1 Introduction and preliminaries

The idea of investigation of n-ary algebras, i.e. the sets with one n-ary operation, was given by Kasner [3]. In particular, n-ary semigroups are known as ternary semigroups for n = 3 with one associative operation [6]. Kerner [4] expressed many applications of ternary structures in physics. The concept of ideal in ternary semigroup was given by Sioson [7]. He also defined regular ternary semigroups. The properties of quasi-ideals and bi-ideals in ternary semigroups were studied by Dixit and Dewan [1].

Tamura [8] introduced the notion of a (right)left base of semigroup. Later, Fabrici described a semigroup structure containing one-sided bases [2]. Thongkam and Changphas [9] introduced the notion of left bases and right bases of a ternary semigroup. Kumoon and Changphas [5] introduced the concept of bi-bases in the semigroups and discussed some interesting results.

To start with, we need the following.

Definition 1.1

[6] A non-empty set S is called a ternary semigroup if there exists a ternary operation \( S \times S \times S \rightarrow S \), written as\( (x_{1}, x_{2}, x_{3}) \rightarrow [x_{1}x_{2}x_{3}] \), satisfying the following identity for any \( x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \) \(\in S,\)

$$\begin{aligned} {[[}x_{1}x_{2}x_{3}]x_{4}x_{5}] = [x_{1}[x_{2}x_{3}x_{4}]x_{5}] = [x_{1}x_{2}[x_{3}x_{4}x_{5}]].\ \end{aligned}$$

For non-empty subsets AB and C of a ternary semigroup S,

$$\begin{aligned}{}[ABC]:= \{[abc]: a \in A, b \in B \,{\textrm{and }}\, c \in C \}. \end{aligned}$$

If \( A =\{a\}\), then we write \([\{a\}BC] \) as [aBC] and similarly if \(B =\{b\} \) or \(C =\{c\}\), we write [AbC] and [ABc], respectively. Throughout the paper, we denote \( [x_{1}x_{2}x_{3}] \) by \( x_{1}x_{2}x_{3} \) and [ABC] as ABC.

Definition 1.2

[7] A non-empty subset B of a ternary semigroup S is called a ternary sub-semigroup of S, if \(BBB \subseteq B\).

Definition 1.3

[1] A non-empty subset B of a ternary semigroup S is called a bi-ideal of S if BSBSB \(\subseteq \) B.

Proposition 1.1

[1] Let B be a non-empty subset of a ternary semigroup S without identity. Then \(B \cup [BBB] \cup [BSBSB]\) is the smallest bi-ideal of S containing B.

Remark 1.1

In this paper, smallest bi-ideal of S containing B is denoted by \((B)_{b}\).

2 Main results

Definition 2.1

Let S be a ternary semigroup. A non-empty subset B of S is called a bi-base of S if it satisfies the following conditions:

  1. (1)

    \(S=(B)_{b}\) (i.e. \(S=B \cup BBB \cup BSBSB\));

  2. (2)

    If A is a subset of B such that \(S =(A)_{b}\), then \(A=B\).

Example 2.1

Let S = \(\{a, b, c, d\}\) with xyz = \((x \circ y) \circ z\), for all xyz \(\in \) S and a ternary operation, \('\circ '\) given by the following table:

figure a

Then S is a ternary semigroup. Let B = \(\{b, c, d\}\), then clearly \((B)_{b}\) = \(B\cup BBB\cup BSBSB\) = S and there is no proper subset A of B such that \(S=(A)_{b}\). This shows that B is a bi-base of S.

Theorem 2.1

If B is a bi-base of a ternary semigroup S and \(a, b \in B\) such that \(a\in bbb \cup bSbSb\), then \(a = b\).

Proof

Let B be a bi-base of a ternary semigroup S and \(a, b \in B\) such that \(a \in bbb\cup bSbSb\), and suppose that \(a \ne b\). Consider A = \({B}{\setminus } \{a\}\), then \(A\subseteq B\). Since \(a\ne b\), therefore \(b\in A\). Clearly, \((A)_{b}\subseteq S\). Let \(x\in S\), then by \(S=(B)_{b}\), we have \(x \in B \cup BBB \cup BSBSB\). Now, three cases arise:

Case 1: For an element \(x\in B\), we have two subcases

Subcase 1.1: If \(x \ne a\), then \(x \in B{\setminus } \{a\}=A\subseteq (A)_{b}\).

Subcase 1.2: If \(x=a\), then by assumption, we have \(x = a \in bbb\cup bSbSb\subseteq AAA\cup ASASA \subseteq (A)_{b}\).

Case 2: If \(x \in BBB\). Then for \(x=b_{1}b_{2}b_{3}\), for some \(b_{1},b_{2},b_{3}\in B\), we have eight subcases

Subcase 2.1: If \(b_{1} = a = b_{2} = b_{3}\). Then, by assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1} b_{2} b_{3}\\ &{}\in &{} (bbb \cup bSbSb)(bbb \cup bSbSb)(bbb \cup bSbSb) \\ &{}\subseteq &{} (AAA\cup ASASA)(AAA\cup ASASA)(AAA\cup ASASA )\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Subcase 2.2: If \(b_{1} \ne a\), \(b_{2} = a\), \(b_{3} = a\). Then, by assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1} b_{2} b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})(bbb\cup bSbSb)(bbb\cup bSbSb)\\ &{}=&{} ({B}{\setminus } \{a\}bbb\cup {B}{\setminus } \{a\}bSbSb)(bbb\cup bSbSb)\\ &{}=&{} {B}{\setminus } \{a\}bbbbbb\cup {B}{\setminus } \{a\}bbbbSbSb\cup {B}{\setminus } \{a\}bSbSbbbb\cup {B}{\setminus } \{a\}bSbSbbSbSb\\ &{}\subseteq &{} AAAAAAA\cup AAAASASA\cup AASASAAAA\cup AASASAASASA\\ &{}\subseteq &{} ASASA\subseteq (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 2.3 for \(b_{2}\ne a\), \(b_{1}=a\), \(b_{3}=a\) and subcase 2.4 for \(b_{3}\ne a\), \(b_{1}=a\), \(b_{2}=a\).

Subcase 2.5: If \(b_{1}\ne a\), \(b_{2}\ne a\), \(b_{3}=a\). Then, by assumption and \(A={B}{\setminus } \) \(\{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}b_{2}b_{3} \\ &{}\in &{} ({B}{\setminus } \{a\})({B}{\setminus } \{a\})(bbb\cup bSbSb)\\ &{}=&{} {B}{\setminus } \{a\}{B}{\setminus } \{a\}bbb\cup {B}{\setminus } \{a\}{B}{\setminus } \{a\}bSbSb\\ &{}\subseteq &{} AAAAA\cup AAASASA\\ &{}\subseteq &{} ASASA\\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 2.6 for \(b_{2}\ne a\), \(b_{3}\ne a\), \(b_{1}=a\) and subcase 2.7 for \(b_{1}\ne a\), \(b_{3}\ne a\), \(b_{2}=a\).

Subcase 2.8: If \(b_{1} \ne a\), \(b_{2}\ne a\) and \(b_{3}\ne a\). By assumption and for \(A={B} {\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}b_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})({B}{\setminus } \{a\})({B}{\setminus } \{a\})\\ &{}\subseteq &{} AAA\\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Case 3: If \(x\in BSBSB\). Then \(x=b_{1}s_{1}b_{2}s_{2}b_{3}\), for some \(b_{1},b_{2},b_{3}\in B\) and \(s_{1},s_{2}\in S\). Again, we have eight subcases.

Subcase 3.1: If \(b_{1} = a = b_{2} = b_{3}\). By assumption

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} (bbb\cup bSbSb)S(bbb\cup bSbSb)S(bbb\cup bSbSb)\\ &{}\subseteq &{} (AAA\cup ASASA)S(AAA\cup ASASA)S(AAA\cup ASASA )\\ &{}\subseteq &{} ASASA\\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Subcase 3.2: If \(b_{1} \ne a\), \(b_{2}=a\), \(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x&{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})S(bbb\cup bSbSb)S(bbb\cup bSbSb)\\ &{}=&{} ({B}{\setminus } \{a\}Sbbb\cup {B}{\setminus } \{a\}SbSbSb)S(bbb\cup bSbSb)\\ &{}=&{} {B}{\setminus } \{a\}SbbbSbbb\cup {B}{\setminus } \{a\}SbbbSbSbSb\cup {B}{\setminus } \{a\}SbSbSbSbbb \cup {B}{\setminus } \{a\}SbSbSbSbSbSb\\ &{}\subseteq &{} ASAAASAAA\cup AAAASASA\cup ASASASAAAA\cup ASASASASASASA\\ &{}\subseteq &{} ASASA\\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 3.3 for \(b_{2}\ne a\), \(b_{1}=a\), \(b_{3}=a\) and the subcase 3.4 for \(b_{3}\ne a\),\(b_{1}=a\), \(b_{2}=a\).

Subcase 3.5: If \(b_{1}\ne a\),\(b_{2}\ne a\),\(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})S({B}{\setminus } \{a\})S(bbb\cup bSbSb)\\ &{}=&{} {B}{\setminus } \{a\}S{B}{\setminus } \{a\}Sbbb\cup {B}{\setminus } \{a\}S{B}{\setminus } \{a\}SbSbSb\\ &{}\subseteq &{} ASASAAA\cup ASASASASA\\ &{}\subseteq &{} ASASA\\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 3.6 for \(b_{2}\ne a\), \(b_{3}\ne a\), \(b_{1}=a\) and subcase 3.7 for \(b_{1}\ne a\), \(b_{3}\ne a\), \(b_{2}=a\).

Subcase 3.8: If \(b_{1}\ne a\), \(b_{2}\ne a\) and \(b_{3}\ne a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})S({B}{\setminus } \{a\})S({B}{\setminus } \{a\})\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Thus in all cases \(x \in (A)_{b}\), it implies \((A)_{b}=S\), which is a contradiction, as B is a bi-base of S. Hence, we have \(a = b\) as required. \(\square \)

Theorem 2.2

Let B be a bi-base of a ternary semigroup S and \(a, b, c, d \in B\) such that \(a\in bcd\cup bScSd\), then \(a=b\) or \(a=c\) or \(a=d\).

Proof

Assume that \(a\in bcd\cup bScSd\) and if possible \(a\ne b\), \(a\ne c\) and \(a\ne d\). Consider A = \({B} {\setminus } \{a\}\), then \(A\subseteq B\). Since \(a\ne b\), \(a\ne c\) and \(a\ne d\), we have \(b, c, d \in A\). Therefore \((A)_{b}\subseteq S\). Let \(x\in S\). Then, by \(S=(B)_{b}\), we have \(x\in B\cup BBB\cup BSBSB\). Now, three cases arise:

Case 1: For \(x \in B\), we have two subcases

Subcase 1.1: If \(x \ne a\), then by assumption \(x\in {B} {\setminus } \{a\}=A \subseteq (A)_{b}\).

Subcase 1.2: If \(x = a\), then by hypothesis \(x = a \in bcd\cup bScSd\) \(\subseteq \) AAA \(\cup \) ASASA \(\subseteq \) \((A)_{b}\).

Case 2: If \(x \in BBB\). Then \(x = b_{1}b_{2}b_{3}\), for some \(b_{1}, b_{2}, b_{3} \in B\). Now, we have eight subcases

Subcase 2.1: If \(b_{1} = a = b_{2} = b_{3}\). By assumption and \(A=B {\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}b_{2}b_{3}\\ &{}\in &{} (bcd\cup bScSd)(bcd\cup bScSd)(bcd\cup bScSd)\\ &{}\subseteq &{} (AAA\cup ASASA)(AAA\cup ASASA)(AAA\cup ASASA )\\ &{}\subseteq &{} ASASA \\ &{} \subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Subcase 2.2: If \(b_{1}\ne a\), \(b_{2}=a\), \(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}b_{2}b_{3}\in ({B}{\setminus } \{a\})(bcd\cup bScSd)(bcd\cup bScSd)\\ &{}=&{} ({B}{\setminus } \{a\}bcd\cup {B}{\setminus } \{a\}bScSd)(bcd\cup bScSd)\\ &{}=&{} {B}{\setminus } \{a\}bcdbcd \cup {B}{\setminus } \{a\}bcdbScSd\cup {B}{\setminus } \{a\}bScSdbcd\cup {B}{\setminus } \{a\}bScSdbScSd\\ &{}\subseteq &{} AAAAAAA\cup AAAASASA\cup AASASAAAA\cup AASASAASASA\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 2.3 for \(b_{2}\ne a\), \(b_{1}=a\), \(b_{3}=a\) and subcase 2.4 for \(b_{3}\ne a\), \(b_{1}=a\), \(b_{2}=a\).

Subcase 2.5: If \(b_{1}\ne a\), \(b_{2}\ne a\), \(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}b_{2}b_{3}\in ({B}{\setminus } \{a\})({B}{\setminus } \{a\})(bcd\cup bScSd)\\ &{}=&{} {B}{\setminus } \{a\}{B}{\setminus } \{a\}bcd\cup {B}{\setminus } \{a\}{B}{\setminus } \{a\}bScSd\\ &{}\subseteq &{} AAAAA \cup AAASASA\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 2.6 for \(b_{2}\ne a\), \(b_{3}\ne a\), \(b_{1}=a\) and the subcase 2.7 for \(b_{1}\ne a\), \(b_{3}\ne a\), \(b_{2}=a\).

Subcase 2.8: If \(b_{1}\ne a\), \(b_{2}\ne a\) and \(b_{3}\ne a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x&{}=&{} b_{1}b_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})({B}{\setminus } \{a\})({B}{\setminus } \{a\})\\ &{}\subseteq &{} AAA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Case 3: If \(x\in BSBSB\). Then \(x = b_{1}s_{1}b_{2}s_{2}b_{3}\), for some \(b_{1},b_{2},b_{3}\in B\) and \(s_{1},s_{2}\in S\). Again, we have eight subcases

Subcase 3.1: If \(b_{1} = a = b_{2} = b_{3}\). By assumption, we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} (bcd\cup bScSd)S(bcd\cup bScSd)S(bcd\cup bScSd)\\ &{}\subseteq &{} (AAA\cup ASASA)S(AAA\cup ASASA)S(AAA\cup ASASA )\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Subcase 3.2: If \(b_{1}\ne a\), \(b_{2}=a\), \(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3} \\ &{}\in &{}({B}{\setminus } \{a\})S(bcd\cup bScSd)S(bcd\cup bScSd)\\ &{}=&{} ({B}{\setminus } \{a\}Sbcd\cup {B}{\setminus } \{a\}SbScSd)S(bcd\cup bScSd)\\ &{}=&{} {B}{\setminus } \{a\}SbcdSbcd\cup {B}{\setminus } \{a\}SbcdSbScSd\cup {B}{\setminus } \{a\}SbScSdSbcd\cup {B}{\setminus } \{a\}SbScSdSbScSd\\ &{}\subseteq &{} ASAAASAAA\cup AAAASASA\cup ASASASAAAA\cup ASASASASASASA\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 3.3 for \(b_{2}\ne a\), \(b_{1}=a\), \(b_{3}=a\) and subcase 3.4 for \(b_{3}\ne a\),\(b_{1}=a\), \(b_{2}=a\).

Subcase 3.5: If \(b_{1}\ne a\), \(b_{2}\ne a\), \(b_{3}=a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x &{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\in ({B}{\setminus } \{a\})S({B}{\setminus } \{a\})S(bcd\cup bScSd)\\ &{}=&{} {B}{\setminus } \{a\}S{B}{\setminus } \{a\}Sbcd\cup {B}{\setminus } \{a\}S{B}{\setminus } \{a\}SbScSd\\ &{}\subseteq &{} ASASAAA\cup ASASASASA\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Similarly, we can prove the subcase 3.6 for \(b_{2}\ne a\), \(b_{3}\ne a\), \(b_{1}=a\) and subcase 3.7 for \(b_{1}\ne a\), \(b_{3}\ne a\), \(b_{2}=a\).

Subcase 3.8: If \(b_{1}\ne a\), \(b_{2}\ne a\) and \(b_{3}\ne a\). By assumption and \(A={B}{\setminus } \{a\}\), we have

$$\begin{aligned} \begin{array}{lll} x&{}=&{} b_{1}s_{1}b_{2}s_{2}b_{3}\\ &{}\in &{} ({B}{\setminus } \{a\})S({B}{\setminus } \{a\})S({B}{\setminus } \{a\})\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Thus in all cases x \(\in \) \((A)_{b}\). It follows that \((A)_{b}=S\), which is a contradiction as B is a bi-base S. Hence, \(a=b\) or \(a=c\) or \(a=d\). \(\square \)

Definition 2.2

Let S be a ternary semigroup.Then a quasi-order on S is defined as \(a\leqslant _{b} b\) \(\Leftrightarrow (a)_{b}\subseteq (b)_{b}\) for any \(a, b\in S\).

Theorem 2.3

Let B be a bi-base of a ternary semigroup S. Then \(a\leqslant _{b} b\), \(a\leqslant _{b} c\) and \(b\leqslant _{b} c\) if and only if \(a=b=c\) for any \(a, b, c \in S\).

Proof

It is straightforward. \(\square \)

Theorem 2.4

Let B be a bi-base of a ternary semigroup S such that \(a, b, c, d \in B\) and \(s \in S\), then following statements are true:

  1. (1)

    If \(a \in bcd \cup bcdbcdbcd \cup bcdSbcdSbcd\), then \(a=b\) or \(a=c\) or \(a=d\).

  2. (2)

    If \(a\in bscsd\cup bscsdsbscsdsbscsd \cup bscsdSbscsdSbscd\), then \(a=b\) or \(a=c\) or \(a=d\).

Proof

(1) Assume that \(a \in bcd\cup bcdbcdbcd \cup bcdSbcdSbcd\) and suppose that \(a\ne b\), \(a\ne c\) and \(a\ne d\). Let \(A={B}{\setminus } \{a\}\). Then \(A\subseteq B\). Since \(a\ne b\), \(a\ne c\) and \(a\ne d\), we have \(b, c, d \in A\). We show that \(B \subseteq (A)_{b}\). Let \(x\in B\) and if \(x\ne a\), then \(x\in A\), and so \(x\in (A)_{b}\). If \(x=a\) then by assumption, we have

$$\begin{aligned} \begin{array}{lll} x &{}\in &{} bcd\cup bcdbcdbcd \cup bcdSbcdSbcd\\ &{}\subseteq &{} AAA\cup AAAAAAAAA\cup AAASAAASAAA\\ &{}\subseteq &{} ASASA \\ &{}\subseteq &{} (A)_{b}. \end{array} \end{aligned}$$

Thus \(B\subseteq (A)_{b}\). This implies that \((B)_{b}\subseteq (A)_{b}\). Since B is a bi-base of S, therefore \(S=(B)_{b}\subseteq (A)_{b}\subseteq S\). It implies \(S=(A)_{b}\), which is a contradiction. Hence \(a=b\) or \(a=c\) or \(a=d\).

(2) The proof is similar to (1). \(\square \)

Theorem 2.5

Let B be a bi-base of a ternary semigroup S. Then the following statements are true:

  1. (1)

    For any \(a, b, c, d \in B\) if \(a\ne b\), \(a\ne c\) and \(a\ne d\) then \(a\nleq _{b}bcd\).

  2. (2)

    For any \(a, b, c, d \in B\) and \(s\in S\), if \(a\ne b\), \(a\ne c\) and \(a\ne d\), then \(a\nleq _{b}bscsd\).

Proof

(1) For any \(a, b, c, d \in B\), let \(a\ne b\), \(a\ne c\) and \(a\ne d\). Suppose that \(a\leqslant _{b}bcd\), we have

$$\begin{aligned} \begin{array}{lll} a &{}\subseteq &{} (a)_{b} \\ &{}\subseteq &{} (bcd)_{b} \\ &{}=&{} bcd\cup bcdbcdbcd \cup bcdSbcdSbcd. \end{array} \end{aligned}$$

By Theorem 2.4(1), it follows that \(a=b\) or \(a=c\) or \(a=d\). This contradict the assumption. Hence \(a\nleq _{b}bcd\).

(2) The proof is similar to (1). \(\square \)

Theorem 2.6

A non-empty subset B of a ternary semigroup S is a bi-base of S if and only if it satisfies the following conditions

  1. (1)

    For any \(x\in S\),

    1. (a)

      there exists \(b\in B\) such that \(x\leqslant _{b} b\),

    2. (b)

      there exists \(b_{1},b_{2},b_{3}\in B\) such that \(x\leqslant _{b} b_{1}b_{2}b_{3}\),

    3. (c)

      there exists \(b_{1},b_{2},b_{3}\in B\), \(s\in S\) such that \(x\leqslant _{b} b_{1}sb_{2}sb_{3}\).

  2. (2)

    For any \(a, b, c, d \in B\), let \(a\ne b\), \(a\ne c\) and \(a\ne d\), then \(a\nleq _{b}bcd\).

  3. (3)

    For any \(a, b, c, d \in B\) and \(s\in S\), let \(a\ne b\), \(a\ne c\) and \(a\ne d\), then \(a\nleq _{b}bscsd\).

Proof

Suppose that B is a bi-base of S, then \(S=(B)_{b}\). To prove (1), let \(x\in S\), it implies \(x\in B\cup BBB\cup BSBSB\). Now, three cases arise:

Case 1: If \(x\in B\). Then, \(x=b\), for some \(b\in B\). This implies \((x)_{b}\subseteq (b)_{b}\). Hence \(x\leqslant _{b} b\).

Case 2: If \(x\in BBB\), then \(x = b_{1}b_{2}b_{3}\), for some \(b_{1}, b_{2}, b_{3} \in B\). It implies \((x)_{b}\subseteq (b_{1}b_{2}b_{3})_{b}\). Hence, \(x\leqslant _{b} b_{1}b_{2}b_{3}\).

Case 3: If \(x \in BSBSB\), then \(x=b_{1}sb_{2}sb_{3}\) for some \(b_{1}, b_{2}, b_{3} \in B\) and \(s\in S\). It implies \((x)_{b}\subseteq (b_{1}sb_{2}sb_{3})_{b}\). Hence \(x\leqslant _{b} b_{1}sb_{2}sb_{3}\). Proofs of (2) and (3) are similar to the Theorem 2.5.

Conversely, suppose that (1), (2) and (3) holds. Then, we have to prove that B is a bi-base of S. Clearly \((B)_{b}\subseteq S\) and by (1) \(S\subseteq (B)_{b}\) and so \(S=(B)_{b}\). Now, it remains to show that B is minimal subset of S. Suppose that \(S=(A)_{b}\) for some \(A\subseteq B\). Since \(A\subseteq B\), there exists \(b\in {B}{\setminus } A\). Since \(b\in B\subseteq S=(A)_{b}\) and \(b\notin A\), it implies \(b\in AAA\cup ASASA\). Now, two cases arise:

Case 1: If \(b\in AAA\), then \(b = a_{1}a_{2}a_{3}\), for some \(a_{1}, a_{2}, a_{3}\in A\). As \(b\notin A\) so, \(b\ne a_{1}\), \(b\ne a_{2}\) and \(b\ne a_{3}\). It implies \(a_{1}, a_{2}, a_{3}\in A\). Since \(b=a_{1}a_{2}a_{3}\), so \((b)_{b}\subseteq (a_{1}a_{2}a_{3})_{b}\). It follows that \(b\leqslant _{b} a_{1}a_{2}a_{3}\) which contradict (2). Hence B is minimal subset of S such that \((B)_{b}=S\).

Case 2: If \(b\in ASASA\), then \(b = a_{1}sa_{2}sa_{3}\), for some \(a_{1},a_{2},a_{3}\in A\) and \(s\in S\). As \(b\notin A\) so, \(b\ne a_{1}\), \(b\ne a_{2}\) and \(b\ne a_{3}\). It implies \(a_{1},a_{2},a_{3}\in A\). Since \(b = a_{1}sa_{2}sa_{3}\), therefore \((b)_{b}\subseteq (a_{1}sa_{2}sa_{3})_{b}\).

Thus, \(b\leqslant _{b} a_{1}sa_{2}sa_{3}\) which contradict (3). Thus there exists no proper subset A of B such that \((A)_{b}=S\). Hence, B is bi-base of S. \(\square \)