A study of bi-bases of ternary semigroups

Akbar Ali1 · Sabahat Ali Khan¹ · Mohammad Yahya Abbasi1

Received: 1 February 2019 / Accepted: 11 January 2024 / Published online: 30 January 2024 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024

Abstract

In this paper, we introduce the bi-bases of a ternary semigroup. The results of this paper are based on the bi-ideals generated by a non-empty subset of a ternary semigroup. Moreover, we define the quasi-order relation of a ternary semigroup and study some of their interesting properties.

Keywords Ternary semigroup · Bi-bases · Bi-ideal

Mathematics Subject Classification 20M12 · 20N99

1 Introduction and preliminaries

The idea of investigation of n-ary algebras, i.e. the sets with one n-ary operation, was given by Kasner [\[3](#page-7-0)]. In particular, n-ary semigroups are known as ternary semigroups for $n = 3$ with one associative operation [\[6\]](#page-7-1). Kerner [\[4](#page-7-2)] expressed many applications of ternary structures in physics. The concept of ideal in ternary semigroup was given by Sioson [\[7](#page-7-3)]. He also defined regular ternary semigroups. The properties of quasi-ideals and bi-ideals in ternary semigroups were studied by Dixit and Dewan [\[1](#page-7-4)].

Tamura [\[8](#page-7-5)] introduced the notion of a (right)left base of semigroup. Later, Fabrici described a semigroup structure containing one-sided bases [\[2](#page-7-6)]. Thongkam and Changphas [\[9](#page-7-7)] introduced the notion of left bases and right bases of a ternary semigroup. Kumoon and Changphas [\[5](#page-7-8)] introduced the concept of bi-bases in the semigroups and discussed some interesting results.

To start with, we need the following.

Definition 1.1 [\[6\]](#page-7-1) A non-empty set *S* is called a ternary semigroup if there exists a ternary operation $S \times S \times S \rightarrow S$, written as $(x_1, x_2, x_3) \rightarrow [x_1x_2x_3]$, satisfying the following

B Mohammad Yahya Abbasi mabbasi@jmi.ac.in Akbar Ali akbarali.math@gmail.com

Sabahat Ali Khan khansabahat361@gmail.com

¹ Department of Mathematics, Jamia Millia Islamia, New Delhi 110 025, India

identity for any *x*₁*, x*₂*, x*₃*, x*₄*, x*₅ ∈ *S,*

$$
[[x_1x_2x_3]x_4x_5] = [x_1[x_2x_3x_4]x_5] = [x_1x_2[x_3x_4x_5]].
$$

For non-empty subsets *A, B* and *C* of a ternary semigroup *S*,

 $[ABC] := \{ [abc] : a \in A, b \in B \text{ and } c \in C \}.$

If $A = \{a\}$, then we write $\{a\}BC$ as $[aBC]$ and similarly if $B = \{b\}$ or $C = \{c\}$, we write [*AbC*] and [*ABc*], respectively. Throughout the paper, we denote [$x_1x_2x_3$] by $x_1x_2x_3$ and [*ABC*] as *ABC*.

Definition 1.2 [\[7\]](#page-7-3) A non-empty subset *B* of a ternary semigroup *S* is called a ternary subsemigroup of *S*, if $BBB \subseteq B$.

Definition 1.3 [\[1\]](#page-7-4) A non-empty subset *B* of a ternary semigroup *S* is called a bi-ideal of *S* if $BSBSB \subseteq B$.

Proposition 1.1 [\[1\]](#page-7-4) *Let B be a non-empty subset of a ternary semigroup S without identity. Then* $B \cup [BBB] \cup [BSBSB]$ *is the smallest bi-ideal of S containing B.*

Remark 1.1 In this paper, smallest bi-ideal of *S* containing *B* is denoted by $(B)_b$.

2 Main results

Definition 2.1 Let *S* be a ternary semigroup. A non-empty subset *B* of *S* is called a bi-base of *S* if it satisfies the following conditions:

- (1) $S = (B)_b$ (i.e. $S = B \cup BBB \cup BSBSB$);
- (2) If *A* is a subset of *B* such that $S = (A)_b$, then $A = B$.

Example 2.1 Let $S = \{a, b, c, d\}$ with $xyz = (x \circ y) \circ z$, for all $x, y, z \in S$ and a ternary operation, $'o'$ given by the following table:

Then *S* is a ternary semigroup. Let $B = \{b, c, d\}$, then clearly $(B)_b = B \cup BBB \cup BSBSB$ $S = S$ and there is no proper subset *A* of *B* such that $S = (A)_b$. This shows that *B* is a bi-base of *S*.

Theorem 2.1 *If B is a bi-base of a ternary semigroup S and a, b* ∈ *B such that a* ∈ *bbb* ∪ $bSbSb$, then $a = b$.

Proof Let *B* be a bi-base of a ternary semigroup *S* and $a, b \in B$ such that $a \in bbb \cup bSbSb$, and suppose that $a \neq b$. Consider $A = B \setminus \{a\}$, then $A \subseteq B$. Since $a \neq b$, therefore $b \in A$. Clearly, $(A)_b \subseteq S$. Let $x \in S$, then by $S = (B)_b$, we have $x \in B \cup BBB \cup BSBSB$. Now, three cases arise:

Case 1: For an element $x \in B$, we have two subcases

 \mathcal{L} Springer

Subcase 1.1: If $x \neq a$, then $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: If $x = a$, then by assumption, we have $x = a \in bbb \cup bSbSb \subseteq AAA \cup bSbSb$ $ASASA \subseteq (A)_b$.

Case 2: If $x \in BBB$. Then for $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$, we have eight subcases Subcase 2.1: If $b_1 = a = b_2 = b_3$. Then, by assumption and $A = B \setminus \{a\}$, we have

> $x = b_1b_2b_3$ ∈ *(bbb* ∪ *bSbSb)(bbb* ∪ *bSbSb)(bbb* ∪ *bSbSb)* ⊆ *(AAA* ∪ *ASASA)(AAA* ∪ *ASASA)(AAA* ∪ *ASASA)* ⊆ *ASASA* ⊆ *(A)b.*

Subcase 2.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. Then, by assumption and $A = B \setminus \{a\}$, we have

 $x = b_1b_2b_3$ ∈ *(B*\{*a*}*)(bbb* ∪ *bSbSb)(bbb* ∪ *bSbSb)* $= (B \setminus \{a\} bbb \cup B \setminus \{a\} bSbSb) (bbb \cup bSbSb)$ $B \setminus \{a\}bb{b}$ bbbbb $b \cup B \setminus \{a\}$ bbbbSbSb $\cup B \setminus \{a\}$ bSbSbbbb $\cup B \setminus \{a\}$ bSbSbbSbSbSbSb ⊆ *AAAAAAA* ∪ *AAAASASA* ∪ *AASASAAAA* ∪ *AASASAASASA* \subseteq *ASASA* \subseteq $(A)_b$ *.*

Similarly, we can prove the subcase 2.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 2.4 for $b_3 \neq a, b_1 = a, b_2 = a$.

Subcase 2.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. Then, by assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1b_2b_3
$$

\n
$$
\in (B \setminus \{a\})(B \setminus \{a\})(bbb \cup bSbSb)
$$

\n
$$
= B \setminus \{a\}B \setminus \{a\}B \setminus \{a\}bSbSb
$$

\n
$$
\subseteq AAAAA \cup AAASASA
$$

\n
$$
\subseteq ASASA
$$

\n
$$
\subseteq (A)_b.
$$

Similarly, we can prove the subcase 2.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 2.7 for $b_1 \neq a, b_3 \neq a, b_2 = a$.

Subcase 2.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and for $A = B \setminus \{a\}$, we have

$$
x = b_1 b_2 b_3
$$

\n
$$
\in (B \setminus \{a\})(B \setminus \{a\})(B \setminus \{a\})
$$

\n
$$
\subseteq AAA
$$

\n
$$
\subseteq (A)_b.
$$

Case 3: If *x* ∈ *BSBSB*. Then $x = b_1s_1b_2s_2b_3$, for some $b_1, b_2, b_3 ∈ B$ and $s_1, s_2 ∈ S$. Again, we have eight subcases.

Subcase 3.1: If $b_1 = a = b_2 = b_3$. By assumption

 $x = b_1s_1b_2s_2b_3$ ∈ *(bbb* ∪ *bSbSb)S(bbb* ∪ *bSbSb)S(bbb* ∪ *bSbSb)* ⊆ *(AAA* ∪ *ASASA)S(AAA* ∪ *ASASA)S(AAA* ∪ *ASASA)* ⊆ *ASASA* \subseteq $(A)_b$.

Subcase 3.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

- $x = b_1 s_1 b_2 s_2 b_3$ ∈ *(B*\{*a*}*)S(bbb* ∪ *bSbSb)S(bbb* ∪ *bSbSb)* $= (B \setminus \{a\}Sbbb \cup B \setminus \{a\}SbSbSb)S(bbb \cup bSbSb)$ = *B*\{*a*}*SbbbSbbb* ∪ *B*\{*a*}*SbbbSbSbSb* ∪ *B*\{*a*}*SbSbSbSbbb* ∪ *B*\{*a*}*SbSbSbSbSbSb* ⊆ *ASAAASAAA* ∪ *AAAASASA* ∪ *ASASASAAAA* ∪ *ASASASASASASA* ⊆ *ASASA*
	- ⊆ *(A)b.*

Similarly, we can prove the subcase 3.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and the subcase 3.4 for $b_3 \neq a, b_1 = a, b_2 = a.$

Subcase 3.5: If $b_1 \neq a, b_2 \neq a, b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

 $x = b_1s_1b_2s_2b_3$ ∈ *(B*\{*a*}*)S(B*\{*a*}*)S(bbb* ∪ *bSbSb)* $B \setminus \{a\}SB \setminus \{a\}Sbbb \cup B \setminus \{a\}SB \setminus \{a\}SbSbSbSb$ ⊆ *ASASAAA* ∪ *ASASASASA* ⊆ *ASASA* ⊆ *(A)b.*

Similarly, we can prove the subcase 3.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 3.7 for $b_1 \neq a, b_3 \neq a, b_2 = a$.

Subcase 3.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1 s_1 b_2 s_2 b_3
$$

\n
$$
\in (B \setminus \{a\}) S(B \setminus \{a\}) S(B \setminus \{a\})
$$

\n
$$
\subseteq ASASA
$$

\n
$$
\subseteq (A)_b.
$$

Thus in all cases $x \in (A)_b$, it implies $(A)_b = S$, which is a contradiction, as *B* is a bi-base of *S*. Hence, we have $a = b$ as required. of *S*. Hence, we have $a = b$ as required.

Theorem 2.2 *Let B be a bi-base of a ternary semigroup S and a, b, c,* $d \in B$ *such that* $a \in bcd \cup bScSd$, then $a = b$ or $a = c$ or $a = d$.

Proof Assume that *a* ∈ *bcd* ∪ *bScSd* and if possible *a* \neq *b*, *a* \neq *c* and *a* \neq *d*. Consider $A = B \setminus \{a\}$, then $A \subseteq B$. Since $a \neq b$, $a \neq c$ and $a \neq d$, we have $b, c, d \in A$. Therefore $(A)_b$ ⊂ *S*. Let *x* ∈ *S*. Then, by *S* = $(B)_b$, we have *x* ∈ *B* ∪ *BSBSB*. Now, three cases arise:

Case 1: For $x \in B$, we have two subcases

Subcase 1.1: If $x \neq a$, then by assumption $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: If $x = a$, then by hypothesis $x = a \in bcd \cup bScSd \subseteq AAA \cup ASASA \subseteq$ (A) ^{*b*}.

Case 2: If $x \in BBB$. Then $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$. Now, we have eight subcases

Subcase 2.1: If $b_1 = a = b_2 = b_3$. By assumption and $A = B \setminus \{a\}$, we have

 $x = b_1b_2b_3$ ∈ *(bcd* ∪ *bScSd)(bcd* ∪ *bScSd)(bcd* ∪ *bScSd)* ⊆ *(AAA* ∪ *ASASA)(AAA* ∪ *ASASA)(AAA* ∪ *ASASA)* ⊆ *ASASA* ⊆ *(A)b.*

Subcase 2.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1b_2b_3 \in (B \setminus \{a\}) (bcd \cup bScSd) = (B \setminus \{a\}bcd \cup B \setminus \{a\}bcSd) = B \setminus \{a\}bcdbcd \cup B \setminus \{a\}bcdbScSd) = B \setminus \{a\}bcdbcd \cup B \setminus \{a\}bccSd \cup B \setminus \{a\}bScSdbcd \cup B \setminus \{a\}bcSdbScSd
$$

 \subseteq AAAAAAA AAAAASASA \cup AASASAAAA \cup AASASAASASA
 \subseteq ASASA
 \subseteq (A)_b.

Similarly, we can prove the subcase 2.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 2.4 for $b_3 \neq a, b_1 = a, b_2 = a$.

Subcase 2.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1b_2b_3 \in (B \setminus \{a\})(B \setminus \{a\}) (bcd \cup bScSd)
$$

= $B \setminus \{a\}bc_4 \cup B \setminus \{a\}B \setminus \{a\}bcSd$
 $\subseteq AAAAA \cup AAASASA$
 $\subseteq ASASA$
 $\subseteq (A)_b.$

Similarly, we can prove the subcase 2.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and the subcase 2.7 for $b_1 \neq a, b_3 \neq a, b_2 = a$.

Subcase 2.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1 b_2 b_3
$$

\n
$$
\in (B \setminus \{a\})(B \setminus \{a\})(B \setminus \{a\})
$$

\n
$$
\subseteq AA
$$

\n
$$
\subseteq (A)_b.
$$

Case 3: If *x* ∈ *BSBSB*. Then $x = b_1s_1b_2s_2b_3$, for some $b_1, b_2, b_3 ∈ B$ and $s_1, s_2 ∈ S$. Again, we have eight subcases

Subcase 3.1: If $b_1 = a = b_2 = b_3$. By assumption, we have

 $x = b_1 s_1 b_2 s_2 b_3$ ∈ *(bcd* ∪ *bScSd)S(bcd* ∪ *bScSd)S(bcd* ∪ *bScSd)* ⊆ *(AAA* ∪ *ASASA)S(AAA* ∪ *ASASA)S(AAA* ∪ *ASASA)* ⊆ *ASASA* ⊆ *(A)b.*

Subcase 3.2: If $b_1 \neq a$, $b_2 = a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1s_1b_2s_2b_3
$$

\n
$$
\in (B \setminus \{a\})S(bcd \cup bScSd)S(bcd \cup bScSd)
$$

\n
$$
= (B \setminus \{a\})Sbcd \cup B \setminus \{a\})SbcSdS(d)S(bcd \cup bScSd)
$$

\n
$$
= B \setminus \{a\})SbcdSbcd \cup B \setminus \{a\})SbcdSbcSd \cup B \setminus \{a\})SbcScSdSbcd \cup B \setminus \{a\})SbcScSdSbcSd
$$

\n
$$
\subseteq ASAAASAAA \cup AAAASASA \cup ASASASAAAA \cup ASASASASASASA
$$

\n
$$
\subseteq ASASA
$$

\n
$$
\subseteq (A)_b.
$$

Similarly, we can prove the subcase 3.3 for $b_2 \neq a$, $b_1 = a$, $b_3 = a$ and subcase 3.4 for $b_3 \neq a, b_1 = a, b_2 = a$.

 $\circled{2}$ Springer

Subcase 3.5: If $b_1 \neq a$, $b_2 \neq a$, $b_3 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1s_1b_2s_2b_3 \in (B \setminus \{a\})S(B \setminus \{a\})S(bcd \cup bScSd)
$$

= $B \setminus \{a\}SB \setminus \{a\}Sbcd \cup B \setminus \{a\}SbScSd$
 $\subseteq ASASAAA \cup ASASASASA$
 $\subseteq ASASA$
 $\subseteq (A)_b$.

Similarly, we can prove the subcase 3.6 for $b_2 \neq a$, $b_3 \neq a$, $b_1 = a$ and subcase 3.7 for $b_1 \neq a, b_3 \neq a, b_2 = a$.

Subcase 3.8: If $b_1 \neq a$, $b_2 \neq a$ and $b_3 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$
x = b_1 s_1 b_2 s_2 b_3
$$

\n
$$
\in (B \setminus \{a\}) S(B \setminus \{a\}) S(B \setminus \{a\})
$$

\n
$$
\subseteq ASASA
$$

\n
$$
\subseteq (A)_b.
$$

Thus in all cases $x \in (A)_b$. It follows that $(A)_b = S$, which is a contradiction as *B* is a bi-base *S*. Hence, $a = b$ or $a = c$ or $a = d$. *S*. Hence, $a = b$ or $a = c$ or $a = d$.

Definition 2.2 Let *S* be a ternary semigroup. Then a quasi-order on *S* is defined as $a \leq_b b$ \Leftrightarrow $(a)_b \subseteq (b)_b$ for any $a, b \in S$.

Theorem 2.3 Let B be a bi-base of a ternary semigroup S. Then $a \leq_b b$, $a \leq_b c$ and $b \leq_b c$ *if and only if* $a = b = c$ *for any* $a, b, c \in S$ *.*

Proof It is straightforward. □

Theorem 2.4 *Let B be a bi-base of a ternary semigroup S such that a, b, c,* $d \in B$ *and* $s \in S$ *, then following statements are true:*

- (1) *If* $a \in \text{bcd} \cup \text{bcd}$ *bcdbcdbcd* $\cup \text{bcd}$ *Sbcd Sbcd, then* $a = b$ *or* $a = c$ *or* $a = d$.
- (2) *If a* ∈ *bscsd* ∪ *bscsdsbscsdsbscsd* ∪ *bscsd Sbscsd Sbscd, then a* = *b or a* = *c or* $a = d$.

Proof (1) Assume that $a \in bcd \cup bcdbcdbcd \cup bcdbcdSbcd$ and suppose that $a \neq b$, *a* ≠ *c* and *a* ≠ *d*. Let *A* = *B*\{*a*}. Then *A* ⊆ *B*. Since *a* ≠ *b*, *a* ≠ *c* and *a* ≠ *d*, we have $b, c, d \in A$. We show that $B \subseteq (A)_b$. Let $x \in B$ and if $x \neq a$, then $x \in A$, and so $x \in (A)_b$. If $x = a$ then by assumption, we have

$$
x \in bcd \cup bcdbcdbc \cup bcdSbc dSbc d
$$

\n
$$
\subseteq AAA \cup AAAAAA \cup AAASAAA SAAA
$$

\n
$$
\subseteq ASASA
$$

\n
$$
\subseteq (A)_b.
$$

Thus $B \subseteq (A)_b$. This implies that $(B)_b \subseteq (A)_b$. Since *B* is a bi-base of *S*, therefore $S = (B)_b \subseteq (A)_b \subseteq S$. It implies $S = (A)_b$, which is a contradiction. Hence $a = b$ or $a = c$ or $a = d$.

(2) The proof is similar to (1). \square

Theorem 2.5 *Let B be a bi-base of a ternary semigroup S. Then the following statements are true:*

(1) *For any a*, *b*, *c*, *d* \in *B if* $a \neq b$, $a \neq c$ *and* $a \neq d$ *then* $a \nleq_b$ *bcd.*

(2) *For any a*, *b*, *c*, *d* \in *B and s* \in *S*, *if a* \neq *b*, *a* \neq *c and a* \neq *d*, *then a* \nleq _{*b*} *bscsd.*

Proof (1) For any *a*, *b*, *c*, *d* \in *B*, let $a \neq b$, $a \neq c$ and $a \neq d$. Suppose that $a \leq_b bcd$, we have

$$
a \subseteq (a)_b
$$

\n
$$
\subseteq (bcd)_b
$$

\n
$$
= bcd \cup bcdbcdbcd \cup bcdSbcdSbcd.
$$

By Theorem 2.4(1), it follows that $a = b$ or $a = c$ or $a = d$. This contradict the assumption. Hence $a \nleq_b bcd$.

(2) The proof is similar to (1). \square

Theorem 2.6 *A non-empty subset B of a ternary semigroup S is a bi-base of S if and only if it satisfies the following conditions*

(1) *For any* $x \in S$,

- (a) *there exists* $b \in B$ *such that* $x \leq_b b$,
- (b) *there exists* $b_1, b_2, b_3 \in B$ *such that* $x \le_b b_1b_2b_3$ *,*
- (c) there exists $b_1, b_2, b_3 \in B$, $s \in S$ such that $x \le_b b_1 s b_2 s b_3$.
- (2) *For any a*, *b*, *c*, $d \in B$, *let a* $\neq b$, $a \neq c$ *and* $a \neq d$, *then* $a \nleq_b bcd$.
- (3) *For any a*, *b*, *c*, *d* \in *B and s* \in *S*, *let a* \neq *b*, *a* \neq *c and a* \neq *d*, *then a* \nleq _{*b*} *bscsd.*

Proof Suppose that *B* is a bi-base of *S*, then $S = (B)_b$. To prove (1), let $x \in S$, it implies $x \in B \cup BBB \cup BSBSB$. Now, three cases arise:

Case 1: If $x \in B$. Then, $x = b$, for some $b \in B$. This implies $(x)_b \subseteq (b)_b$. Hence $x \leq_b b$.

Case 2: If $x \in BBB$, then $x = b_1b_2b_3$, for some $b_1, b_2, b_3 \in B$. It implies $(x)_b \subseteq (b_1b_2b_3)_b$. Hence, $x \leq_b b_1b_2b_3$.

Case 3: If $x \in BSBSB$, then $x = b_1s b_2 s b_3$ for some $b_1, b_2, b_3 \in B$ and $s \in S$. It implies $(x)_b \subseteq (b_1sb_2sb_3)_b$. Hence $x \le_b b_1sb_2sb_3$. Proofs of (2) and (3) are similar to the Theorem 2.5.

Conversely, suppose that (1), (2) and (3) holds. Then, we have to prove that *B* is a bi-base of *S*. Clearly $(B)_b \subseteq S$ and by (1) $S \subseteq (B)_b$ and so $S = (B)_b$. Now, it remains to show that *B* is minimal subset of *S*. Suppose that $S = (A)_b$ for some $A \subseteq B$. Since $A \subseteq B$, there exists *b* ∈ *B**A*. Since *b* ∈ *B* ⊆ *S* = $(A)_b$ and *b* ∉ *A*, it implies *b* ∈ *AAA* ∪ *ASASA*. Now, two cases arise:

Case 1: If *b* ∈ *AAA*, then *b* = $a_1a_2a_3$, for some $a_1, a_2, a_3 \in A$. As $b \notin A$ so, $b \neq a_1$, $b \neq a_2$ and $b \neq a_3$. It implies $a_1, a_2, a_3 \in A$. Since $b = a_1 a_2 a_3$, so $(b)_b \subseteq (a_1 a_2 a_3)_b$. It follows that $b \leq b$ *a*₁*a*₂*a*₃ which contradict (2). Hence *B* is minimal subset of *S* such that $(B)_b = S$.

Case 2: If $b \in ASASA$, then $b = a_1sa_2sa_3$, for some $a_1, a_2, a_3 \in A$ and $s \in S$. As $b \notin A$ so, $b \neq a_1$, $b \neq a_2$ and $b \neq a_3$. It implies $a_1, a_2, a_3 \in A$. Since $b = a_1sa_2sa_3$, therefore (b) ^{*b*} ⊆ $(a_1sa_2sa_3)$ ^{*b*}.

Thus, $b \leq b a_1sa_2sa_3$ which contradict (3). Thus there exists no proper subset *A* of *B* such that $(A)_b = S$. Hence, *B* is bi-base of *S*.

Acknowledgements The authors are grateful to the referee for valuable suggestions which improve the previous version of the paper.

Data availability Not applicable.

References

- 1. Dixit, V.N., Diwan, S.: A note on quasi and bi-ideals in ternary semigroups. Int. J. Math. Sci. **18**, 501–508 (1995)
- 2. Fabrici, I.: One-sided bases of semigroups. Matematický ˇcasopis **22**, 286–290 (1972)
- 3. Kasner, E.: An extension of the group concept. Bull. Am. Math. Soc. **10**, 290–291 (1904)
- 4. Kerner, R.: Ternary Algebraic Structures and Their Applications in Physics. Pierre and Marie Curie University, Paris (2000)
- 5. Kummoon, P., Changphas, T.: On bi-base of a semigroup. Quasigroups Relat. Syst. **25**, 87–94 (2017)
- 6. Lehmer, D.H.: A ternary analogue of abelian groups. AMS Am. J. Math. **59**, 329–338 (1932)
- 7. Sioson, F.M.: Ideal theory in ternary semigroups. Math. Jpn. **10**, 63–84 (1965)
- 8. Tamura, T.: One-sided bases and translations of a semigroup. Math. Jpn. **3**, 137–141 (1955)
- 9. Thongkam, B., Changphas, T.: On one-sided bases of a ternary semigroup. Int. J. Pure Appl. Math. **103**(3), 429–437 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.