ds> < o0.
r

r<r<l (r)

When r < rp, (iii) holds obviously. The proof is complete.

O
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