A study of bi-bases of ternary semigroups

Akbar Ali¹ · Sabahat Ali Khan¹ · Mohammad Yahya Abbasi¹

Received: 1 February 2019 / Accepted: 11 January 2024 / Published online: 30 January 2024 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024

Abstract

In this paper, we introduce the bi-bases of a ternary semigroup. The results of this paper are based on the bi-ideals generated by a non-empty subset of a ternary semigroup. Moreover, we define the quasi-order relation of a ternary semigroup and study some of their interesting properties.

Keywords Ternary semigroup · Bi-bases · Bi-ideal

Mathematics Subject Classification 20M12 · 20N99

1 Introduction and preliminaries

The idea of investigation of n-ary algebras, i.e. the sets with one n-ary operation, was given by Kasner [3]. In particular, n-ary semigroups are known as ternary semigroups for n=3 with one associative operation [6]. Kerner [4] expressed many applications of ternary structures in physics. The concept of ideal in ternary semigroup was given by Sioson [7]. He also defined regular ternary semigroups. The properties of quasi-ideals and bi-ideals in ternary semigroups were studied by Dixit and Dewan [1].

Tamura [8] introduced the notion of a (right)left base of semigroup. Later, Fabrici described a semigroup structure containing one-sided bases [2]. Thongkam and Changphas [9] introduced the notion of left bases and right bases of a ternary semigroup. Kumoon and Changphas [5] introduced the concept of bi-bases in the semigroups and discussed some interesting results.

To start with, we need the following.

Definition 1.1 [6] A non-empty set S is called a ternary semigroup if there exists a ternary operation $S \times S \times S \rightarrow S$, written $as(x_1, x_2, x_3) \rightarrow [x_1x_2x_3]$, satisfying the following

 Mohammad Yahya Abbasi mabbasi@jmi.ac.in
 Akbar Ali akbarali.math@gmail.com
 Sabahat Ali Khan khansabahat361@gmail.com

¹ Department of Mathematics, Jamia Millia Islamia, New Delhi 110 025, India

identity for any $x_1, x_2, x_3, x_4, x_5 \in S$,

$$[[x_1x_2x_3]x_4x_5] = [x_1[x_2x_3x_4]x_5] = [x_1x_2[x_3x_4x_5]].$$

For non-empty subsets A, B and C of a ternary semigroup S,

 $[ABC] := \{[abc] : a \in A, b \in B \text{ and } c \in C\}.$

If $A = \{a\}$, then we write $[\{a\}BC]$ as [aBC] and similarly if $B = \{b\}$ or $C = \{c\}$, we write [AbC] and [ABc], respectively. Throughout the paper, we denote $[x_1x_2x_3]$ by $x_1x_2x_3$ and [ABC] as ABC.

Definition 1.2 [7] A non-empty subset B of a ternary semigroup S is called a ternary subsemigroup of S, if $BBB \subseteq B$.

Definition 1.3 [1] A non-empty subset *B* of a ternary semigroup *S* is called a bi-ideal of *S* if $BSBSB \subseteq B$.

Proposition 1.1 [1] Let B be a non-empty subset of a ternary semigroup S without identity. Then $B \cup [BBB] \cup [BSBSB]$ is the smallest bi-ideal of S containing B.

Remark 1.1 In this paper, smallest bi-ideal of S containing B is denoted by $(B)_b$.

2 Main results

Definition 2.1 Let *S* be a ternary semigroup. A non-empty subset *B* of *S* is called a bi-base of *S* if it satisfies the following conditions:

- (1) $S = (B)_b$ (i.e. $S = B \cup BBB \cup BSBSB$);
- (2) If A is a subset of B such that $S = (A)_b$, then A = B.

Example 2.1 Let $S = \{a, b, c, d\}$ with $xyz = (x \circ y) \circ z$, for all $x, y, z \in S$ and a ternary operation, ' \circ ' given by the following table:

0	a	b	с	d
a	a	а	а	а
b	a	а	а	а
c	a	а	b	b
d	a	а	b	b

Then *S* is a ternary semigroup. Let $B = \{b, c, d\}$, then clearly $(B)_b = B \cup BBB \cup BSBSB = S$ and there is no proper subset *A* of *B* such that $S = (A)_b$. This shows that *B* is a bi-base of *S*.

Theorem 2.1 If B is a bi-base of a ternary semigroup S and $a, b \in B$ such that $a \in bbb \cup bSbSb$, then a = b.

Proof Let *B* be a bi-base of a ternary semigroup *S* and *a*, *b* \in *B* such that $a \in bbb \cup bSbSb$, and suppose that $a \neq b$. Consider $A = B \setminus \{a\}$, then $A \subseteq B$. Since $a \neq b$, therefore $b \in A$. Clearly, $(A)_b \subseteq S$. Let $x \in S$, then by $S = (B)_b$, we have $x \in B \cup BBB \cup BSBSB$. Now, three cases arise:

Case 1: For an element $x \in B$, we have two subcases

🖄 Springer

Subcase 1.1: If $x \neq a$, then $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: If x = a, then by assumption, we have $x = a \in bbb \cup bSbSb \subseteq AAA \cup ASASA \subseteq (A)_b$.

Case 2: If $x \in BBB$. Then for $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$, we have eight subcases Subcase 2.1: If $b_1 = a = b_2 = b_3$. Then, by assumption and $A = B \setminus \{a\}$, we have

 $\begin{aligned} x &= b_1 b_2 b_3 \\ &\in (bbb \cup bSbSb)(bbb \cup bSbSb)(bbb \cup bSbSb) \\ &\subseteq (AAA \cup ASASA)(AAA \cup ASASA)(AAA \cup ASASA) \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$

Subcase 2.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. Then, by assumption and $A = B \setminus \{a\}$, we have

 $\begin{aligned} x &= b_1 b_2 b_3 \\ &\in (B \setminus \{a\})(bbb \cup bSbSb)(bbb \cup bSbSb) \\ &= (B \setminus \{a\}bbb \cup B \setminus \{a\}bSbSb)(bbb \cup bSbSb) \\ &= B \setminus \{a\}bbbbbb \cup B \setminus \{a\}bbbbSbSb \cup B \setminus \{a\}bSbSbbbb \cup B \setminus \{a\}bSbSbbSbSb \\ &\subseteq AAAAAAA \cup AAAASASA \cup AASASAAAA \cup AASASAASASA \\ &\subseteq ASASA \subseteq (A)_b. \end{aligned}$

Similarly, we can prove the subcase 2.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 2.4 for $b_3 \neq a$, $b_1 = a$, $b_2 = a$.

Subcase 2.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. Then, by assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 b_2 b_3 \\ &\in (B \setminus \{a\}) (B \setminus \{a\}) (bbb \cup bSbSb) \\ &= B \setminus \{a\} B \setminus \{a\} bbb \cup B \setminus \{a\} B \setminus \{a\} bSbSb \\ &\subseteq AAAAA \cup AAASASA \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$$

Similarly, we can prove the subcase 2.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 2.7 for $b_1 \neq a$, $b_3 \neq a$, $b_2 = a$.

Subcase 2.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and for $A = B \setminus \{a\}$, we have

$$x = b_1 b_2 b_3$$

$$\in (B \setminus \{a\})(B \setminus \{a\})(B \setminus \{a\})$$

$$\subseteq AAA$$

$$\subseteq (A)_b.$$

Case 3: If $x \in BSBSB$. Then $x = b_1s_1b_2s_2b_3$, for some $b_1, b_2, b_3 \in B$ and $s_1, s_2 \in S$. Again, we have eight subcases.

Subcase 3.1: If $b_1 = a = b_2 = b_3$. By assumption

 $\begin{aligned} x &= b_1 s_1 b_2 s_2 b_3 \\ &\in (bbb \cup bSbSb) S(bbb \cup bSbSb) S(bbb \cup bSbSb) \\ &\subseteq (AAA \cup ASASA) S(AAA \cup ASASA) S(AAA \cup ASASA) \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$

Subcase 3.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

- $x = b_1 s_1 b_2 s_2 b_3$
 - $\in (B \setminus \{a\}) S(bbb \cup bSbSb) S(bbb \cup bSbSb)$
 - $= (B \setminus \{a\}Sbbb \cup B \setminus \{a\}SbSbSb)S(bbb \cup bSbSb)$

 - $\subseteq ASASA$
 - $\subseteq (A)_b.$

Similarly, we can prove the subcase 3.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and the subcase 3.4 for $b_3 \neq a, b_1 = a, b_2 = a$.

Subcase 3.5: If $b_1 \neq a, b_2 \neq a, b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

 $\begin{aligned} x &= b_1 s_1 b_2 s_2 b_3 \\ &\in (B \setminus \{a\}) S(B \setminus \{a\}) S(bbb \cup bSbSb) \\ &= B \setminus \{a\} SB \setminus \{a\} Sbbb \cup B \setminus \{a\} SB \setminus \{a\} SbSbSb \\ &\subseteq ASASAAA \cup ASASASASA \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$

Similarly, we can prove the subcase 3.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 3.7 for $b_1 \neq a$, $b_3 \neq a$, $b_2 = a$.

Subcase 3.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$x = b_1 s_1 b_2 s_2 b_3$$

$$\in (B \setminus \{a\}) S(B \setminus \{a\}) S(B \setminus \{a\})$$

$$\subseteq ASASA$$

$$\subseteq (A)_b.$$

Thus in all cases $x \in (A)_b$, it implies $(A)_b = S$, which is a contradiction, as B is a bi-base of S. Hence, we have a = b as required.

Theorem 2.2 Let B be a bi-base of a ternary semigroup S and $a, b, c, d \in B$ such that $a \in bcd \cup bScSd$, then a = b or a = c or a = d.

Proof Assume that $a \in bcd \cup bScSd$ and if possible $a \neq b$, $a \neq c$ and $a \neq d$. Consider $A = B \setminus \{a\}$, then $A \subseteq B$. Since $a \neq b$, $a \neq c$ and $a \neq d$, we have $b, c, d \in A$. Therefore $(A)_b \subseteq S$. Let $x \in S$. Then, by $S = (B)_b$, we have $x \in B \cup BBB \cup BSBSB$. Now, three cases arise:

Case 1: For $x \in B$, we have two subcases

Subcase 1.1: If $x \neq a$, then by assumption $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: If x = a, then by hypothesis $x = a \in bcd \cup bScSd \subseteq AAA \cup ASASA \subseteq (A)_b$.

Case 2: If $x \in BBB$. Then $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$. Now, we have eight subcases

Subcase 2.1: If $b_1 = a = b_2 = b_3$. By assumption and $A = B \setminus \{a\}$, we have

 $\begin{aligned} x &= b_1 b_2 b_3 \\ &\in (bcd \cup bScSd)(bcd \cup bScSd)(bcd \cup bScSd) \\ &\subseteq (AAA \cup ASASA)(AAA \cup ASASA)(AAA \cup ASASA) \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$

🖉 Springer

$$\begin{aligned} x &= b_1 b_2 b_3 \in (B \setminus \{a\})(bcd \cup bScSd)(bcd \cup bScSd) \\ &= (B \setminus \{a\}bcd \cup B \setminus \{a\}bScSd)(bcd \cup bScSd) \\ &= B \setminus \{a\}bcdbcd \cup B \setminus \{a\}bcdbScSd \cup B \setminus \{a\}bScSdbcd \cup B \setminus \{a\}bScSdbScSd \\ &\subseteq AAAAAAA \cup AAAASASA \cup AASASAAAA \cup AASASAASASA \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$$

Similarly, we can prove the subcase 2.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 2.4 for $b_3 \neq a$, $b_1 = a$, $b_2 = a$.

Subcase 2.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 b_2 b_3 \in (B \setminus \{a\}) (B \setminus \{a\}) (bcd \cup bScSd) \\ &= B \setminus \{a\} B \setminus \{a\} bcd \cup B \setminus \{a\} B \setminus \{a\} bScSd \\ &\subseteq AAAAA \cup AAASASA \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$$

Similarly, we can prove the subcase 2.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and the subcase 2.7 for $b_1 \neq a$, $b_3 \neq a$, $b_2 = a$.

Subcase 2.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 b_2 b_3 \\ &\in (B \setminus \{a\})(B \setminus \{a\})(B \setminus \{a\}) \\ &\subseteq AAA \\ &\subseteq (A)_b. \end{aligned}$$

Case 3: If $x \in BSBSB$. Then $x = b_1s_1b_2s_2b_3$, for some $b_1, b_2, b_3 \in B$ and $s_1, s_2 \in S$. Again, we have eight subcases

Subcase 3.1: If $b_1 = a = b_2 = b_3$. By assumption, we have

 $\begin{aligned} x &= b_1 s_1 b_2 s_2 b_3 \\ &\in (bcd \cup bScSd) S(bcd \cup bScSd) S(bcd \cup bScSd) \\ &\subseteq (AAA \cup ASASA) S(AAA \cup ASASA) S(AAA \cup ASASA) \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$

Subcase 3.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

Similarly, we can prove the subcase 3.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 3.4 for $b_3 \neq a, b_1 = a, b_2 = a$.

🖄 Springer

Subcase 3.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 s_1 b_2 s_2 b_3 \in (B \setminus \{a\}) S(B \setminus \{a\}) S(bcd \cup bScSd) \\ &= B \setminus \{a\} SB \setminus \{a\} Sbcd \cup B \setminus \{a\} SB \setminus \{a\} SbScSd \\ &\subseteq ASASAAA \cup ASASASASA \\ &\subseteq ASASA \\ &\subseteq (A)_b. \end{aligned}$$

Similarly, we can prove the subcase 3.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 3.7 for $b_1 \neq a, b_3 \neq a, b_2 = a.$

Subcase 3.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$x = b_1 s_1 b_2 s_2 b_3$$

$$\in (B \setminus \{a\}) S(B \setminus \{a\}) S(B \setminus \{a\})$$

$$\subseteq ASASA$$

$$\subset (A)_b.$$

Thus in all cases $x \in (A)_b$. It follows that $(A)_b = S$, which is a contradiction as B is a bi-base S. Hence, a = b or a = c or a = d.

Definition 2.2 Let S be a ternary semigroup. Then a quasi-order on S is defined as $a \leq_b b$ $\Leftrightarrow (a)_b \subseteq (b)_b$ for any $a, b \in S$.

Theorem 2.3 Let B be a bi-base of a ternary semigroup S. Then $a \leq_b b$, $a \leq_b c$ and $b \leq_b c$ if and only if a = b = c for any $a, b, c \in S$.

Proof It is straightforward.

Theorem 2.4 Let B be a bi-base of a ternary semigroup S such that $a, b, c, d \in B$ and $s \in S$, then following statements are true:

(1) If $a \in bcd \cup bcdbcdbcd \cup bcdSbcdSbcd$, then a = b or a = c or a = d.

(2) If $a \in bscsd \cup bscsdsbscsdsbscsd \cup bscsdSbscsdSbscd$, then a = b or a = c or a = d.

Proof (1) Assume that $a \in bcd \cup bcdbcdbcd \cup bcdSbcdSbcd$ and suppose that $a \neq b$, $a \neq c$ and $a \neq d$. Let $A = B \setminus \{a\}$. Then $A \subseteq B$. Since $a \neq b, a \neq c$ and $a \neq d$, we have $b, c, d \in A$. We show that $B \subseteq (A)_b$. Let $x \in B$ and if $x \neq a$, then $x \in A$, and so $x \in (A)_b$. If x = a then by assumption, we have

$$x \in bcd \cup bcdbcdbcd \cup bcdSbcdSbcd \\ \subseteq AAA \cup AAAAAAAAA \cup AAASAAASAAA \\ \subseteq ASASA \\ \subseteq (A)_b.$$

Thus $B \subseteq (A)_b$. This implies that $(B)_b \subseteq (A)_b$. Since B is a bi-base of S, therefore $S = (B)_b \subseteq (A)_b \subseteq S$. It implies $S = (A)_b$, which is a contradiction. Hence a = b or a = cor a = d.

(2) The proof is similar to (1).

Theorem 2.5 Let B be a bi-base of a ternary semigroup S. Then the following statements are true:

(1) For any $a, b, c, d \in B$ if $a \neq b, a \neq c$ and $a \neq d$ then $a \leq_b bcd$.

(2) For any $a, b, c, d \in B$ and $s \in S$, if $a \neq b$, $a \neq c$ and $a \neq d$, then $a \leq_b bscsd$.

Proof (1) For any $a, b, c, d \in B$, let $a \neq b, a \neq c$ and $a \neq d$. Suppose that $a \leq_b bcd$, we have

$$a \subseteq (a)_b \subseteq (bcd)_b = bcd \cup bcdbcdbcd \cup bcdSbcdSbcd.$$

By Theorem 2.4(1), it follows that a = b or a = c or a = d. This contradict the assumption. Hence $a \leq_b bcd$.

(2) The proof is similar to (1).

Theorem 2.6 A non-empty subset B of a ternary semigroup S is a bi-base of S if and only if it satisfies the following conditions

(1) For any $x \in S$,

- (a) there exists $b \in B$ such that $x \leq_b b$,
- (b) there exists $b_1, b_2, b_3 \in B$ such that $x \leq b_1 b_2 b_3$,
- (c) there exists $b_1, b_2, b_3 \in B$, $s \in S$ such that $x \leq b_1 s b_2 s b_3$.
- (2) For any $a, b, c, d \in B$, let $a \neq b$, $a \neq c$ and $a \neq d$, then $a \leq_b bcd$.
- (3) For any $a, b, c, d \in B$ and $s \in S$, let $a \neq b, a \neq c$ and $a \neq d$, then $a \not\leq_b bscsd$.

Proof Suppose that B is a bi-base of S, then $S = (B)_b$. To prove (1), let $x \in S$, it implies $x \in B \cup BBB \cup BSBSB$. Now, three cases arise:

Case 1: If $x \in B$. Then, x = b, for some $b \in B$. This implies $(x)_b \subseteq (b)_b$. Hence $x \leq_b b$.

Case 2: If $x \in BBB$, then $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$. It implies $(x)_b \subseteq (b_1b_2b_3)_b$. Hence, $x \leq_b b_1b_2b_3$.

Case 3: If $x \in BSBSB$, then $x = b_1sb_2sb_3$ for some $b_1, b_2, b_3 \in B$ and $s \in S$. It implies $(x)_b \subseteq (b_1sb_2sb_3)_b$. Hence $x \leq b_1sb_2sb_3$. Proofs of (2) and (3) are similar to the Theorem 2.5.

Conversely, suppose that (1), (2) and (3) holds. Then, we have to prove that *B* is a bi-base of *S*. Clearly $(B)_b \subseteq S$ and by (1) $S \subseteq (B)_b$ and so $S = (B)_b$. Now, it remains to show that *B* is minimal subset of *S*. Suppose that $S = (A)_b$ for some $A \subseteq B$. Since $A \subseteq B$, there exists $b \in B \setminus A$. Since $b \in B \subseteq S = (A)_b$ and $b \notin A$, it implies $b \in AAA \cup ASASA$. Now, two cases arise:

Case 1: If $b \in AAA$, then $b = a_1a_2a_3$, for some $a_1, a_2, a_3 \in A$. As $b \notin A$ so, $b \neq a_1$, $b \neq a_2$ and $b \neq a_3$. It implies $a_1, a_2, a_3 \in A$. Since $b = a_1a_2a_3$, so $(b)_b \subseteq (a_1a_2a_3)_b$. It follows that $b \leq_b a_1a_2a_3$ which contradict (2). Hence *B* is minimal subset of *S* such that $(B)_b = S$.

Case 2: If $b \in ASASA$, then $b = a_1sa_2sa_3$, for some $a_1, a_2, a_3 \in A$ and $s \in S$. As $b \notin A$ so, $b \neq a_1, b \neq a_2$ and $b \neq a_3$. It implies $a_1, a_2, a_3 \in A$. Since $b = a_1sa_2sa_3$, therefore $(b)_b \subseteq (a_1sa_2sa_3)_b$.

Thus, $b \leq_b a_1 s a_2 s a_3$ which contradict (3). Thus there exists no proper subset A of B such that $(A)_b = S$. Hence, B is bi-base of S.

Acknowledgements The authors are grateful to the referee for valuable suggestions which improve the previous version of the paper.

Data availability Not applicable.

References

- Dixit, V.N., Diwan, S.: A note on quasi and bi-ideals in ternary semigroups. Int. J. Math. Sci. 18, 501–508 (1995)
- 2. Fabrici, I.: One-sided bases of semigroups. Matematický časopis 22, 286–290 (1972)
- 3. Kasner, E.: An extension of the group concept. Bull. Am. Math. Soc. 10, 290-291 (1904)
- Kerner, R.: Ternary Algebraic Structures and Their Applications in Physics. Pierre and Marie Curie University, Paris (2000)
- 5. Kummoon, P., Changphas, T.: On bi-base of a semigroup. Quasigroups Relat. Syst. 25, 87–94 (2017)
- 6. Lehmer, D.H.: A ternary analogue of abelian groups. AMS Am. J. Math. 59, 329-338 (1932)
- 7. Sioson, F.M.: Ideal theory in ternary semigroups. Math. Jpn. 10, 63-84 (1965)
- 8. Tamura, T.: One-sided bases and translations of a semigroup. Math. Jpn. 3, 137–141 (1955)
- 9. Thongkam, B., Changphas, T.: On one-sided bases of a ternary semigroup. Int. J. Pure Appl. Math. **103**(3), 429–437 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.