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Abstract

Let C;(n) denote the number of partition quadruples of n with ¢-cores for r = 3, 5,7, 25.
We establish some Ramanujan type congruences modulo 5, 7, 8 for C;(n). For example,
n > 0, we have

Cs(5n+4) =0 (mod 5),
C7(7n+6) =0 (mod 7),
C3(l6n +14) = 0 (mod 8).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. The Ferrers-Young diagram of the partition A of n is obtained by arranging n
nodes in k left aligned rows so that the ith row has A; nodes. The nodes are labeled by
row and column coordinates as one would label the entries of a matrix. Let A’; denote the
number of nodes in column j. The hook number H (i, j) of the (i, j) node is defined as the
number of nodes directly below and to the right of the node including the node itself, i.e.,
H@,j)=A+ A;. — j—i+1. At-coreis a partition with no hook number that are divisible
by t.
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For example, the Ferrers-Young diagram of the partition » = (5, 3,2) of 10 is

The nodes (1, 1), (1, 2), (1, 3), (1, 4), (1,5), (2, 1), (2, 2), (2, 3), (3, 1), and (3, 2) have
hook numbers 7, 6, 4, 2, 1, 4, 3, 1, 2, and 1, respectively. Therefore, X is a z-core partition
fort = 5 and for all r > 8.

Let a;(n) be the number of partitions of n that are t-cores. Then, its generating function
is given by [4, Eq. (2.1)]

t
s

Ramanujan’s three famous congmences of p(n) are as follows:
pGn+4) =0 (mod5),
p(In+5) =0 (mod 7),
p(lln+6) =0 (mod I1).

In [5, 6], Hischhorn and Sellers have studied the 4-core partition (i.e., a4(n)) and estab-
lished some infinite families of arithmetic relations for a4(n). Baruah and Nath [1] have
proved some more infinite families of arithmetic identities for a4 (n).

A bipartition of n is a pair of partitions (A1, A2) such that the sum of all parts of A; and X,
equals n. A bipartition with ¢-core of # is a bipartition (A1, A7) of n such that A; and A, are
both 7-cores. Let A;(n) denote the number of bipartitions with ¢-cores of n. The generating
function for A, (n) is given by

o0 t. 1N\2t
> Atg" = LD
— (4 D5

Recently, Lin [8] has established some congruence and infinite families for A3(n). In [2],
Baruah and Nath have found three infinite families of A3(n).

A partition (A1, Ag, ..., At) of a positive integer n is a k-tuple of partitions such that the
sum of all the parts equals to n. A partition k-tuple of n with ¢-cores is a partition k-tuple
(A1, A2, ..., Ag) of n where each A; is t-core fori =1,2,3,...,k.

In 2015, Wang [10] has found several infinite families of arithmetic identities and
congruences for partition triples with ¢-cores.

Motivated by the above works, we define C;(n) to be the number of partition quadruples
of n with z-cores. The generating function is given by

_ (g%
C . 1.1
§j (g = (L.1)

In this paper, we establish several congruences modulo 5, 7, and 8 for C;(n). The main
results can be found in Theorems 3.2, 3.3, 4.1, and 5.1.

2 Preliminaries

In this section, we list some identities which play a vital role in proving our main results.
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For |ab| < 1, Ramanujan’s general theta function f(a, b) is defined as

o0
f(a,b) = Z "D/ 2pn=1/2

n=—o0

The product representation of f (a, b) arises from Jacobi’s triple product identity [3, p. 35,
Entry 19] as

fa,b) = (—a; ab) oo (—b; ab) oo (ab; ab) .

Some special cases of f(a, b), known as Ramanujan’s theta functions, are

0@ =10 = Y " =(4:¢)%@% D

> @% 4o
o 3 = 3 gtz 2 WD
Vi@ =1@.q) nzoq (q; qz)oo

and

f=q) = f(=q,—q") = Y (=1)"q¢"?" V"7 = (g; 9)on.

n=—0oo
Lemma 2.1 [9, p. 212] We have the following 5-dissection

(@; Do = @75 3% 0 (a—q—q2/a), 2.1)
where

@', 4" g0

a:=a(q) = —F——F5———-
@, 9% ¢*) oo

Lemma 2.2 For any prime p and positive integer n,
n n—1
@ D = (@5 gM%  (mod p"). 2.2)

Lemma 2.3 The following 2-dissections hold:

@ a3 (@i 4% q®% N (@' 9™, °3
@9 T @222 (g% g 9= 4 :
s q4)oo 4797 )s0\q "1 q )oo (q@%; 9% oo
@00 (0% qD0(@% 4%)00(q"%: 4" (@ 472,
(45 Doo (4% 4% (4% 430 (@'%: 400 (g5 ¢*) 0
(@% 4% (@®: 4%2.(a*: ¢*) 0

T4z 42)2.(q'% ¢'%) 00 (g% ¢*) oo @4
@103 _ @*aH@% g% a3
(7 D% (0% 49342 4% 00(@®*: 4*M o
4, 4 6. ,6\2 8. .8 24. 24
+2q(q 19)00(q7:4%)56(q°%; %) 00 (@75 g )oo. 2.5)

(4% 99%.(q"% ¢

Hirschhorn, Garvan, and Borwein [4] proved (2.3). Xia and Yao [12] gave a proof of (2.4)
and in [11], they also proved (2.5) by employing an addition formula for theta functions.

con
S 9 /Vi
R

Fu 4 Springer



798 M.S.M. Naika, S.S. Nayaka

Lemma 2.4 [3, p. 345, Entry 1 (iv)] We have the following 3-dissection

G0 = 4% 4% (g% g8 qg(q3;q3)§o(q‘8;q18)§o % O (26
T (@359 (q18; g1 (q% ¢93.q%; 473 e

Lemma 2.5 The following 3-dissection holds:

(q% 4%00(q”; 4%
(@3 4% oo(q"®: q'®)%,
0 @% ¢*)oo(q'%; g%

(q% 4%00(q°%; 4%)%

(@ 9)oo(q?: ¢Ho0 = — 4% ¢")0(q@' 4™

One can find this identity in [7].

Lemma 2.6 [3, 3, p. 303, Entry 17 (v)] We have

B@) _ AGH _ o 5C(q7)> @7

oy — (49 49 -
(@5 Do = (@34 oo (C(q7) TB7) Aq")

—q3,—g4 _g2 g5 —g. —gb
where A(q) := 7f(f(q_,qz)q ) B(q) := 7f(f(q_,qz)q ) and C(q) := 7f(f(q_’q2q) ),

In the following sections, with the aid of preliminary results, we prove our main results.

3 Congruence Modulo 8 for C3(n)

Theorem 3.1 For each n > 0, we have

iCz@n)q” _ (% q*18(q% ¢%8,
il (@ D3(a* aHd @' ¢k
24g 0% aH2% 4% (g% ¢©%
(q; 9%
L1647 (0% ¢33, aDHi @* gDt @' ¢

(@ D%, (g% q%)%

@% 992@% aH (4% ¢%) o +q(q3;q3)£ 3.1)
(q; D3 (q: %

@ ¢»H2% a3, q% ¢%)8,

(q: DL (g% aM3.(q'% D)3,

+244q

oo
Y Cildn+1Dg" =4

n=0
48 0% 435%@% aH3%@* 40 (@' 4"
(@ 93
2. .2 3. ,3\10,,4. 4 12. 12
+8q(q 18900(q7:47)00(@™ 4 )0 (@75 q )007 (.2)

(@: D% (4% 4%
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ic 4 42" — (@%: 4% 1)o@ 43,
’ T = G L@ a2 @ 422
n=0 s 4)oo\d > 00 ’ 00
HI@ a3 g% ghHi@!?
(@: 93 4% 4%
(4% g»8.(@% a8 (q% g%
(5 D% (g% M2 (q"%; ¢ D)2
(qZ. q2)2 3)8 4)2

(4% q 12)2,

+32q

12)2

2% 3 (q* qH2 (g = 33

(q: D3 (q% g%
iC3(4n PSPt i SURT WS C AT WS
= @ D% % 440 (@' ¢ )0
3@ a8 (g% M3 (g™
(a5 D)% (q% ¢%)3,
A (% 42 (q% 492 % g%
(@: D% M (q'%: )0

+244q

. 3
4% q g3,

+32q

(3.4)

Proof Setting t = 3 in (1.1), we have

o 3. 312 3. .33 \4
Z C3(n)qn — (q ’ q )OO — ((q ’ q )OO) . (3.5)
=0

(7;: )% (4 oo

Substituting (2.3) into (3.5), we get

ZC ( ) (q4. q4)12(q6. q6)8 (q4;q4)§o(q6; qﬁ)go

W= 2 8 (@12 gy, T (g% q%)8

n=0 ’ ? o0

N2(q% g% (g% i,
(% g%,

q12)8
o0

+6q2 (C] i q

6)§O(q12 q4 (ql
(q%: g% (g% g%

Extracting the even terms of the above equation, one obtains

2 12412
9 oo

6.
+4q3 (q”:q (3.6)

@%aH2@% DS | @ aH @ aDHE @b adh 5 q% %L
chw 5 oa 164 7 ta T
(q; 9)8,(q% g%)%, (45 (g 99)%

which yields

- L @2 (@3N
2 C3Cmg" = (9% g%% ( (a: D% )

2
(4% a¥)% 2@% 4% 5
(q: D% (g% gD% G7)
Substituting (2.5) into (3.7) and extracting the terms involving qzn and qz”“, we get (3.1)
and (3.3).

+64(q% 4P % (g% ¢%)% (
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From (3.6), one gets

00 2. .28 (3. ,3\6 3. .32 (,6. 68
= (@5 )6 (4; D%
which implies that
00 3. ,3)2 \3 3. .32
(g7597) (¢7597)
Y G2+ 1)g" =4(q% gHE, (q%q;”) +449(4°% ¢"% <q%q2°°) . (38
= (43 95 (4 D)5

Substituting (2.5) into (3.8) and extracting the even and odd terms of the above equation,
we obtain (3.2) and (3.4). O

Theorem 3.2 For eacha > 0 andn > 1, we have

C3(16n+14) = 0 (mod 8), (3.9)
C3(48n +30) = 0 (mod 8), (3.10)

( il 16-4“—4)
C3 (16" + ————) = C3dn)  (mod 8). (3.11)

Proof From (3.3), we have

00 2. .2\8 3. ,3\6 6. ,6\4
ZC3(4n+2)an6(q 1050(@7:a7)2(@°%5 475

(mod 8). (3.12)
= (@ DS aH% (@' ¢
Using (2.2) in (3.12), one gets
o0 3. .36 3. .3\2 \3
Csan+ 2" =69 )% _ (W) (oqs) (313
. 6 . 2
= (4 9)3 (4: D)5

Substituting (2.5) into (3.13), we have
(@* a12(q% 3. (¢'% ¢,
(q% 48B3 a®3. @ *H3,
. (@* gM2 (g% g9% (g% ¢' D)3
(4% g 2% 430 (@ ¢*H) oo

Extracting the terms involving q2"+1 from (3.14), dividing by ¢ and then replacing q2 by ¢,

o0
Y Cin+2)q" =6
n=0

(mod 8). (3.14)

(@% 49)2%@% adE (% g3,

d8). 3.15
(q: PR(g* M ("% ¢ (mod 8) G-19)

o.¢]
D CiBn+6)g" =4
n=0

Invoking (2.2) in (3.15), one obtains
o0
> C38n+6)q" =4(¢% q%3, (mod 8). (3.16)

n=0

Congruence (3.9) follows from (3.16).
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Congruences for Partition Quadruples with t-Cores 801

From (3.16), we have

o0
> C324n+6)g" =4(g*: ¢H)),  (mod 8). (3.17)
n=0

Congruence (3.10) easily follows from the above equation.
From (3.1), one gets

(% ¢*8q% ¢%8, @12

+ dg). (3.18
GO g @ g T g gy Med®) GI8)

(o)
Y Cin)g" =
n=0

Invoking (2.2) in (3.18), we have

- @ )%\
> C3(4n)g" = (4% 4 4 (7j °°> (mod 8). (3.19)
n=0 4 Do

Substituting (2.3) into the second term of (3.19) and extracting the odd terms of the required
equation

- Ca(n b D = @% a2 adHE, 6 (% 4% @5 2% gO%,
D Cr®n A" = o O @ )
n=0 » 4o \d > 00 » 4)0
6. ,6\12
2(q%:4°) 5
+q°———5 (mod 8). (3.20)
(q%; g%,

Using (2.2) in (3.20), one checks that

0 6. ,6\12
(9% 49”)
2 C3Bn+4)q" = (@ °)5 +64(4% 472" 4% +4° 5 75 (mod B).
n=0 979"
(3.21)
Extracting the terms involving g% from (3.21) and then replacing ¢> by ¢,
00 (q3 q3)12
> Ci16n +4)g" = (q: )%, + qﬁ (mod 8). (3.22)
s 400

n=0
Invoking (2.2) in (3.22), we have
4
(4 g3,

Y G316 +4)g" = (g% qM3 +q ( ) (mod 8). (3.23)
(45 @)oo

n=0
Using (3.23) and (3.19), one gets
C3(16n +4) = C3(4n) (mod 8).

By using mathematical induction on ¢, we obtain (3.11). (]

g
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802 M.S.M. Naika, S.S. Nayaka

Theorem 3.3 Fora, B, and y > 0, we have

3063M“ 5272 g0 32 §ﬂ7wyg—4@q) (mod 8), (3.24)
3063M+1§ﬂ7hﬂn+23m+1§ﬂ7”+§q =4(¢":¢7)3, (mod 8).(3.25)
3(1 L 320+1 §2p+1 72y L o 320 .52[3-0—2.72)/) ¢" = 4(q5; qs)go (mod 8),(3.26)

( 3””.§ﬂ7”n+2.¥“i§ﬁﬁﬁq"54@%q%; (mod 8), (3.27)

S HM8 HM8 ||M8 HMES

(16 32042 528 72, oo 32+l 528 _72y)

_ |4 (mod8) ifn =k3k+1)/2 for somek € Z, (3.28)
= 10 (mod 8) otherwise. )
Proof Extracting the terms involving ¢ from (3.17) and replacing ¢ by ¢,
o0
Z C3(48n + 6)q¢" = 4(q; q)?>O (mod 8). (3.29)

n=0

(3.29)isthe « = B = y = 0 case of (3.24). Let us consider the case 8 = y = 0. Suppose
that the congruence (3.24) holds for some integer @ > 0. Substituting (2.6) in (3.24) with

B=y =0,

o0
D G163 +2. 3% " = 4((¢%: ¢7)oo + 9(¢°: ¢7)3)  (mod B),
n=0

which implies,

oo
Y C3(16-3%F2n +2.3%F)g" = 4(g7 ¢7)3,  (mod B).
n=0

Therefore
o0
D C3(16-3% 0 +2.3%F) 4" = 4(g: q)}, (mod 8),
n=0

which implies that (3.24) is true for « + 1. Hence, by induction, (3.24) is true for any non-
negative integer o and § = y = 0. Let us consider the case y = 0. Suppose that the
congruence (3.24) holds for some integer «, § > 0. Substituting (2.1) in (3.24), we have

o0
ZC3(16 . 320{+l . 52/3” + 2. 32(X+l 3 SQﬁ)qn
n=0

E4wﬁmﬁﬂ4a—q—qhﬁ3 (mod 8). (3.30)

@ Springer i ms



Congruences for Partition Quadruples with t-Cores 803

Extracting the terms involving ¢°"*3 from (3.30), we have

o
Z C3(16 X 32()l+1 . 52ﬂ+1n + 2. 320(-‘1-1 . 52ﬂ+2)qﬂ = 4(q5, qS)go (mod 8),
n=0

which yields

o.¢]
> C3(16- 3% 5242 0 32 2642 an = 4(g: g)], (mod B).
n=0

This implies that (3.24) is true for 8+ 1. Hence, by induction, (3.24) is true for o, 8 > 0 and
y = 0. Now, suppose that the congruence (3.24) holds for some integers «, 8, and y > 0.
Substituting (2.7) in (3.24), we find that

o0
ZC3 (16 . 32a+1 . 52/3 . 72yn + 2. 320{+] . 52/3 . 72}/) qn
n=0

_ 49, 49\3 B(q7)_ A(q7)_ 2 5C(q7)
R (C(q?) TBan T T A

3
) (mod ). (3.31)

Extracting the terms involving ¢7"*¢ from (3.31), we get

o0
n=0
(3.32)
which prove (3.25). Extracting the coefficient of ¢”” in (3.32), we arrive

o0
Y ¢ (16 32l 528 7242, 4 o 32+l 526 72”2) ¢" =4(q; )3, (mod 8),
n=0

which implies that (3.24) is true for y + 1. Hence, by induction, (3.24) is true for any non-
negative integers «, 8, and y. This completes the proof. Substituting (2.1) in (3.24), we get
(3.26). Substituting (2.6) in (3.24) and then extracting ¢>**! and ¢3", we obtain (3.27) and
(3.28), respectively. O

Corollary 1 Fora, B, andy > 0, p € {30, 46, 62,78,94, 110}, g € {34, 66}, r € {26, 42,
58,74}, and s € {22, 38}, we have

Cs (16 32042 528 72y 4 34 32041 526 72V) =0 (mod8),

Cs (16 32l 528 242, 4 320D 528 .72V+2) =0 (mod 8),
Cs (16 32l 528 vl 4 g 32l 528 -72V) =0 (mod 8),
Cs (16 (32l 52642 72y 4y 320kl 52p+ -72V) =0 (mod8),

Cs (16 32043 528 2y o 3202 52P .727) =0 (mod 8).

Fu 4 Springer



804 M.S.M. Naika, S.S. Nayaka

4 Congruence Modulo 5 for Cs(n)

Theorem 4.1 For each n > 0, we have

Cs(5n+3) =0 (mod 5), 4.1)
Cs(5n+4) =0 (mod 5), (4.2)
Cs(25n4+21) = 0 (mod 5). 4.3)

Proof Setting t = 5in (1.1), we get

@ 4°)%
Z Csma" = = (44)
Using (2.2) in (4.4), we get
D Csmg" = (4 Doolg: 47 (mod 5). (4.5)
Substituting (2.1) into (4.5), we have
oo qz
Y Csmq" =% )04 %) (a —q- ;) (mod 5). (4.6)

Then, congruences (4.1) and (4.2) follow from (4.6).
Extracting the terms involving ¢>"*! from (4.6), dividing by ¢ and then replacing ¢°

by g,
o
D Cs5n+1)q" = 4(q; D@ ¢V)oo  (mod 5). (4.7)
n=0

Invoking (2.2) in (4.7), one gets

D Cs(5n+ 1)q" = 4(q; D@ 4z (mod 5). 48)
n=0

Again substituting (2.1) into (4.8), one gets

o0
D CsGnt1)g" = 4a* (4% 4% (07 4P + 4879 (q%: ¢7) (0P g
n=0

3¢°(q% ¢°)4 (a5 g%}
+2a4°(q°; ¢°)a (475 %)% + > o0
34°(@% )50 (@™ 474
+ % 2 +30°* (@7 )% 0P 4P
75;54 25’ 25\4 48 5;54 25 25\4
4 (q°; ¢ )023((1 q )ooJr q°(q°5 q );(q ) (mod 5).
(4.9)
Congruence (4.3) easily follows from (4.9). O

@ Springer i ms
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5 Congruence Modulo 7 for C7(n)
Theorem 5.1 For each n > 0, we have

C7(7Tn+6)=0 (mod 7). 5.1)

Proof Setting t = 7in (1.1),

7428
3 Crimgt = 00 (5.2)
= (45 Do
Invoking (2.2) in (5.2),
Y Crmg" = (45 @)% (@’ gD, (mod 7). (5.3)
Substituting (2.7) into (5.3), we get
_ 27¢ 49 49 q')’ 49. 493 B(g) A4
’;)Cﬂn)q @’ a"HZ )ooc( 7)3 +4q(q’;:q")2(q )0 T Cgh?
7\2 7\2
3¢5 g 49 B(q") AN 49 Alg)
+3¢°(q"q")2 (q™; )Ooic( TAWQ) a*(q.q"H¥ (q" )0073(617)“617)
6 493 A(q) 73 B(q")
+64°(q": 472 (¢* )°°C( 7 +47(q": )3 (q" )°°7A(q7)
B(q")C(q") 3 AlgHC)
+3¢"%(q"%q" 2 (q%:q*)} W+3q7(q7;q7)§l(q49;q49)2ow
7 C(q7)2
+643(7: 42 (¢%: 4% (Q)+ 1,17, 7
q°(q": 950 (g )ooB( 7 @’ qH3q" )00714( TB)
5.4
94T aH (Y ¢%) Cq") 12 727, 49, 493 Clg))?
+39°(q" 9 )5 )ooA( 7 +49"%(q": )% q )ooA(q7)2
5 49 cy’y’ )3 B(g")?
+4"(q": 42" )°°A( 73 +4q%(q": N2 (q® )°°C( gy
27,49, 49 B(q") 347 g2 (4% 49 3 Alg )’
+3¢*(q"; 4Nl q )ooC( 7)+6q (@395 )ooB(q7)3
'@ )% A a5 gL A (moa 7)
> B(q")? ’ *B(g") '
(5.5)
Congruence (5.1) now follows from (5.4). O

R
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6 Congruence Modulo 5 for Cy5(n)

Theorem 6.1 For each n > 0, we have

Cy»s(5n+3) =0 (mod 5),
Crs(5n+4) =0 (mod 5),
Cr5(25n +21) = 0 (mod 5).

Proof Setting t = 25 in (1.1), we have

o 25. 251100
G5 q7)
3 Costmygn = 424 e
= (45 D
Using (2.2) in (4.4),
0 . 25. 251100
Y Casnyg" = (‘1"1)“5(“ i )% (mod 5).
= (47 7)o
The rest of the proof is similar to the proof of Theorem 4.1. Therefore, we omitted the
details. O
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