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Abstract
In this paper, we introduce the bi-bases of a ternary semigroup. The results of this paper are
based on the bi-ideals generated by a non-empty subset of a ternary semigroup. Moreover,
we define the quasi-order relation of a ternary semigroup and study some of their interesting
properties.
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1 Introduction and preliminaries

The idea of investigation of n-ary algebras, i.e. the sets with one n-ary operation, was given
by Kasner [3]. In particular, n-ary semigroups are known as ternary semigroups for n=3 with
one associative operation [6]. Kerner [4] expressed many applications of ternary structures
in physics. The concept of ideal in ternary semigroup was given by Sioson [7]. He also
defined regular ternary semigroups. The properties of quasi-ideals and bi-ideals in ternary
semigroups were studied by Dixit and Dewan [1].

Tamura [8] introduced the notion of a (right)left base of semigroup.Later, Fabrici described
a semigroup structure containing one-sided bases [2]. Thongkam and Changphas [9] intro-
duced the notion of left bases and right bases of a ternary semigroup. Kumoon andChangphas
[5] introduced the concept of bi-bases in the semigroups and discussed some interesting
results.

To start with, we need the following.

Definition 1.1 [6] A non-empty set S is called a ternary semigroup if there exists a ternary
operation S × S × S → S, written as(x1, x2, x3) → [x1x2x3], satisfying the following
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identity for any x1, x2, x3, x4, x5 ∈ S,

[[x1x2x3]x4x5] = [x1[x2x3x4]x5] = [x1x2[x3x4x5]].
For non-empty subsets A, B and C of a ternary semigroup S,

[ABC] := {[abc] : a ∈ A, b ∈ B and c ∈ C}.
If A = {a}, then we write [{a}BC] as [aBC] and similarly if B = {b} or C = {c}, we write
[AbC] and [ABc], respectively. Throughout the paper, we denote [x1x2x3] by x1x2x3 and
[ABC] as ABC .

Definition 1.2 [7] A non-empty subset B of a ternary semigroup S is called a ternary sub-
semigroup of S, if BBB ⊆ B.

Definition 1.3 [1] A non-empty subset B of a ternary semigroup S is called a bi-ideal of S if
BSBSB ⊆ B.

Proposition 1.1 [1] Let B be a non-empty subset of a ternary semigroup S without identity.
Then B ∪ [BBB] ∪ [BSBSB] is the smallest bi-ideal of S containing B.

Remark 1.1 In this paper, smallest bi-ideal of S containing B is denoted by (B)b.

2 Main results

Definition 2.1 Let S be a ternary semigroup. A non-empty subset B of S is called a bi-base
of S if it satisfies the following conditions:

(1) S = (B)b (i.e. S = B ∪ BBB ∪ BSBSB);
(2) If A is a subset of B such that S = (A)b, then A = B.

Example 2.1 Let S = {a, b, c, d} with xyz = (x ◦ y) ◦ z, for all x, y, z ∈ S and a ternary
operation, ′◦′ given by the following table:

◦ a b c d
a a a a a
b a a a a
c a a b b
d a a b b

Then S is a ternary semigroup. Let B = {b, c, d}, then clearly (B)b = B ∪ BBB ∪ BSBSB
= S and there is no proper subset A of B such that S = (A)b. This shows that B is a bi-base
of S.

Theorem 2.1 If B is a bi-base of a ternary semigroup S and a, b ∈ B such that a ∈ bbb ∪
bSbSb, then a = b.

Proof Let B be a bi-base of a ternary semigroup S and a, b ∈ B such that a ∈ bbb∪ bSbSb,
and suppose that a �= b. Consider A = B\{a}, then A ⊆ B. Since a �= b, therefore b ∈ A.
Clearly, (A)b ⊆ S. Let x ∈ S, then by S = (B)b, we have x ∈ B ∪ BBB ∪ BSBSB. Now,
three cases arise:

Case 1: For an element x ∈ B, we have two subcases
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Subcase 1.1: If x �= a, then x ∈ B\{a} = A ⊆ (A)b.
Subcase 1.2: If x = a, then by assumption, we have x = a ∈ bbb ∪ bSbSb ⊆ AAA ∪

ASASA ⊆ (A)b.

Case 2: If x ∈ BBB. Then for x = b1b2b3, for some b1, b2, b3 ∈ B, we have eight subcases
Subcase 2.1: If b1 = a = b2 = b3. Then, by assumption and A = B\{a}, we have

x = b1b2b3
∈ (bbb ∪ bSbSb)(bbb ∪ bSbSb)(bbb ∪ bSbSb)
⊆ (AAA ∪ ASASA)(AAA ∪ ASASA)(AAA ∪ ASASA)
⊆ ASASA
⊆ (A)b.

Subcase 2.2: If b1 �= a, b2 = a, b3 = a. Then, by assumption and A = B\{a}, we have
x = b1b2b3

∈ (B\{a})(bbb ∪ bSbSb)(bbb ∪ bSbSb)
= (B\{a}bbb ∪ B\{a}bSbSb)(bbb ∪ bSbSb)
= B\{a}bbbbbb ∪ B\{a}bbbbSbSb ∪ B\{a}bSbSbbbb ∪ B\{a}bSbSbbSbSb
⊆ AAAAAAA ∪ AAAASASA ∪ AASASAAAA ∪ AASASAASASA
⊆ ASASA ⊆ (A)b.

Similarly, we can prove the subcase 2.3 for b2 �= a, b1 = a, b3 = a and subcase 2.4 for
b3 �= a, b1 = a, b2 = a.

Subcase 2.5: If b1 �= a, b2 �= a, b3 = a. Then, by assumption and A = B\ {a}, we have
x = b1b2b3

∈ (B\{a})(B\{a})(bbb ∪ bSbSb)
= B\{a}B\{a}bbb ∪ B\{a}B\{a}bSbSb
⊆ AAAAA ∪ AAASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 2.6 for b2 �= a, b3 �= a, b1 = a and subcase 2.7 for
b1 �= a, b3 �= a, b2 = a.

Subcase 2.8: If b1 �= a, b2 �= a and b3 �= a. By assumption and for A = B\{a}, we have
x = b1b2b3

∈ (B\{a})(B\{a})(B\{a})
⊆ AAA
⊆ (A)b.

Case 3: If x ∈ BSBSB. Then x = b1s1b2s2b3, for some b1, b2, b3 ∈ B and s1, s2 ∈ S.
Again, we have eight subcases.

Subcase 3.1: If b1 = a = b2 = b3. By assumption

x = b1s1b2s2b3
∈ (bbb ∪ bSbSb)S(bbb ∪ bSbSb)S(bbb ∪ bSbSb)
⊆ (AAA ∪ ASASA)S(AAA ∪ ASASA)S(AAA ∪ ASASA)
⊆ ASASA
⊆ (A)b.
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Subcase 3.2: If b1 �= a, b2 = a, b3 = a. By assumption and A = B\{a}, we have
x = b1s1b2s2b3

∈ (B\{a})S(bbb ∪ bSbSb)S(bbb ∪ bSbSb)
= (B\{a}Sbbb ∪ B\{a}SbSbSb)S(bbb ∪ bSbSb)
= B\{a}SbbbSbbb ∪ B\{a}SbbbSbSbSb ∪ B\{a}SbSbSbSbbb ∪ B\{a}SbSbSbSbSbSb
⊆ ASAAASAAA ∪ AAAASASA ∪ ASASASAAAA ∪ ASASASASASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 3.3 for b2 �= a, b1 = a, b3 = a and the subcase 3.4 for
b3 �= a,b1 = a, b2 = a.
Subcase 3.5: If b1 �= a,b2 �= a,b3 = a. By assumption and A = B\{a}, we have

x = b1s1b2s2b3
∈ (B\{a})S(B\{a})S(bbb ∪ bSbSb)
= B\{a}SB\{a}Sbbb ∪ B\{a}SB\{a}SbSbSb
⊆ ASASAAA ∪ ASASASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 3.6 for b2 �= a, b3 �= a, b1 = a and subcase 3.7 for
b1 �= a, b3 �= a, b2 = a.
Subcase 3.8: If b1 �= a, b2 �= a and b3 �= a. By assumption and A = B\{a}, we have

x = b1s1b2s2b3
∈ (B\{a})S(B\{a})S(B\{a})
⊆ ASASA
⊆ (A)b.

Thus in all cases x ∈ (A)b, it implies (A)b = S, which is a contradiction, as B is a bi-base
of S. Hence, we have a = b as required. 	

Theorem 2.2 Let B be a bi-base of a ternary semigroup S and a, b, c, d ∈ B such that
a ∈ bcd ∪ bScSd, then a = b or a = c or a = d.

Proof Assume that a ∈ bcd ∪ bScSd and if possible a �= b, a �= c and a �= d . Consider
A = B\{a}, then A ⊆ B. Since a �= b, a �= c and a �= d , we have b, c, d ∈ A. Therefore
(A)b ⊆ S. Let x ∈ S. Then, by S = (B)b, we have x ∈ B ∪ BBB ∪ BSBSB. Now, three
cases arise:

Case 1: For x ∈ B, we have two subcases
Subcase 1.1: If x �= a, then by assumption x ∈ B\{a} = A ⊆ (A)b.
Subcase 1.2: If x = a, then by hypothesis x = a ∈ bcd ∪ bScSd ⊆ AAA ∪ ASASA ⊆

(A)b.

Case 2: If x ∈ BBB. Then x = b1b2b3, for some b1, b2, b3 ∈ B. Now, we have eight
subcases

Subcase 2.1: If b1 = a = b2 = b3. By assumption and A = B\{a}, we have
x = b1b2b3

∈ (bcd ∪ bScSd)(bcd ∪ bScSd)(bcd ∪ bScSd)
⊆ (AAA ∪ ASASA)(AAA ∪ ASASA)(AAA ∪ ASASA)
⊆ ASASA
⊆ (A)b.
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Subcase 2.2: If b1 �= a, b2 = a, b3 = a. By assumption and A = B\{a}, we have
x = b1b2b3 ∈ (B\{a})(bcd ∪ bScSd)(bcd ∪ bScSd)

= (B\{a}bcd ∪ B\{a}bScSd)(bcd ∪ bScSd)
= B\{a}bcdbcd ∪ B\{a}bcdbScSd ∪ B\{a}bScSdbcd ∪ B\{a}bScSdbScSd
⊆ AAAAAAA ∪ AAAASASA ∪ AASASAAAA ∪ AASASAASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 2.3 for b2 �= a, b1 = a, b3 = a and subcase 2.4 for
b3 �= a, b1 = a, b2 = a.

Subcase 2.5: If b1 �= a, b2 �= a, b3 = a. By assumption and A = B\{a}, we have
x = b1b2b3 ∈ (B\{a})(B\{a})(bcd ∪ bScSd)

= B\{a}B\{a}bcd ∪ B\{a}B\{a}bScSd
⊆ AAAAA ∪ AAASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 2.6 for b2 �= a, b3 �= a, b1 = a and the subcase 2.7 for
b1 �= a, b3 �= a, b2 = a.

Subcase 2.8: If b1 �= a, b2 �= a and b3 �= a. By assumption and A = B\{a}, we have
x = b1b2b3

∈ (B\{a})(B\{a})(B\{a})
⊆ AAA
⊆ (A)b.

Case 3: If x ∈ BSBSB. Then x = b1s1b2s2b3, for some b1, b2, b3 ∈ B and s1, s2 ∈ S.
Again, we have eight subcases

Subcase 3.1: If b1 = a = b2 = b3. By assumption, we have

x = b1s1b2s2b3
∈ (bcd ∪ bScSd)S(bcd ∪ bScSd)S(bcd ∪ bScSd)
⊆ (AAA ∪ ASASA)S(AAA ∪ ASASA)S(AAA ∪ ASASA)
⊆ ASASA
⊆ (A)b.

Subcase 3.2: If b1 �= a, b2 = a, b3 = a. By assumption and A = B\{a}, we have
x = b1s1b2s2b3

∈ (B\{a})S(bcd ∪ bScSd)S(bcd ∪ bScSd)
= (B\{a}Sbcd ∪ B\{a}SbScSd)S(bcd ∪ bScSd)
= B\{a}SbcdSbcd ∪ B\{a}SbcdSbScSd ∪ B\{a}SbScSdSbcd ∪ B\{a}SbScSdSbScSd
⊆ ASAAASAAA ∪ AAAASASA ∪ ASASASAAAA ∪ ASASASASASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 3.3 for b2 �= a, b1 = a, b3 = a and subcase 3.4 for
b3 �= a,b1 = a, b2 = a.
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Subcase 3.5: If b1 �= a, b2 �= a, b3 = a. By assumption and A = B\{a}, we have
x = b1s1b2s2b3 ∈ (B\{a})S(B\{a})S(bcd ∪ bScSd)

= B\{a}SB\{a}Sbcd ∪ B\{a}SB\{a}SbScSd
⊆ ASASAAA ∪ ASASASASA
⊆ ASASA
⊆ (A)b.

Similarly, we can prove the subcase 3.6 for b2 �= a, b3 �= a, b1 = a and subcase 3.7 for
b1 �= a, b3 �= a, b2 = a.

Subcase 3.8: If b1 �= a, b2 �= a and b3 �= a. By assumption and A = B\{a}, we have
x = b1s1b2s2b3

∈ (B\{a})S(B\{a})S(B\{a})
⊆ ASASA
⊆ (A)b.

Thus in all cases x ∈ (A)b. It follows that (A)b = S, which is a contradiction as B is a bi-base
S. Hence, a = b or a = c or a = d . 	

Definition 2.2 Let S be a ternary semigroup.Then a quasi-order on S is defined as a �b b
⇔ (a)b ⊆ (b)b for any a, b ∈ S.

Theorem 2.3 Let B be a bi-base of a ternary semigroup S. Then a �b b, a �b c and b �b c
if and only if a = b = c for any a, b, c ∈ S.

Proof It is straightforward. 	

Theorem 2.4 Let B be a bi-base of a ternary semigroup S such that a, b, c, d ∈ B and s ∈ S,
then following statements are true:

(1) If a ∈ bcd ∪ bcdbcdbcd ∪ bcdSbcdSbcd, then a = b or a = c or a = d.
(2) If a ∈ bscsd ∪ bscsdsbscsdsbscsd ∪ bscsdSbscsdSbscd, then a = b or a = c or

a = d.

Proof (1) Assume that a ∈ bcd ∪ bcdbcdbcd ∪ bcdSbcdSbcd and suppose that a �= b,
a �= c and a �= d . Let A = B\{a}. Then A ⊆ B. Since a �= b, a �= c and a �= d , we have
b, c, d ∈ A. We show that B ⊆ (A)b. Let x ∈ B and if x �= a, then x ∈ A, and so x ∈ (A)b.
If x = a then by assumption, we have

x ∈ bcd ∪ bcdbcdbcd ∪ bcdSbcdSbcd
⊆ AAA ∪ AAAAAAAAA ∪ AAASAAASAAA
⊆ ASASA
⊆ (A)b.

Thus B ⊆ (A)b. This implies that (B)b ⊆ (A)b. Since B is a bi-base of S, therefore
S = (B)b ⊆ (A)b ⊆ S. It implies S = (A)b, which is a contradiction. Hence a = b or a = c
or a = d .
(2) The proof is similar to (1). 	

Theorem 2.5 Let B be a bi-base of a ternary semigroup S. Then the following statements
are true:

(1) For any a, b, c, d ∈ B if a �= b, a �= c and a �= d then a �b bcd.
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(2) For any a, b, c, d ∈ B and s ∈ S, if a �= b, a �= c and a �= d, then a �b bscsd.

Proof (1) For any a, b, c, d ∈ B, let a �= b, a �= c and a �= d . Suppose that a �b bcd , we
have

a ⊆ (a)b
⊆ (bcd)b
= bcd ∪ bcdbcdbcd ∪ bcdSbcdSbcd.

By Theorem 2.4(1), it follows that a = b or a = c or a = d . This contradict the assumption.
Hence a �b bcd .
(2) The proof is similar to (1). 	

Theorem 2.6 A non-empty subset B of a ternary semigroup S is a bi-base of S if and only if
it satisfies the following conditions

(1) For any x ∈ S,

(a) there exists b ∈ B such that x �b b,
(b) there exists b1, b2, b3 ∈ B such that x �b b1b2b3,
(c) there exists b1, b2, b3 ∈ B, s ∈ S such that x �b b1sb2sb3.

(2) For any a, b, c, d ∈ B, let a �= b, a �= c and a �= d, then a �b bcd.
(3) For any a, b, c, d ∈ B and s ∈ S, let a �= b, a �= c and a �= d, then a �b bscsd.

Proof Suppose that B is a bi-base of S, then S = (B)b. To prove (1), let x ∈ S, it implies
x ∈ B ∪ BBB ∪ BSBSB. Now, three cases arise:

Case 1: If x ∈ B. Then, x = b, for some b ∈ B. This implies (x)b ⊆ (b)b. Hence x �b b.

Case 2: If x ∈ BBB, then x = b1b2b3, for some b1, b2, b3 ∈ B. It implies (x)b ⊆ (b1b2b3)b.
Hence, x �b b1b2b3.

Case 3: If x ∈ BSBSB, then x = b1sb2sb3 for some b1, b2, b3 ∈ B and s ∈ S. It implies
(x)b ⊆ (b1sb2sb3)b. Hence x �b b1sb2sb3. Proofs of (2) and (3) are similar to the Theorem
2.5.
Conversely, suppose that (1), (2) and (3) holds. Then, we have to prove that B is a bi-base of
S. Clearly (B)b ⊆ S and by (1) S ⊆ (B)b and so S = (B)b. Now, it remains to show that B
is minimal subset of S. Suppose that S = (A)b for some A ⊆ B. Since A ⊆ B, there exists
b ∈ B\A. Since b ∈ B ⊆ S = (A)b and b /∈ A, it implies b ∈ AAA ∪ ASASA. Now, two
cases arise:

Case 1: If b ∈ AAA, then b = a1a2a3, for some a1, a2, a3 ∈ A. As b /∈ A so, b �= a1,
b �= a2 and b �= a3. It implies a1, a2, a3 ∈ A. Since b = a1a2a3, so (b)b ⊆ (a1a2a3)b. It
follows that b �b a1a2a3 which contradict (2). Hence B is minimal subset of S such that
(B)b = S.

Case 2: If b ∈ ASASA, then b = a1sa2sa3, for some a1, a2, a3 ∈ A and s ∈ S. As b /∈ A
so, b �= a1, b �= a2 and b �= a3. It implies a1, a2, a3 ∈ A. Since b = a1sa2sa3, therefore
(b)b ⊆ (a1sa2sa3)b.
Thus, b �b a1sa2sa3 which contradict (3). Thus there exists no proper subset A of B such
that (A)b = S. Hence, B is bi-base of S. 	
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