1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. The Ferrers-Young diagram of the partition λ of n is obtained by arranging n nodes in k left aligned rows so that the i th row has λi nodes. The nodes are labeled by row and column coordinates as one would label the entries of a matrix. Let \(\lambda ^{\prime }_{j}\) denote the number of nodes in column j. The hook number H(i,j) of the (i,j) node is defined as the number of nodes directly below and to the right of the node including the node itself, i.e., \(H(i, j)=\lambda _{i}+\lambda ^{\prime }_{j}-j-i+1\). A t-core is a partition with no hook number that are divisible by t.

For example, the Ferrers-Young diagram of the partition λ = (5,3,2) of 10 is

The nodes (1, 1), (1, 2), (1, 3), (1, 4), (1,5), (2, 1), (2, 2), (2, 3), (3, 1), and (3, 2) have hook numbers 7, 6, 4, 2, 1, 4, 3, 1, 2, and 1, respectively. Therefore, λ is a t-core partition for t = 5 and for all t ≥ 8.

Let at(n) be the number of partitions of n that are t-cores. Then, its generating function is given by [4, Eq. (2.1)]

$$ \sum\limits_{n=0}^{\infty}a_{t}(n)q^{n}=\frac{(q^{t};q^{t})^{t}_{\infty}}{(q;q)_{\infty}}. $$

Ramanujan’s three famous congruences of p(n) are as follows:

$$ \begin{array}{@{}rcl@{}} p(5n+4)&\equiv& 0\pmod{5},\\ p(7n+5)&\equiv& 0\pmod{7},\\ p(11n+6)&\equiv& 0\pmod{11}. \end{array} $$

In [5, 6], Hischhorn and Sellers have studied the 4-core partition (i.e., a4(n)) and established some infinite families of arithmetic relations for a4(n). Baruah and Nath [1] have proved some more infinite families of arithmetic identities for a4(n).

A bipartition of n is a pair of partitions (λ1,λ2) such that the sum of all parts of λ1 and λ2 equals n. A bipartition with t-core of n is a bipartition (λ1,λ2) of n such that λ1 and λ2 are both t-cores. Let At(n) denote the number of bipartitions with t-cores of n. The generating function for At(n) is given by

$$ \sum\limits_{n=0}^{\infty}A_{t}(n)q^{n}=\frac{(q^{t};q^{t})^{2t}_{\infty}}{(q;q)^{2}_{\infty}}. $$

Recently, Lin [8] has established some congruence and infinite families for A3(n). In [2], Baruah and Nath have found three infinite families of A3(n).

A partition \((\lambda _{1},\lambda _{2},\dots ,\lambda _{k})\) of a positive integer n is a k-tuple of partitions such that the sum of all the parts equals to n. A partition k-tuple of n with t-cores is a partition k-tuple \((\lambda _{1}, \lambda _{2},\dots , \lambda _{k})\) of n where each λi is t-core for \(i=1, 2, 3,\dots ,k\).

In 2015, Wang [10] has found several infinite families of arithmetic identities and congruences for partition triples with t-cores.

Motivated by the above works, we define Ct(n) to be the number of partition quadruples of n with t-cores. The generating function is given by

$$ \sum\limits_{n=0}^{\infty}C_{t}(n)q^{n}=\frac{(q^{t};q^{t})^{4t}_{\infty}}{(q;q)^{4}_{\infty}}. $$
(1.1)

In this paper, we establish several congruences modulo 5, 7, and 8 for Ct(n). The main results can be found in Theorems 3.2, 3.3, 4.1, and 5.1.

2 Preliminaries

In this section, we list some identities which play a vital role in proving our main results.

For |ab| < 1, Ramanujan’s general theta function f(a,b) is defined as

$$ f(a,b):=\sum\limits_{n=-\infty}^{\infty}{a^{n(n+1)/2}}{b^{n(n-1)/2}}. $$

The product representation of f(a,b) arises from Jacobi’s triple product identity [3, p. 35, Entry 19] as

$$ f(a,b)=(-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}. $$

Some special cases of f(a,b), known as Ramanujan’s theta functions, are

$$ \begin{array}{@{}rcl@{}} \varphi(q):=f(q,q)&=&\sum\limits_{n={-\infty}}^{\infty}q^{n^{2}}=(-q;q^{2})^{2}_{\infty}(q^{2};q^{2})_{\infty},\\ \psi(q):=f(q,q^{3})&=&\sum\limits_{n=0}^{\infty}{q^{n(n+1)/2}}=\frac{(q^{2};q^{2})_{\infty}}{(q;q^{2})_{\infty}}\\ \end{array} $$

and

$$ f(-q):=f(-q,-q^{2})=\sum\limits_{n=-\infty}^{\infty}{(-1)^{n}q^{n(3n-1)/2}}=(q;q)_{\infty}. $$

Lemma 2.1

[9, p. 212] We have the following 5-dissection

$$ (q;q)_{\infty} = (q^{25};q^{25})_{\infty} \left( a-q-q^{2}/a\right), $$
(2.1)

where

$$ a:=a(q):=\frac{(q^{10},q^{15};q^{25})_{\infty}}{(q^{5},q^{20};q^{25})_{\infty}}. $$

Lemma 2.2

For any prime p and positive integer n,

$$ \begin{array}{@{}rcl@{}} (q;q)^{p^{n}}_{\infty} \equiv (q^{p};q^{p})^{p^{n-1}}_{\infty}\pmod{p^{n}}. \end{array} $$
(2.2)

Lemma 2.3

The following 2-dissections hold:

$$ \begin{array}{@{}rcl@{}} \frac{(q^{3};q^{3})^{3}_{\infty}}{(q;q)_{\infty}}&=&\frac{(q^{4};q^{4})^{3}_{\infty} (q^{6};q^{6})^{2}_{\infty}}{(q^{2};q^{2})^{2}_{\infty} (q^{12};q^{12})_{\infty}}+q\frac{(q^{12};q^{12})^{3}_{\infty}}{(q^{4};q^{4})_{\infty}}, \end{array} $$
(2.3)
$$ \begin{array}{@{}rcl@{}} \frac{(q^{3};q^{3})_{\infty}}{(q;q)_{\infty}}&=&\frac{(q^{4};q^{4})_{\infty} (q^{6};q^{6})_{\infty} (q^{16};q^{16})_{\infty} (q^{24};q^{24})^{2}_{\infty}}{(q^{2};q^{2})^{2}_{\infty} (q^{8};q^{8})_{\infty} (q^{12};q^{12})_{\infty} (q^{48};q^{48})_{\infty}} \\&& + q\frac{(q^{6};q^{6})_{\infty} (q^{8};q^{8})^{2}_{\infty} (q^{48};q^{48})_{\infty} }{(q^{2};q^{2})^{2}_{\infty} (q^{16};q^{16})_{\infty} (q^{24};q^{24})_{\infty}}, \end{array} $$
(2.4)
$$ \begin{array}{@{}rcl@{}} \frac{(q^{3};q^{3})^{2}_{\infty}}{(q;q)^{2}_{\infty}}&=&\frac{(q^{4};q^{4})^{4}_{\infty} (q^{6};q^{6})_{\infty} (q^{12};q^{12})^{2}_{\infty} }{(q^{2};q^{2})^{5}_{\infty} (q^{8};q^{8})_{\infty} (q^{24};q^{24})_{\infty}} \\&& +2q\frac{(q^{4};q^{4})_{\infty} (q^{6};q^{6})^{2}_{\infty} (q^{8};q^{8})_{\infty} (q^{24};q^{24})_{\infty}}{(q^{2};q^{2})^{4}_{\infty} (q^{12};q^{12})_{\infty}}. \end{array} $$
(2.5)

Hirschhorn, Garvan, and Borwein [4] proved (2.3). Xia and Yao [12] gave a proof of (2.4) and in [11], they also proved (2.5) by employing an addition formula for theta functions.

Lemma 2.4

[3, p. 345, Entry 1 (iv)] We have the following 3-dissection

$$ \begin{array}{@{}rcl@{}} (q;q)^{3}_{\infty} =\frac{(q^{6};q^{6})_{\infty} (q^{9};q^{9})^{6}_{\infty}}{(q^{3};q^{3})_{\infty} (q^{18};q^{18})^{3}_{\infty}}+4q^{3}\frac{(q^{3};q^{3})^{2}_{\infty} (q^{18};q^{18})^{6}_{\infty}}{(q^{6};q^{6})^{2}_{\infty} (q^{9};q^{9})^{3}_{\infty}}-3q (q^{9};q^{9})^{3}_{\infty}. \end{array} $$
(2.6)

Lemma 2.5

The following 3-dissection holds:

$$ \begin{array}{@{}rcl@{}} (q;q)_{\infty} (q^{2};q^{2})_{\infty}&=&\frac{(q^{6};q^{6})_{\infty} (q^{9};q^{9})^{4}_{\infty}}{(q^{3};q^{3})_{\infty} (q^{18};q^{18})^{2}_{\infty}}-q(q^{9};q^{9})_{\infty} (q^{18};q^{18})_{\infty}\\ &&-2q^{2}\frac{(q^{3};q^{3})_{\infty} (q^{18};q^{18})^{4}_{\infty}}{(q^{6};q^{6})_{\infty} (q^{9};q^{9})^{2}_{\infty}} \end{array} $$

One can find this identity in [7].

Lemma 2.6

[3, 3, p. 303, Entry 17 (v)] We have

$$ \begin{array}{@{}rcl@{}} (q;q)_{\infty} = (q^{49};q^{49})_{\infty} \left( \frac{B(q^{7})}{C(q^{7})}-q \frac{A(q^{7})}{B(q^{7})}-q^{2}+q^{5} \frac{C(q^{7})}{A(q^{7})}\right), \end{array} $$
(2.7)

where \(A(q):=\frac {f(-q^{3}, -q^{4})}{f(-q^{2})}\), \(B(q):=\frac {f(-q^{2}, -q^{5})}{f(-q^{2})}\) and \(C(q):=\frac {f(-q, -q^{6})}{f(-q^{2})}\).

In the following sections, with the aid of preliminary results, we prove our main results.

3 Congruence Modulo 8 for C3(n)

Theorem 3.1

For each n ≥ 0, we have

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(4n)q^{n}&=&\frac{(q^{2};q^{2})^{16}_{\infty} (q^{6};q^{6})^{8}_{\infty} }{(q;q)^{8}_{\infty} (q^{4};q^{4})^{4}_{\infty} (q^{12};q^{12})^{4}_{\infty}} \\&& +24q\frac{(q^{2};q^{2})^{10}_{\infty} (q^{3};q^{3})^{2}_{\infty} (q^{6};q^{6})^{2}_{\infty}}{(q;q)^{6}_{\infty}} \\ && +16q^{2}\frac{(q^{2};q^{2})^{4}_{\infty} (q^{3};q^{3})^{4}_{\infty} (q^{4};q^{4})^{4}_{\infty} (q^{12};q^{12})^{4}_{\infty}}{(q;q)^{4}_{\infty} (q^{6};q^{6})^{4}_{\infty}} \\&& +24q\frac{(q^{2};q^{2})^{5}_{\infty} (q^{3};q^{3})^{7}_{\infty} (q^{6};q^{6})_{\infty} }{(q;q)^{5}_{\infty}}+q\frac{(q^{3};q^{3})^{12}_{\infty}}{(q;q)^{4}_{\infty}}, \end{array} $$
(3.1)
$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(4n+1)q^{n}&=&4\frac{(q^{2};q^{2})^{12}_{\infty} (q^{3};q^{3})^{3}_{\infty} (q^{6};q^{6})^{6}_{\infty} }{(q;q)^{7}_{\infty} (q^{4};q^{4})^{3}_{\infty} (q^{12};q^{12})^{3}_{\infty}} \\&& +48q\frac{(q^{2};q^{2})^{6}_{\infty} (q^{3};q^{3})^{5}_{\infty} (q^{4};q^{4})_{\infty} (q^{12};q^{12})_{\infty} }{(q;q)^{5}_{\infty} } \\&& +8q\frac{(q^{2};q^{2})_{\infty} (q^{3};q^{3})^{10}_{\infty} (q^{4};q^{4})_{\infty} (q^{12};q^{12})_{\infty}}{(q;q)^{4}_{\infty} (q^{6};q^{6})_{\infty}}, \end{array} $$
(3.2)
$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(4n+2)q^{n}&=&8\frac{(q^{2};q^{2})^{13}_{\infty} (q^{3};q^{3})_{\infty} (q^{6};q^{6})^{5}_{\infty} }{(q;q)^{7}_{\infty} (q^{4};q^{4})^{2}_{\infty} (q^{12};q^{12})^{2}_{\infty} } \\ && +32q\frac{(q^{2};q^{2})^{7}_{\infty} (q^{3};q^{3})^{3}_{\infty} (q^{4};q^{4})^{2}_{\infty} (q^{12};q^{12})^{2}_{\infty} }{(q;q)^{5}_{\infty} (q^{6};q^{6})_{\infty}} \\&& +6\frac{(q^{2};q^{2})^{8}_{\infty} (q^{3};q^{3})^{6}_{\infty} (q^{6};q^{6})^{4}_{\infty}}{(q;q)^{6}_{\infty} (q^{4};q^{4})^{2}_{\infty} (q^{12};q^{12})^{2}_{\infty} } \\&& +24q\frac{(q^{2};q^{2})^{2}_{\infty} (q^{3};q^{3})^{8}_{\infty} (q^{4};q^{4})^{2}_{\infty} (q^{12};q^{12})^{2}_{\infty}}{(q;q)^{4}_{\infty} (q^{6};q^{6})^{2}_{\infty}}, \end{array} $$
(3.3)
$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(4n+3)q^{n}&=&24\frac{(q^{2};q^{2})^{9}_{\infty} (q^{3};q^{3})^{4}_{\infty} (q^{6};q^{6})^{3}_{\infty} }{(q;q)^{6}_{\infty} (q^{4};q^{4})_{\infty} (q^{12};q^{12})_{\infty}} \\&& +32q\frac{(q^{2};q^{2})^{3}_{\infty} (q^{3};q^{3})^{6}_{\infty} (q^{4};q^{4})^{3}_{\infty} (q^{12};q^{12})^{3}_{\infty} }{(q;q)^{4}_{\infty} (q^{6};q^{6})^{3}_{\infty} } \\&& +4\frac{(q^{2};q^{2})^{4}_{\infty} (q^{3};q^{3})^{9}_{\infty} (q^{6};q^{6})^{2}_{\infty}}{(q;q)^{5}_{\infty} (q^{4};q^{4})_{\infty} (q^{12};q^{12})_{\infty}}. \end{array} $$
(3.4)

Proof

Setting t = 3 in (1.1), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(n)q^{n}=\frac{(q^{3};q^{3})^{12}_{\infty} }{(q;q)^{4}_{\infty}}=\left( \frac{(q^{3};q^{3})^{3}_{\infty}}{(q;q)_{\infty}}\right)^{4}. $$
(3.5)

Substituting (2.3) into (3.5), we get

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(n)q^{n}&=&\frac{(q^{4};q^{4})^{12}_{\infty} (q^{6};q^{6})^{8}_{\infty} }{(q^{2};q^{2})^{8}_{\infty} (q^{12};q^{12})^{4}_{\infty} }+4q\frac{(q^{4};q^{4})^{8}_{\infty} (q^{6};q^{6})^{6}_{\infty} }{(q^{2};q^{2})^{6}_{\infty} } \\&& +6q^{2}\frac{(q^{4};q^{4})^{4}_{\infty} (q^{6};q^{6})^{4}_{\infty} (q^{12};q^{12})^{4}_{\infty} }{(q^{2};q^{2})^{4}_{\infty} } \\&& +4q^{3}\frac{(q^{6};q^{6})^{2}_{\infty} (q^{12};q^{12})^{8}_{\infty}}{(q^{2};q^{2})^{2}_{\infty} }+q^{4}\frac{(q^{12};q^{12})^{12}_{\infty}}{(q^{4};q^{4})^{4}_{\infty}}. \end{array} $$
(3.6)

Extracting the even terms of the above equation, one obtains

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(2n)q^{n} = \frac{(q^{2};q^{2})^{12}_{\infty} (q^{3};q^{3})^{8}_{\infty} }{(q;q)^{8}_{\infty} (q^{6};q^{6})^{4}_{\infty} } + 6q\frac{(q^{2};q^{2})^{4}_{\infty} (q^{3};q^{3})^{4}_{\infty} (q^{6};q^{6})^{4}_{\infty} }{(q;q)^{4}_{\infty}} + q^{2}\frac{(q^{6};q^{6})^{12}_{\infty}}{(q^{2};q^{2})^{4}_{\infty}}, \end{array} $$

which yields

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(2n)q^{n}&=&\frac{(q^{2};q^{2})^{12}_{\infty} }{(q^{6};q^{6})^{4}_{\infty}} \left( \frac{(q^{3};q^{3})^{2}_{\infty}}{(q;q)^{2}_{\infty} }\right)^{4} \\&& +6q (q^{2};q^{2})^{4}_{\infty} (q^{6};q^{6})^{4}_{\infty} \left( \frac{(q^{3};q^{3})^{2}_{\infty}}{(q;q)^{2}_{\infty} }\right)^{2}+q^{2}\frac{(q^{6};q^{6})^{12}_{\infty}}{(q^{2};q^{2})^{4}_{\infty}}. \end{array} $$
(3.7)

Substituting (2.5) into (3.7) and extracting the terms involving q2n and q2n+ 1, we get (3.1) and (3.3).

From (3.6), one gets

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(2n+1)q^{n}=4\frac{(q^{2};q^{2})^{8}_{\infty} (q^{3};q^{3})^{6}_{\infty}}{(q;q)^{6}_{\infty}}+4q\frac{(q^{3};q^{3})^{2}_{\infty} (q^{6};q^{6})^{8}_{\infty}}{(q;q)^{2}_{\infty}}, \end{array} $$

which implies that

$$ \sum\limits_{n=0}^{\infty}C_{3}(2n+1)q^{n}=4(q^{2};q^{2})^{8}_{\infty} \left( \frac{(q^{3};q^{3})^{2}_{\infty}}{(q;q)^{2}_{\infty}}\right)^{3}+4q(q^{6};q^{6})^{8}_{\infty} \left( \frac{(q^{3};q^{3})^{2}_{\infty}}{(q;q)^{2}_{\infty}}\right). $$
(3.8)

Substituting (2.5) into (3.8) and extracting the even and odd terms of the above equation, we obtain (3.2) and (3.4). □

Theorem 3.2

For each α ≥ 0 and n ≥ 1, we have

$$ \begin{array}{@{}rcl@{}} C_{3}(16n+14)&\equiv& 0\pmod{8}, \end{array} $$
(3.9)
$$ \begin{array}{@{}rcl@{}} C_{3}(48n+30)&\equiv& 0\pmod{8}, \end{array} $$
(3.10)
$$ \begin{array}{@{}rcl@{}} C_{3} \left( 16^{\alpha+1}n+\frac{16\cdot 4^{\alpha}-4}{3}\right)&\equiv& C_{3}(4n) \pmod{8}. \end{array} $$
(3.11)

Proof

From (3.3), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(4n+2)q^{n} \equiv 6\frac{(q^{2};q^{2})^{8}_{\infty} (q^{3};q^{3})^{6}_{\infty} (q^{6};q^{6})^{4}_{\infty}}{(q;q)^{6}_{\infty} (q^{4};q^{4})^{2}_{\infty} (q^{12};q^{12})^{2}_{\infty}}\pmod{8}. $$
(3.12)

Using (2.2) in (3.12), one gets

$$ \sum\limits_{n=0}^{\infty}C_{3}(4n+2)q^{n} \equiv 6\frac{(q^{3};q^{3})^{6}_{\infty} }{(q;q)^{6}_{\infty}} \equiv 6\left( \frac{(q^{3};q^{3})^{2}_{\infty} }{(q;q)^{2}_{\infty} }\right)^{3}\pmod{8}. $$
(3.13)

Substituting (2.5) into (3.13), we have

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(4n+2)q^{n} &\equiv& 6\frac{(q^{4};q^{4})^{12}_{\infty} (q^{6};q^{6})^{3}_{\infty} (q^{12};q^{12})^{6}_{\infty} }{(q^{2};q^{2})^{15}_{\infty} (q^{8};q^{8})^{3}_{\infty} (q^{24};q^{24})^{3}_{\infty} } \\&& +4q\frac{(q^{4};q^{4})^{9}_{\infty} (q^{6};q^{6})^{4}_{\infty} (q^{12};q^{12})^{3}_{\infty} }{(q^{2};q^{2})^{14}_{\infty} (q^{8};q^{8})_{\infty} (q^{24};q^{24})_{\infty}}\pmod{8}. \end{array} $$
(3.14)

Extracting the terms involving q2n+ 1 from (3.14), dividing by q and then replacing q2 by q,

$$ \sum\limits_{n=0}^{\infty}C_{3}(8n+6)q^{n} \equiv 4\frac{(q^{2};q^{2})^{9}_{\infty} (q^{3};q^{3})^{4}_{\infty} (q^{6};q^{6})^{3}_{\infty}}{(q;q)^{14}_{\infty} (q^{4};q^{4})_{\infty} (q^{12};q^{12})_{\infty}}\pmod{8}. $$
(3.15)

Invoking (2.2) in (3.15), one obtains

$$ \sum\limits_{n=0}^{\infty}C_{3}(8n+6)q^{n} \equiv 4(q^{6};q^{6})^{3}_{\infty} \pmod{8}. $$
(3.16)

Congruence (3.9) follows from (3.16).

From (3.16), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(24n+6)q^{n} \equiv 4(q^{2};q^{2})^{3}_{\infty} \pmod{8}. $$
(3.17)

Congruence (3.10) easily follows from the above equation.

From (3.1), one gets

$$ \sum\limits_{n=0}^{\infty}C_{3}(4n)q^{n}\equiv \frac{(q^{2};q^{2})^{16}_{\infty} (q^{6};q^{6})^{8}_{\infty}}{(q;q)^{8}_{\infty} (q^{4};q^{4})^{4}_{\infty} (q^{12};q^{12})^{4}_{\infty}}+q\frac{(q^{3};q^{3})^{12}_{\infty}}{(q;q)^{4}_{\infty}} \pmod{8}. $$
(3.18)

Invoking (2.2) in (3.18), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(4n)q^{n}\equiv (q^{2};q^{2})^{4}_{\infty} +q\left( \frac{(q^{3};q^{3})^{3}_{\infty}}{(q;q)_{\infty}}\right)^{4} \pmod{8}. $$
(3.19)

Substituting (2.3) into the second term of (3.19) and extracting the odd terms of the required equation

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}(8n+4)q^{n}&\equiv& \frac{(q^{2};q^{2})^{12}_{\infty} (q^{3};q^{3})^{8}_{\infty} }{(q;q)^{8}_{\infty} (q^{6};q^{6})^{4}_{\infty} }+6q\frac{(q^{2};q^{2})^{4}_{\infty} (q^{3};q^{3})^{4}_{\infty} (q^{6};q^{6})^{4}_{\infty} }{(q;q)^{4}_{\infty}} \\&& +q^{2}\frac{(q^{6};q^{6})^{12}_{\infty}}{(q^{2};q^{2})^{4}_{\infty}} \pmod{8}. \end{array} $$
(3.20)

Using (2.2) in (3.20), one checks that

$$ \sum\limits_{n=0}^{\infty}C_{3}(8n+4)q^{n}\equiv (q^{2};q^{2})^{8}_{\infty} +6q(q^{2};q^{2})^{2}_{\infty} (q^{6};q^{6})^{6}_{\infty}+q^{2}\frac{(q^{6};q^{6})^{12}_{\infty} }{(q^{2};q^{2})^{4}_{\infty}} \pmod{8}. $$
(3.21)

Extracting the terms involving q2n from (3.21) and then replacing q2 by q,

$$ \sum\limits_{n=0}^{\infty}C_{3}(16n+4)q^{n}\equiv (q;q)^{8}_{\infty} +q\frac{(q^{3};q^{3})^{12}_{\infty}}{(q;q)^{4}_{\infty}} \pmod{8}. $$
(3.22)

Invoking (2.2) in (3.22), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(16n+4)q^{n}\equiv (q^{2};q^{2})^{4}_{\infty}+q \left( \frac{(q^{3};q^{3})^{3}_{\infty}}{(q;q)_{\infty}}\right)^{4} \pmod{8}. $$
(3.23)

Using (3.23) and (3.19), one gets

$$ C_{3}(16n+4)\equiv C_{3}(4n) \pmod{8}. $$

By using mathematical induction on α, we obtain (3.11). □

Theorem 3.3

For α, β, and γ ≥ 0, we have

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\! \sum\limits_{n=0}^{\infty}C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right)q^{n}\equiv 4(q;q)^{3}_{\infty} \pmod{8}, \end{array} $$
(3.24)
$$ \begin{array}{@{}rcl@{}} &&\!\!\!\! \sum\limits_{n=0}^{\infty}C_{3}\!\left( 16\!\cdot\! 3^{2\alpha+1}\!\cdot\! 5^{2\beta}\!\cdot\! 7^{2\gamma+1}n+2\!\cdot\! 3^{2\alpha+1}\!\cdot\! 5^{2\beta}\!\cdot\! 7^{2\gamma+2}\right)q^{n} \equiv 4 (q^{7};q^{7})^{3}_{\infty}\! \pmod{8}, \end{array} $$
(3.25)
$$ \begin{array}{@{}rcl@{}} && \!\!\!\!\sum\limits_{n=0}^{\infty}C_{3}\!\left( \!16\cdot 3^{2\alpha+1}\!\cdot\! 5^{2\beta+1} \!\cdot\! 7^{2\gamma}n+2\!\cdot\! 3^{2\alpha+1}\!\cdot\! 5^{2\beta+2}\!\cdot\! 7^{2\gamma}\!\right)q^{n} \equiv 4 (q^{5};q^{5})^{3}_{\infty}\! \pmod{8}, \end{array} $$
(3.26)
$$ \begin{array}{@{}rcl@{}} &&\!\!\!\! \sum\limits_{n=0}^{\infty}C_{3}\left( 16\cdot 3^{2\alpha+2}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+2\cdot 3^{2\alpha+3}\!\cdot\! 5^{2\beta}\!\cdot\! 7^{2\gamma}\right)q^{n} \equiv 4 (q^{3};q^{3})^{3}_{\infty}\! \pmod{8}, \end{array} $$
(3.27)
$$ \begin{array}{@{}rcl@{}} &&\!\!\!\! C_{3}\left( 16\cdot 3^{2\alpha+2}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right)\\ &\!\!\!\!\equiv& \left\{\begin{array}{lll} 4 \pmod{8} & \text{if}\ n=k(3k+1)/2\ \text{for some}\ k\in Z,\\ 0 \pmod{8} & \text{otherwise}. \end{array}\right. \end{array} $$
(3.28)

Proof

Extracting the terms involving q2n from (3.17) and replacing q2 by q,

$$ \sum\limits_{n=0}^{\infty}C_{3}(48n+6)q^{n} \equiv 4(q;q)^{3}_{\infty} \pmod{8}. $$
(3.29)

(3.29) is the α = β = γ = 0 case of (3.24). Let us consider the case β = γ = 0. Suppose that the congruence (3.24) holds for some integer α ≥ 0. Substituting (2.6) in (3.24) with β = γ = 0,

$$ \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+1}n+2\cdot 3^{2\alpha+1})q^{n} \equiv 4((q^{3};q^{3})_{\infty}+q(q^{9};q^{9})^{3}_{\infty}) \pmod{8}, $$

which implies,

$$ \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+2}n+2\cdot 3^{2\alpha+3})q^{n} \equiv 4(q^{3};q^{3})^{3}_{\infty} \pmod{8}. $$

Therefore

$$ \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+3}n+2\cdot 3^{2\alpha+3})q^{n} \equiv 4(q;q)^{3}_{\infty} \pmod{8}, $$

which implies that (3.24) is true for α + 1. Hence, by induction, (3.24) is true for any non-negative integer α and β = γ = 0. Let us consider the case γ = 0. Suppose that the congruence (3.24) holds for some integer α, β ≥ 0. Substituting (2.1) in (3.24), we have

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta})q^{n} \\ &\equiv& 4 (q^{25};q^{25})^{3}_{\infty} \left( a-q-q^{2}/a\right)^{3} \pmod{8}. \end{array} $$
(3.30)

Extracting the terms involving q5n+ 3 from (3.30), we have

$$ \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+1}\cdot 5^{2\beta+1}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta+2})q^{n} \equiv 4(q^{5};q^{5})^{3}_{\infty} \pmod{8}, $$

which yields

$$ \sum\limits_{n=0}^{\infty}C_{3}(16\cdot 3^{2\alpha+1}\cdot 5^{2\beta+2}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta+2})q^{n} \equiv 4(q;q)^{3}_{\infty} \pmod{8}. $$

This implies that (3.24) is true for β + 1. Hence, by induction, (3.24) is true for α,β ≥ 0 and γ = 0. Now, suppose that the congruence (3.24) holds for some integers α, β, and γ ≥ 0. Substituting (2.7) in (3.24), we find that

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{n=0}^{\infty}C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right)q^{n}\\ &\equiv& 4 (q^{49};q^{49})^{3}_{\infty} \left( \frac{B(q^{7})}{C(q^{7})}-q \frac{A(q^{7})}{B(q^{7})}-q^{2}+q^{5} \frac{C(q^{7})}{A(q^{7})}\right)^{3}\pmod{8}. \end{array} $$
(3.31)

Extracting the terms involving q7n+ 6 from (3.31), we get

$$ \sum\limits_{n=0}^{\infty}C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+1}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+2}\right)q^{n} \equiv 4(q^{7};q^{7})^{3}_{\infty} \pmod{8}, $$
(3.32)

which prove (3.25). Extracting the coefficient of q7n in (3.32), we arrive

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+2}n+2\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+2}\right)q^{n}\equiv 4(q;q)^{3}_{\infty} \pmod{8}, \end{array} $$

which implies that (3.24) is true for γ + 1. Hence, by induction, (3.24) is true for any non-negative integers α, β, and γ. This completes the proof. Substituting (2.1) in (3.24), we get (3.26). Substituting (2.6) in (3.24) and then extracting q3n+ 1 and q3n, we obtain (3.27) and (3.28), respectively. □

Corollary 1

For α, β, and γ ≥ 0, p ∈{30,46,62,78,94,110}, q ∈{34,66}, r ∈{26,42, 58,74}, and s ∈{22,38}, we have

$$ \begin{array}{@{}rcl@{}} C_{3}\left( 16\cdot 3^{2\alpha+2}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+34 \cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right) \equiv 0 \pmod{8},\\ C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+2}n+p \cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+2}\right)\equiv 0 \pmod{8},\\ C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma+1}n+q \cdot 3^{2\alpha+1}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right)\equiv 0 \pmod{8},\\ C_{3}\left( 16\cdot 3^{2\alpha+1}\cdot 5^{2\beta+2}\cdot 7^{2\gamma}n+r \cdot 3^{2\alpha+1}\cdot 5^{2\beta+1}\cdot 7^{2\gamma}\right)\equiv 0 \pmod{8},\\ C_{3}\left( 16\cdot 3^{2\alpha+3}\cdot 5^{2\beta}\cdot 7^{2\gamma}n+s \cdot 3^{2\alpha+2}\cdot 5^{2\beta}\cdot 7^{2\gamma}\right)\equiv 0 \pmod{8}. \end{array} $$

4 Congruence Modulo 5 for C5(n)

Theorem 4.1

For each n ≥ 0, we have

$$ \begin{array}{@{}rcl@{}} C_{5}(5n+3)&\equiv& 0\pmod{5}, \end{array} $$
(4.1)
$$ \begin{array}{@{}rcl@{}} C_{5}(5n+4)&\equiv& 0\pmod{5}, \end{array} $$
(4.2)
$$ \begin{array}{@{}rcl@{}} C_{5}(25n+21)&\equiv& 0\pmod{5}. \end{array} $$
(4.3)

Proof

Setting t = 5 in (1.1), we get

$$ \sum\limits_{n=0}^{\infty}C_{5}(n)q^{n}=\frac{(q^{5};q^{5})^{20}_{\infty} }{(q;q)^{4}_{\infty}}. $$
(4.4)

Using (2.2) in (4.4), we get

$$ \sum\limits_{n=0}^{\infty}C_{5}(n)q^{n}\equiv (q;q)_{\infty} (q^{5};q^{5})^{19}_{\infty} \pmod{5}. $$
(4.5)

Substituting (2.1) into (4.5), we have

$$ \sum\limits_{n=0}^{\infty}C_{5}(n)q^{n}\equiv (q^{5};q^{5})^{19}_{\infty} (q^{25};q^{25})_{\infty} \left( a-q-\frac{q^{2}}{a}\right) \pmod{5}. $$
(4.6)

Then, congruences (4.1) and (4.2) follow from (4.6).

Extracting the terms involving q5n+ 1 from (4.6), dividing by q and then replacing q5 by q,

$$ \sum\limits_{n=0}^{\infty}C_{5}(5n+1)q^{n}\equiv 4 (q;q)^{19}_{\infty} (q^{5};q^{5})_{\infty} \pmod{5}. $$
(4.7)

Invoking (2.2) in (4.7), one gets

$$ \sum\limits_{n=0}^{\infty}C_{5}(5n+1)q^{n}\equiv 4 (q;q)^{4}_{\infty} (q^{5};q^{5})^{4}_{\infty} \pmod{5}. $$
(4.8)

Again substituting (2.1) into (4.8), one gets

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}C_{5}(5n + 1)q^{n} & \equiv& 4a^{4}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} +4a^{3}q(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} \\ && +2aq^{3}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} +\frac{3q^{5}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} }{a} \\ && +\frac{3q^{6}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} }{a^{2}}+3a^{2}q^{2} (q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} \\ && +\frac{q^{7}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty} }{a^{3}}+\frac{4q^{8}(q^{5};q^{5})^{4}_{\infty} (q^{25};q^{25})^{4}_{\infty}}{a^{4}} \pmod{5}.\\ \end{array} $$
(4.9)

Congruence (4.3) easily follows from (4.9). □

5 Congruence Modulo 7 for C7(n)

Theorem 5.1

For each n ≥ 0, we have

$$ C_{7}(7n+6)\equiv 0 \pmod{7}. $$
(5.1)

Proof

Setting t = 7 in (1.1),

$$ \sum\limits_{n=0}^{\infty}C_{7}(n)q^{n}=\frac{(q^{7};q^{7})^{28}_{\infty}}{(q;q)^{4}_{\infty}}. $$
(5.2)

Invoking (2.2) in (5.2),

$$ \sum\limits_{n=0}^{\infty}C_{7}(n)q^{n}\equiv (q;q)^{3}_{\infty} (q^{7};q^{7})^{27}_{\infty} \pmod{7}. $$
(5.3)

Substituting (2.7) into (5.3), we get

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=0}^{\infty}\!C_{7}(n)q^{n} \!&\equiv& (q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{B(q^{7})^{3}}{C(q^{7})^{3}}+4q(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{B(q^{7})A(q^{7})}{C(q^{7})^{2}} \\ && +3q^{5}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49}\!;\!q^{49})^{3}_{\infty} \frac{B(q^{7})^{2}}{C(q^{7})A(q^{7})} + 3q^{2}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{A(q^{7})^{2}}{B(q^{7})C(q^{7})} \\ && +6q^{3}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{A(q^{7})}{C(q^{7})}+q^{7}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{B(q^{7})}{A(q^{7})} \\ && +3q^{10}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49}\!;\!q^{49})^{3}_{\infty} \frac{B(q^{7})C(q^{7})}{A(q^{7})^{2}} + 3q^{7}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49}\!;\!q^{49})^{3}_{\infty} \frac{A(q^{7})C(q^{7})}{B(q^{7})^{2}} \\ && +6q^{8}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{C(q^{7})}{B(q^{7})}+4q^{11}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{C(q^{7})^{2}}{A(q^{7})B(q^{7})}\\ && +3q^{9}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{C(q^{7})}{A(q^{7})}+4q^{12}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{C(q^{7})^{2}}{A(q^{7})^{2}} \\ && +q^{15}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{C(q^{7})^{3}}{A(q^{7})^{3}}+4q^{2}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{B(q^{7})^{2}}{C(q^{7})^{2}} \\ && +3q^{4}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{B(q^{7})}{C(q^{7})}+6q^{3}(q^{7};q^{7})^{27}_{\infty} (q^{49};q^{49})^{3}_{\infty} \frac{A(q^{7})^{3}}{B(q^{7})^{3}} \\ && +4q^{4}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49}\!;\!q^{49})^{3}_{\infty} \frac{A(q^{7})^{2}}{B(q^{7})^{2}} + 4q^{5}(q^{7}\!;\!q^{7})^{27}_{\infty} (q^{49}\!;\!q^{49})^{3}_{\infty} \frac{A(q^{7})}{B(q^{7})} \pmod{7}.\\ \end{array} $$
(5.4)

Congruence (5.1) now follows from (5.4). □

6 Congruence Modulo 5 for C25(n)

Theorem 6.1

For each n ≥ 0, we have

$$ \begin{array}{@{}rcl@{}} C_{25}(5n+3)&\equiv& 0\pmod{5},\\ C_{25}(5n+4)&\equiv& 0\pmod{5},\\ C_{25}(25n+21)&\equiv& 0\pmod{5}. \end{array} $$

Proof

Setting t = 25 in (1.1), we have

$$ \sum\limits_{n=0}^{\infty}C_{25}(n)q^{n}=\frac{(q^{25};q^{25})^{100}_{\infty} }{(q;q)^{4}_{\infty}}. $$

Using (2.2) in (4.4),

$$ \sum\limits_{n=0}^{\infty}C_{25}(n)q^{n}\equiv\frac{(q;q)_{\infty} (q^{25};q^{25})^{100}_{\infty}}{(q^{5};q^{5})_{\infty}} \pmod{5}. $$

The rest of the proof is similar to the proof of Theorem 4.1. Therefore, we omitted the details. □