1 Introduction

We consider the existence and compactness questions for elliptic systems of the form

$$\begin{aligned} \text{(QES) } \left\{ \begin{array}{ll} -div\sigma \left( x,u\left( x\right) ,Du\left( x\right) \right) = \mu &{}\quad \text{ in } \Omega \\ u = 0 &{}\quad \text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$
(1.1)

with measure-valued right hand side \(\mu \in M(\Omega ,I\!\!R^{m})\) on an open, bounded domain \(\Omega \) in \(I\!\!R^{n},\) we denote by \(M(\Omega ,I\!\!R^{m}),\) with \(m\in I\!\!N^{*},\) the Banach space of vectors \(\mu \) of bounded Radon measures

$$\begin{aligned} \mu = (\mu _{1},\ldots \mu _{m})\;\;\; with \;\;\; \mu _{i}\in M(\Omega )\;\;\;for \;\;i\;=\;1,\ldots ,m. \end{aligned}$$

With \(M(\Omega )\) be a vector space of bounded Radon measures.

\(\omega = \left\{ \omega _{ij} \mid 0\le i\le n, \, 1\le j\le m \right\} \) is a family of weight functions defined on \( \Omega \) with \(\omega _{ij}(x)>0 \) for almost every \(x \in \Omega \) and \(\omega ^{*} =\{\omega ^{*}_{ij}=\omega _{ij}^{1-p'}, 0 \le i \le n, \; 1\le j \le m\}\), \((\frac{1}{p}+ \frac{1}{P'}= 1).\) In this paper we are interested in the solution u in the Sobolev space \(W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m}),\) and estimations in the weak Lebesgues spaces. We assume that \(\sigma \) satisfies the following hypotheses \((H_{0})\)\((H_{3})\) explained below. We denote by \(I\!\!M^{m \times n}\) the real vector space of \(m\times n\) matrices equipped with the inner product \(\displaystyle M:N = \sum \nolimits _{ij} M_{ij}N_{ij}.\) The Jacobian matrix of a function \( u: \Omega \longrightarrow I\!\!R^{m} \) is denoted by

$$\begin{aligned} Du(x)=(D_{1}u(x),D_{2}u(x),\ldots ,D_{n}u(x))\; \text{ with } D_{i}=\partial /\partial x_{i}. \end{aligned}$$

Let \(\omega = \left\{ \omega _{i j} \mid \, 0\le i\le n,\ 1\le j\le m \right\} \), and \(\overline{\omega _{0}}= (\omega _{0j})\) for all \( 1\le j \le m\) the weight functions system defined in \(\Omega \) satisfying the following integrability conditions

$$\begin{aligned}{} & {} \omega _{ij} \in L_{loc}^{1}(\Omega ),\ \ \ \omega _{ij}^{\frac{-1}{p-1}}\in L_{loc}^{1}(\Omega ) \end{aligned}$$
(1.2)
$$\begin{aligned}{} & {} \omega _{ij}^{-s} \in L^{1}(\Omega ) \end{aligned}$$
(1.3)

for some \(s\in \left( \frac{n}{p}\,\ \infty \right) \cap \left( \frac{1}{p-1}\,\ \infty \right) .\) The space \(W^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) is the set of functions

$$\begin{aligned} \displaystyle \left\{ u= u(x) \mid u\in L^{p}(\Omega ,\overline{\omega _{0}},I\!\!R^{m}),\ D_{ij}u = \frac{\partial u^{i}}{\partial x_{j}} \in L^{p}(\Omega ,\omega _{ij},I\!\!R^{m}),\ 1\le i \le n,\ 1\le j \le m\}\right\} \end{aligned}$$

with

$$\begin{aligned} L^{p}(\Omega ,{\omega _{ij}},I\!\!R^{m})=\displaystyle \left\{ u= u(x) \mid \, \mid u\mid {\omega _{ij}}^{\frac{1}{p}} \in L^{p} (\Omega ,I\!\!R^{m})\right\} . \end{aligned}$$

The weighted space \( W^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) can be equipped by the norm

$$\begin{aligned} \displaystyle \left\| u\right\| _{1,p,\omega } =\displaystyle \left( \sum _{j=1}^{m} \int _{\Omega }|u_j|^{p} w_{0j}dx + \sum _{1 \le i \le n, 1 \le j \le m}\int _{\Omega }|D_{ij}u|^{p} \omega _{ij} dx\right) ^{\frac{1}{p}}. \end{aligned}$$

The norm \(\Vert \cdot \Vert _{1,\omega ,p}\) is equivalent to the norm \(\mid \mid \mid \cdot \mid \mid \mid \) on \( W_0^{1,p}(\Omega ,\omega ,I\!\!R^{m}),\) defined by \(\mid \mid \mid u \mid \mid \mid = \displaystyle (\sum \nolimits _{1 \le i \le n, 1 \le j \le m}\int _{\Omega }|D_{ij}u|^{p} \omega _{ij} dx)^{\frac{1}{p}}.\) The condition (1.2) implies \((W^{1,p}(\Omega ,\omega ,I\!\!R^{m}),\left\| \cdot \right\| _{1,p,\omega })\) is a Banach space and \(C_{0}^{\infty }(\Omega ,I\!\!R^{m})\) subspace of \((W^{1,p}(\Omega ,\omega ,I\!\!R^{m}).\) The space \((W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) is the closure of \(C_{0}^{\infty }(\Omega ,I\!\!R^{m})\) in \(W^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) for the norm \(\left\| \cdot \right\| _{1,p,\omega }^{p}.\) The condition (1.3), implies

$$\begin{aligned} W^{1,p}(\Omega ,\omega ,I\!\!R^{m})\hookrightarrow W^{1,p_{s}}(\Omega ,I\!\!R^{m})\hookrightarrow L^{r}(\Omega ,I\!\!R^{m}), \end{aligned}$$
(1.4)

for all \(1\le r\le p_{s}^{*}\) if \(p\times s\le n(s+1),\) and \(\forall r\ge 1\) if \(p\times s> n(s+1)\) with \(p_{s}=\frac{p\times s}{s+1}\) and \(p_{s}^{*}=\frac{n\times p\times s}{n(s+1)-p\times s},\)for proof see [1].

Our article deals with the existence of a weak solution of system declared at the top in each of the four cases located in the part of the hypotheses in \((H_{2})\) and in a Sobolev space with weights, but the article in [2] treats in a weightless Sobolev space.

2 Hypothesis

\((H_{0})\):

(Continuity) \(\sigma :\Omega \times I\!\!R^{m}\times I\!\!M^{m\times n}\longrightarrow I\!\!M^{m\times n}\) is a Carathéodory function, i.e:

\(x\longmapsto \sigma (x,u,p)\) is measurable for every (up) and \((u,p)\longmapsto \sigma (x,u,p)\) is continuous for almost every \(x\in \Omega .\)

\((H_{1})\):

(Coercivity and growth): There exist constants \(c_{1},\,c_{2},\,\beta >0\) and \(\lambda _{1}\in L^{p'}(\Omega )\), \(\lambda _{2}\in L^{1}(\Omega ),\) \(\lambda _{3}\in L^{(\frac{p}{\alpha })^{'}}(\Omega ),\) \(0<\alpha <p,\) \(1<q<\frac{p^{2}}{\alpha }\), \(0<\theta <\frac{n(p_{s}-1)}{n-1},\) such that, for all \(1\le r\le n\), and \(1\le s\le m\)

$$\begin{aligned} |\sigma _{rs}(x,u,F)|\le & {} \beta \omega _{rs}^{\frac{1}{p}}\left[ \lambda _{1}+c_{1}\sum _{j=1}^{m}\gamma _{j}^{\frac{1}{p'}}| u_{j}|^{\frac{q}{p'}}+c_{1}\sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{\theta }\right] \\ \sigma (x,u,F):F\ge & {} -\lambda _{2}-\sum _{j=1}^{m}\lambda _{3}\gamma _{j}^{\frac{\alpha }{p}}| u_{j}|^{\frac{q\alpha }{p}}+c_{2}\sum _{i,j}\omega _{ij}| F_{ij}|^{p}. \end{aligned}$$
\((H_{2})\):

(Monotonicity) \(\sigma \) satisfies one of the following conditions:

a) For all \(x\in \Omega ,\,u\in I\!\!R^{m}\) the function \(F\longmapsto \sigma (x,u,F)\) is a \(C^{1}\) and monotone function, which means \((\sigma (x,u,F)-\sigma (x,u,G)):(F-G)\ge 0,\) for all \(x\in \Omega \), \(u\in I\!\!R^{m}\), and \(F,G\in I\!\!M^{m\times n}.\)

b) There exist a function \(W:\Omega \times I\!\!R^{m}\times I\!\!M^{m\times n}\rightarrow R \) such that

\(\sigma (x,u,F)=\frac{\partial W}{\partial F}(x,u,F),\) and the function \(F\longmapsto W(x,u,F)\) is a convex \(C^1\) function.

c) \(\sigma \) is strictly monotone, i.e. \(\sigma \) is monotone, i.e., \((\sigma (x,u,F)-\sigma (x,u,G)):(F-G)\ge 0\) and \((\sigma (x,u,F)-\sigma (x,u,G)):(F-G)=0.\) implies \(F=G.\)

d) The function \(F\longmapsto \sigma (x,u,F)\) is strictly p-quasi-monotone, i.e.,

\(\int _{I\!\!M^{m\times n}}(\sigma (x,u,\lambda )-\sigma (x,u,\bar{\lambda })):(\lambda -\bar{\lambda })d\nu (\lambda )>0,\) for all homogeneous \(W^{1,p}\)-gradient Young measures \(\nu \) with center of mass \(\bar{\lambda }=\langle \nu ;\text{ Id }\rangle = \displaystyle \int _{I\!\!M^{m\times n}}\lambda d\nu (\lambda )\) which are not a single Dirac mass.

\((H_{3})\):

(structure conditions) i) (Angle condition) for all \(x\in \Omega ,\) \(u\in I\!\!R^{m}\) and \(F\in I\!\!M^{m\times n}\) there holds

\(\sigma (x,u,F):MF\ge 0\), for all matrices \(M\in I\!\!M^{m\times m}\) of the form \(M=\text{ Id }-a\otimes a\) with \(\left| a\right| \le 1.\) ii) (The sign condition) for all \(x\in \Omega ,\) \(u\in I\!\!R^{m}\) and \(F\in I\!\!M^{m\times n},\) we have \(\sigma _{j}(x,u,F):F_{j}\ge 0,\) for all \(1\le j\le m\) where \(F_{j}\) and \(\sigma _{j}\) are the columns j of the matrix F and \(\sigma ,\) respectively.

\((H_{4})\):

(The Hardy-Type Inequality) There exist \(c>0\), a weight function \(\gamma =(\gamma _{j})_{1\le j\le m}\), and a parameter \(1<q<\frac{p^{2}}{\alpha }\) (\(H_{1}\)), such that:

$$\begin{aligned} \left( \sum _{j=1}^{m}\int _{\Omega }\gamma _{j}\mid u_{j}\mid ^{q}dx\right) ^{\frac{1}{q}}\le c\left( \sum _{i,j}\int _{\Omega }\omega _{ij}\mid D_{ij}u\mid ^{p}dx\right) ^{\frac{1}{p}}. \end{aligned}$$

Remark 2.1

  1. 1.

    Assumption \((H_{0})\) ensures that \(\sigma (x,u(x),U(x))\) is measurable on \(\Omega \) for measurable function \(u:\Omega \longrightarrow I\!\!R^{m}\) and \(U:\Omega \longrightarrow I\!\!M^{m\times n}.\) A typical example for a function \(\sigma \) satisfying \((H_{0})\) is \(\sigma (x,u,p)=\xi (x,u,p)p\) with a real valued non-negative function \(\xi .\)

  2. 2.

    A serious technical obstacle is that for \(p_{s}\in (1,2-1/n]\) solutions of the system (1.1) in general do not belong to the Sobolev space \(W^{1,1}(\Omega ,\omega ,I\!\!R^{m})\) [2].

This fact has led to the use of normalized solutions in [2] and generalized entropy solutions in [3] for elliptic equations of the above type. We will use a notion of solution where the weak derivative Du is replaced by the approximate derivative \(\text{ apDu }.\) Recall that a measurable function u is said to be approximately differentiable at \(x\in \Omega \) if there exists a matrix \(F_{x}\in I\!\!M^{m\times n}\) such that for all \(\epsilon >0\), \(\displaystyle \lim _{r\rightarrow 0}\frac{1}{r^{n}}\text{ meas } \left\{ {y\in B(x,r):\left| u(y)-u(x)-F_{x}(y-x)\right| >\epsilon r}\right\} =0.\) We write \(\text{ apDu }(x)=F_{x}.\)

Definition 2.1

A measurable function \(u:\Omega \longrightarrow I\!\!R^{m}\) is called a solution of the system (1.1) if:

(i):

u is almost everywhere approximately differentiable.

(ii):

\(\eta \circ u\in W^{1,1}(\Omega ,\omega ,I\!\!R^{m}),\) for all, \(\eta \in C_{0}^{1}(I\!\!R^{m},I\!\!R^{m})\).

(iii):

\(\sigma (x,u, \text{ apDu})\in L^{1}(\Omega ,I\!\!M^{m\times n});\)

(iv):

The equation \(-div\sigma (x,u(x),Du(x))=\mu \) holds in the sense of distributions. Moreover we say that u satisfies the boundary condition (1.2) if \(\eta \circ u\in W_{0}^{1,1}(\Omega ,\omega ,I\!\!R^{m})\), for all, \(\eta \in C^{1}(I\!\!R^{m},I\!\!R^{m})\cap L^{\infty }(I\!\!R^{m},I\!\!R^{m})\) with \(\eta =\text{ Id }\) on B(0, r), for some \(r>0,\) and \(| D\eta (y)|\le c(1+| y|)^{-1},\) with \(c<\infty .\)

Remark 2.2

  1. 1.

    The conditions in Definition (2.1) (except (ii)) are the weakest possible in order to define the system (1.1) in the sense of distributions. Note that if u is approximately differentiable, then \(\text{ apDu }\) is measurable, so \(\sigma (\cdot , u,\text{ apDu})\) is measurable.

  2. 2.

    The assumption \(\eta \circ u \in W^{1,1}(\Omega ,I\!\!R^{m})\) ensures minimal regularity of u. For example, if \(\mu =0,\) and \(\sigma (x,u,p)=\sigma (p)\) with \(\sigma (0)=0,\) then piecewise constant functions u satisfy \(\text{ apDu }=0\) a.e. but are not admissible solutions. The following theorem is the main result in this paper.

Theorem 2.1

Let \(\Omega \) be a bounded, open set. We suppose that the hypotheses \((H_{0})\)\((H_{2})\)\((H_{3})\) and the coercivity condition in \((H_{1})\) are satisfied. Let \(\mu \) denote a \(I\!\!R^{m}\)-valued Radon measure on \(\Omega \) with finite mass. Then the system (1.1) has a solution u in the sense of Definition 2.1, which satisfies the weak Lebesgue space estimate

$$\begin{aligned} \Vert u\Vert _{L^{t^{*}_{p_{s},\infty }}(\Omega ,I\!\!R^{m})}^{*}+\Vert apDu\Vert ^{*}_{L^{t_{p_{s}, \infty }}(\Omega ,I\!\!M^{m\times n})}\le C, \end{aligned}$$
(2.1)

with the constant C depending on \(|\Omega |,c,c_{2},\text{ and } \parallel \lambda _{3}\parallel _{L^{(\frac{p}{\alpha })^{,}}(\Omega )},\) with \(t_{p_{s}}=\frac{n(p_{s}-1)}{n-1}\) and \(t_{p_{s}}^{*}=\frac{n(p_{s}-1)}{n-p_{s}}\) is the Sobolev exponent of \(t_{p_{s}}.\) If \(c_{2}=0\) the right hand side of (1.2) reduces to \(C(c_{1})\left\| \mu ^{\frac{1}{p-1}}\right\| _{M}.\)

Remark 2.3

  1. 1.

    If \(p_{s}>2-\frac{1}{n}\), then \(t_{p_{s}}>1\) and \(Du\in L^{1}(\Omega ,\) \({M}^{m\times n}).\)

  2. 2.

    If \(p> n\) one can replace the \(L^{s,\infty }\)-norm of u in (1.3) by the \(C^{0,\beta }\)-norm with \(\beta =1-\frac{n}{p}\). For \(p=q=n\) it is an open question whether \(Du\in L^{n,\infty }.\) See Section 7 [4] for the (weaker) inclusion \(u\in BMO_{loc}.\)

  3. 3.

    The exponent in (1.2) are optimal as can be seen from the nonlinear Green’s function \(G_{p}(x)=c\left| x\right| ^{\frac{-n}{s^{*}}}\) for the p-Laplace equation: \(-div(\left| Du\right| ^{p-2}Du)=\delta _{0}\) in \(I\!\!R^{m}\), \(n\ge 3.\) In particular, \(L^{s,\infty }\) cannot be replaced by \(L^{s}\) where \(L^{s,\infty }\), is a Laurent space.

  4. 4.

    The pointwise monotonicity condition can be replaced by a weaker integrated version, called quasi-monotonicity.

    The key point in the proof of the theorem, is the div-curl inequality for the Young measure \( \left\{ \vartheta _{x}\right\} _{x\epsilon \Omega }\) generated by a sequence \(Du_{k}\) of gradients of approximate solutions. Together with the identity. (1.4)

    \(\text{ apDu }(x)=<\vartheta _{x},Id>.\) The div-curl inequality implies easily that \(\sigma (\cdot ,u_{k},Du_{k})\) converges weakly in \(L^{1}\) to \(\sigma (\cdot ,u,\text{ apDu}).\) (1.4) is a consequence of general properties of young measures if \(p>2-\frac{1}{n}\) since in this case \(Du_{k}\) is bounded in \(L^{s}\) for some \(s>1.\) If \(1<p\le 2-\frac{1}{n}\) one only has the weaker bounds.

3 Some preliminary lemmas

In this section, we will also use the Young measures, and Inequality div-curl for assume the convergence of subsequence \(u_{k}\longrightarrow u\) in measure and for almost every subsequence, with u is approximately differentiable, and \(\text{ apDu } = <\nu _{x},\text{ Id }>,\) \(\nu _{x}\) is the Young measures generated by a sequence \(Du_{k}.\)

Lemma 3.1

Let \(u_{k:}:\Omega \longrightarrow I\!\!R^{m}\) a sequence of measurable functions such that:

$$\begin{aligned} \sup _{k\in I\!\!N}\int _{\Omega }| u_{k}|^{s}dx<+\infty \ \text{ for } \text{ some } s>0. \end{aligned}$$
(3.1)

We suppose that for each \(\alpha >0\) the sequence of truncated functions \(\left\{ T_{\alpha }(u_{k})\right\} _{k\in I\!\!N}\) is precompact in \(L^{1}(\Omega ,I\!\!R^{m}).\) Then there exists a measurable function u on \(\Omega \) such that for a subsequence \(u_{k}\longrightarrow u\) in measure.

Proof

Choose a subsequence of \(\left\{ u_{k}\right\} \) (not relabeled) which generates a Young measure \(\{\vartheta _{x}\}_{x\in \Omega }.\) By 3.1 and Theorem (Young, Tartar, Ball) the measure \(\nu _{x}\) are probability measure for almost every a \(x\in \Omega \) and \(T_{\alpha }(u_{k})\longrightarrow v_{\alpha }=\langle \nu _{x};T_{\alpha }\rangle ,\) weakly in \(L^{1}(\Omega ,I\!\!R^{m})\) and in fact strongly since \(T_{\alpha }(u_{k})\) is precompact in \(L^{1}.\) Consequently there exists a subsequence such that \(T_{\alpha }(u_{k_{l}})\longrightarrow v_{\alpha }\) almost uniformly, i.e.

$$\begin{aligned} T_{\alpha }(u_{k_{l}})\longrightarrow v_{\alpha }\ \text{ uniformly } \text{ up } \text{ to } \text{ a } \text{ set } \text{ of } \text{ arbitrary } \text{ small } \text{ measure. } \end{aligned}$$
(3.2)

Let \(M_{\alpha }=\left\{ x\in \Omega :| v_{\alpha }(x)\mid <\alpha \right\} .\) Then for each \(\epsilon >0\) and \(\delta >0\) there exists a set \(E_{\epsilon }\) of measure meas\((E_{\epsilon })<\epsilon \) and an index \(l_{0}(\epsilon ;\delta )\) such that: \(| T_{\alpha }(u_{k_{l}})|<| v_{\alpha }(x)|+\delta \) for all \(x\in M_{\alpha }{\setminus } E_{\epsilon }\) and all \(l>l_{0}.\) It follows that \(u_{k_{l}}(x)\longrightarrow v_{\alpha }(x)\) for almost every\(x\in M_{\alpha }{\setminus } E_{\epsilon }\) consider first \(x\in M_{\beta };\,\beta <\alpha \) and then the union over \(\beta <\alpha )\). Since \(\varepsilon >0\) was arbitrary it follows that \(\nu _{x}=\delta _{v_{\alpha }}(x)\) for almost every \(x\in M_{\alpha }\) In view of the Ball’s theorem it suffices to show that \(\cup M_{\alpha }\) has full measure. Now clearly \(M_{\alpha }\subset M_{\beta }\) for \(\alpha <\beta \) since \(T_{\beta }(u_{k_{l}})\longrightarrow T_{\beta }(v_{\alpha })\;=\; v_{\alpha }\) almost everywhere in \(M_{\alpha }\) and therefore\(v_{\alpha }\;=\;v_{\beta }\) on \(M_{\alpha }.\) By (3.2) there exists for each \(\epsilon >0\) a set \(E_{\epsilon },\) and an index \(l_{0}(\epsilon ,\alpha )\) such that meas \((E_{\epsilon })<\epsilon \) and \(\mid u_{k_{l}}\mid \;\ge \;\mid T_{\alpha }(u_{k_{l}})\mid \;\ge \;\frac{\alpha }{2}\) on \((\Omega {\setminus } E_{\epsilon }){\setminus } M_{\alpha }\) for all \(l\ge l_{0}.\) In view of (3.2) this implies meas \(((\Omega {\setminus } E_{\epsilon }){\setminus } M_{\alpha })\le \frac{c}{\alpha ^{s}} \epsilon \longrightarrow 0\) we deduce meas\((\Omega {\setminus }\cup M_{\alpha })\) = \(\lim _{\alpha \longrightarrow \infty }\text{ meas }(\Omega {{\setminus }} M_{\alpha })=0\) \(\square \)

Lemma 3.2

Let \(\Omega \) be a domain in \(I\!\!R^{n}\) with \(|\Omega |<\infty \) and \(u_{k}\in W^{1,1}(\Omega ,I\!\!R^{m}).\) Suppose that there exist \(p>1\) and \(s>0\) such that:

$$\begin{aligned} \sup _{k}\sum _{ i,j}\displaystyle \int _{| u_{k}|\le \alpha }\omega _{ij}| D_{ij}u_{k}|^{p}dx\le c(\alpha )<\infty ,\ \forall \alpha >0, \end{aligned}$$
(3.3)

and \(\sup _{k\in I\!\!N}\displaystyle \int _{\Omega }| u_{k}|^{s}dx\le c<\infty .\) Then there exist a subsequence \(u_{k_{j}}\) and a measurable function \(u:\Omega \longrightarrow I\!\!R^{m}\) such that \(u_{k_{j}}\longrightarrow u\) in measure. Moreover u is for almost every \(x\in \Omega \) approximately differentiable, for all \(\eta \in C_{0}^{1}(\Omega ,I\!\!R^{m})\) there holds \(\eta \circ u\in W^{1,p}(\Omega ,\omega ,I\!\!R^{m}).\) if \(u_{k}\in W_{0}^{1,1}(\Omega ,I\!\!R^{m})\) then \(\eta \circ u\in W_{0}^{1,1}(\Omega ,I\!\!R^{m})\cap W^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) provided that \(\eta =\text{ Id }\) on B(0, r) for some \(r>0.\)

Proof

Choose

$$\begin{aligned} (u_{k})_{\alpha }=\left\{ \begin{array}{ll} u_{k} &{}\quad \text{ if } \quad |u_{k}|\le \alpha , \\ 0 &{}\quad \text{ if } \quad |u_{k}|>\alpha . \end{array} \right. \end{aligned}$$

For the hypotheses:

$$\begin{aligned} \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}(u_{k})_{\alpha }|^{p}dx=\sum _{i,j}\int _{| u_{k}|\le \alpha } \omega _{ij}| D_{ij}u_{k}|^{p}dx\le c(\alpha ) <\infty . \end{aligned}$$

Then, \((u_{k})_{\alpha }\in W_{0}^{1,1}(\Omega ,w,I\!\!R^{m})\) and for (1.4), \((H_{4})\) and \(|D| u||\le | Du|\) we have

$$\begin{aligned} \int _{\Omega }| DT_{\alpha }(| u_{k}|)|^{p_{s}}dx= & {} \int _{| u_{k}|\le \alpha }| D| u_{k}|)|^{p_{s}}dx\\\le & {} \sum _{i,j } \int _{\Omega }\omega _{ij}| D_{ij}(u_{k})_{\alpha }|^{p}dx\\\le & {} c(\alpha ) <+\infty \end{aligned}$$

Hence by the compact Sobolev embedding \(W_{s}^{1,p_{s}}(\Omega )\hookrightarrow \hookrightarrow L^{p_{s}}(\Omega ),\) we have \(\{T_{\alpha }(| u_{k}|)\}\) is precompact in \(L^{1}(\Omega ).\) And, if \(\eta \in C_{0}^{\infty }\left( B(0,3\alpha ),I\!\!R^{m}\right) \) a symmetric radial such that \(\eta = \text{ Id }\) on \(B(0,2\alpha ),\) then by (1.2) and (3.3) \(\displaystyle \sum \nolimits _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}\left( \eta (u_{k})\right) |^{p}dx= \displaystyle \sum \nolimits _{ij}\int _{\mid u_{k}|\le \alpha }\omega _{ij}| D_{ij}(u_{k})|^{p}dx+\sum \nolimits _{i,j}\int _{\alpha<| u_{k}|\le 2\alpha }\omega _{ij}| D_{ij}(id)|^{p}dx+\sum \nolimits _{i,j}\int _{2\alpha<| u_{k}|\le 3\alpha }\omega _{ij}| D_{ij}\left( \eta (u_{k})\right) |^{p}dx\le c(\alpha )+c\sum \nolimits _{i,j}\parallel \omega _{ij}\parallel _{L_{loc}^{1}(\Omega )}+c<\infty .\) Then, by (1.4), \(\eta (u_{k})\) is precompact in \(L^{p_{s}}(\Omega ,I\!\!R^{m})\), and as in Lemma 8 [2], there exist a measurable function \(u:\Omega \longrightarrow I\!\!R^{m}\) such that \(u_{k}\longrightarrow u\) in measure, with \(u(x)=<\vartheta _{x},\text{ Id }>\) for almost every \(x\in \Omega \) and u is approximately differentiable because \(\eta (u_{k})\rightharpoonup \eta (u)\) in \(W^{1,P}(\Omega ,\omega ,I\!\!R^{m})\) and \(apDu=ap(\eta \circ u)\). \(\square \)

Lemma 3.3

Let \(u_{k}\) be as in Lemma (3.2) with \(p>1.\) Then the Young measure \(\vartheta _{x}\) generated by (a subsequence of) \(Du_{k}\) has the following properties:

(a):

\(\vartheta _{x}\) is a probability measure for almost every \(x\in \Omega \).

(b):

\(\vartheta _{x}\) has finite \(p_{s}\)-th- moment for almost every \(x\displaystyle \in \Omega \), i.e., \(\int _{M^{m\times n}}\mid \lambda \mid ^{p_{s}}d\vartheta _{x}(\lambda )\) is finite for almost every \(x\in \Omega \).

(c):

\(\vartheta _{x}\) satisfies \(<\vartheta _{x},\text{ Id }>= \text{ apDu }(x)\) almost everywhere in \(\Omega .\)

(d):

\(\vartheta _{x}\) is a homogeneous \(W^{1,P_s}\)-gradient young measure for almost every \(x\in \Omega .\)

Proof

Let \(\widetilde{\vartheta _{x}}\) denote the Young measure generated by (a subsequence of) the sequence \(\{u_{k},Du_{k}\}.\) By Lemma 3.2 we have:

$$\begin{aligned} \widetilde{\vartheta _{x}}=\delta _{u(x)}\otimes \vartheta _{x}. \end{aligned}$$

Let \(\eta \in C_{0}^{\infty }(B(0,2\alpha ),\ I\!\!R^{m}),\) \(\eta =Id\) on \(B(0,\alpha ),\) and let \(\vartheta ^{\eta }\) be the Young measure generated by

$$\begin{aligned} D(\eta \circ u_{k})=(D\eta )(u_{k})Du(x), \end{aligned}$$

then \(\vartheta ^{\eta }\) is a probability measure, has finite p-th moment and

$$\begin{aligned} <\vartheta ^{\eta },Id>\,=(D(\eta \circ u))(x)=D\eta (u(x)) \text{ apDu }(x). \end{aligned}$$

It follows for \(\varphi \in C_{0}^{\infty }(M^{m\times n}),\) that:

$$\begin{aligned} \varphi (D(\eta \circ u_{k}))\rightharpoonup \langle \vartheta ^{\eta },\varphi \rangle =\int _{M^{m\times n}}\varphi (\lambda )d\vartheta _{x}^{\eta }(\lambda ). \end{aligned}$$

Based on the proof (3.2), we have \(\sum _{i,j}\int _{\Omega }|\omega _{ij} D_{ij}(\eta \circ u_{k})|^{p}dx<\infty ,\) and by (1.4)

\(\sup _{k\in I\!\!N}\int _{\Omega }| D(\eta \circ u_{k})|^{p_{s}}dx<\infty ,\) and the (Ball’s Theorem, proof lemma 9 [2]) we conclude (a)-(b)-(c)- and (d). \(\square \)

4 Approximate solutions and a priori bounds

We introduce the following approximating problems

$$\begin{aligned}{} & {} -div\sigma (x,u_{k},Du_{k})=f_{k\,\,\,}in\,\Omega . \end{aligned}$$
(4.1)
$$\begin{aligned}{} & {} u_{k}=0\,\,\,on\,\partial \Omega . \end{aligned}$$
(4.2)

With \(f_{k}\in W^{-1,p^{'}}(\Omega ,\omega ^{*},I\!\!R^{m})\cap L^{1}(\Omega ,I\!\!R^{m})\) and \(f_{k}\rightharpoonup ^*\mu \;in\;M(\Omega ,I\!\!R^{m})\) such that \(\parallel f_{k}\parallel _{L^{1}(\Omega ,I\!\!R^{m})}\le \parallel \mu \parallel _{M(\Omega ,I\!\!R^{m})}.\) By [5] and using the assumptions \((H_{0}),\) \((H_{1})\),\((H_{2})\) and \((H_{4}),\) the problem (4.1) and (4.2) has a solution \(u_{k}\) \(u_{k}\in W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) \(u_{k}\) is the subsequence approximates solutions of (1.1). The results of Theorem (2.1) is the consequence of the following proposition

Proposition 4.1

Let, \(f\in L^{1}(\Omega ,I\!\!R^{m})\) and \(\sigma \) satisfies \((H_{0}),\) the coercivity of \((H_{1})\) and \((H_{3}).\) If \(u\in W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) is a solution of

$$\begin{aligned} -div\sigma (x,u,Du)= f \quad in\,\Omega . \end{aligned}$$
(4.3)

in the sense of distributions. Then

$$\begin{aligned} u\in L^{t_{p_{s}}^{*},\infty }(\Omega ,I\!\!R^{m}),\quad Du\in L^{t_{p_{s}},\infty }(\Omega ,I\!\!R^{m}) \end{aligned}$$

and

$$\begin{aligned}{} & {} \parallel u\parallel _{L^{t_{p_{s}}^{*},\infty }(\Omega ,I\!\!R^{m})}^{*}+\parallel Du\parallel _{L^{t_{p_{s}},\infty }(\Omega ,M^{m\times n})}^{*}\\{} & {} \quad \le C\bigg (|\Omega |,\parallel \lambda _{1}\parallel _{L^{1}(\Omega )},\parallel \lambda _{3} \parallel _{L^{(\frac{p}{\alpha })^{'}}(\Omega )},\parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}\bigg ) \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u|^{p}dx\\{} & {} \quad \le M\alpha +L,\quad \forall \alpha >0, \end{aligned}$$

M and L are the constants depending on:

$$\begin{aligned} \parallel \lambda _{1}\parallel _{L^{1}(\Omega )},\parallel \lambda _{3}\parallel _{L^{(\frac{p}{\alpha })^{'}}(\Omega )}, \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})},c_{2}. \end{aligned}$$

Proof

We suppose the condition of l’angle in \((H_{3}).\) Let \(\alpha >0.\) Testing \(T_{\alpha }(u)\) in (4.3) and we use the coercivity condition in \((H_{1}),\) and Hölder inequality, we have

$$\begin{aligned}{} & {} c_{2}.\sum _{i,j}\int _{| u|\le \alpha }\omega _{ij} |D_{ij}u|^{p}dx\le \alpha \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}+\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}\nonumber \\{} & {} \quad +\,c\parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) ^{'}}}\left( \sum _{j=1}^{m}\int _{| u|\le \alpha }\gamma _{j}\mid u_{j}\mid ^{q}dx\right) ^{\frac{\alpha }{p}} \end{aligned}$$
(4.4)

Choose:

$$\begin{aligned} (u)_{\alpha }= \left\{ \begin{array}{ll} u&{}\quad \text{ if } \quad | u|\le \alpha , \\ 0 &{}\quad \text{ if } \quad | u|>\alpha . \end{array} \right. \end{aligned}$$

Then \(u\in W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) because \(u\in W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) and by Hardy-Type inequality

$$\begin{aligned} \displaystyle \sum _{j}^{m}\int _{| u|\le \alpha }\gamma _{j} | u_{j}|^{q}dx= & {} \displaystyle \sum _{j}^{m}\int _{| u|\le \alpha }\gamma _{j}|(u_{\alpha })_{j}|^{q}dx\\\le & {} c\left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij} |D_{ij}u_{\alpha }|^{p}dx\right) ^{\frac{q}{p}}\\\le & {} c\left( \displaystyle \sum _{i;j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u_{\alpha }|^{p}dx\right) ^{\frac{q}{p}} \end{aligned}$$

By (4.4)

$$\begin{aligned} c_{2}\left( \sum _{ij}\int _{|u|\le \alpha }\omega _{ij}|D_{ij}u|^{p}dx\right)\le & {} \alpha \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}+\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}\\{} & {} +\,c\parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) ^{'}}}. \left( \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u|^{p}dx\right) ^{\frac{\alpha q}{p^{2}}} \end{aligned}$$

and \(\frac{\alpha q}{p^{2}}<1.\) Then

$$\begin{aligned} \left( \sum _{ij}\int _{|u|\le \alpha }\omega _{ij}|D_{ij}u|^{p}dx\right) \le c\left( \alpha \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})} +\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}\right) \le M\alpha +L, \end{aligned}$$
(4.5)

with \(L=L\left( c,\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}, c\parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) ^{.}}}\right) \) and \(M=M\left( c_{1},c_{2}\parallel \lambda _{3}\parallel ,{\parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}}\right) ,\) we choose \(u^{\alpha }=\min (|u|,\alpha ),\) then by \(|D|u||\le | Du|\)

$$\begin{aligned}{} & {} \displaystyle \int _{\Omega }| Du^{\alpha }|^{p_{s}}dx=\displaystyle \int _{| u|\le \alpha }| D| u||^{p_{s}}dx+0\le \displaystyle \int _{| u|\le \alpha }| Du|^{p_{s}}dx= \displaystyle \int _{\Omega }| Du_{\alpha }|^{p_{s}}dx\\{} & {} \quad \le \left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}u_{\alpha }|^{p}dx\right) ^{\frac{p_{s}}{p}}=\left( \displaystyle \sum _{i,j} \int _{|u|\le \alpha }\omega _{ij}|D_{ij}u|^{p}dx\right) ^{\frac{p_{s}}{p}} \end{aligned}$$

And by (4.5), and \(p_{s}\le p,\) we have:

$$\begin{aligned} \displaystyle \int _{\Omega }| Du^{\alpha }|^{p_{s}}dx\le c\left( \alpha \parallel f\parallel _{| L^{1} (\Omega ,I\!\!R^{m})}+\parallel \lambda _{1}\parallel _{L^{1}(\Omega )}\right) . \end{aligned}$$
(4.6)

By (1.4) and (4.6), we have

$$\begin{aligned} \displaystyle \int _{\Omega }|u^{\alpha }|^{p_{s}^{*}}dx\le c\left( \displaystyle \int _{\Omega }| Du^{\alpha }|^{p_{s}}dx\right) ^{\frac{p_{s}^{*}}{p}} \le c\left( \alpha \parallel f\parallel _{L^{1}(\Omega ;I\!\!R^{m})} +\parallel \lambda _{1}\parallel _{L^{1}(\Omega )}\right) ^{\frac{p_{s}^{*}}{p}} \end{aligned}$$
(4.7)

Then

$$\begin{aligned} \lambda _{| u|}(\alpha )= & {} \alpha ^{-p_{s}^{*}}\int _{| u|>\alpha }\alpha ^{p_{s}^{*}}dx \le \alpha ^{-p_{s}^{*}}\int _{| u|>\alpha }| u^{\alpha }|^{p_{s}^{*}}dx\nonumber \\\le & {} c\alpha ^{-p_{s}^{*}}\left( \alpha \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})} +\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}\right) ^{\frac{p_{s}^{*}}{p}} \end{aligned}$$
(4.8)

and we continue in the same way as in a case that is non-degenerated [2] by replacing p by \(p_{s}\) as well as

$$\begin{aligned} \Vert u\Vert ^{*}_{L^{{t^{*}_{p_{s}}},\infty }}(\Omega ,I\!\!R^{m})= & {} \sup _{\alpha>0}\alpha |\lambda _{| u|}(\alpha )|^{\frac{1}{t^{*}_{p_{s}}}}\\\le & {} |\Omega |+\sup _{\alpha >1}\alpha |\lambda _{|u|}(\alpha )|^{\frac{1}{t^{*}_{p_{s}}}}\\\le & {} |\Omega |+c(\parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}^{\frac{1}{p_{s}-1}},\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}^{\frac{1}{p_{s}-1}}) \end{aligned}$$

i.e.

$$\begin{aligned} \Vert u\Vert ^{*}_{L^{t_{p_{s}}^{*},\infty }}(\Omega ,I\!\!R^{m}) \le c\left( |\Omega |,\parallel \lambda _{2}\parallel _{L^{1}(\Omega )},\parallel \lambda _{3} \parallel _{L^{\left( \frac{p}{\alpha }\right) _{(\Omega )}^{'};}}c_{2},\parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}\right) , \end{aligned}$$
(4.9)

on the other hen, by using \((p_{s}\le p)\) and thinks to (1.4), we obtain

$$\begin{aligned} \lambda _{| Du|}(s)\le & {} s^{-p_{s}}\displaystyle \int _{| u|\le \alpha }| Du|^{p_{s}}dx+\lambda _{| u|}(\alpha )\\= & {} s^{-p_{s}}\displaystyle \int _{| u|\le \alpha }| Du_{\alpha }|^{p_{s}}dx+\lambda _{| u|}(\alpha ) \\\le & {} s^{-p_{s}}\left( \displaystyle \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u_{\alpha }|^{p}dx\right) +\lambda _{| u|}(\alpha )\\\le & {} s^{-p_{s}}\left( \displaystyle \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u|^{p}dx\right) +\lambda _{| u|}(\alpha ) \end{aligned}$$

By (4.5) and (4.8):

$$\begin{aligned} \lambda _{| Du|}(s)\le c\left( \max \left( \frac{\alpha }{s^{p_{s}}}, \frac{1}{s^{p_{s}}}\right) +\max \left( \alpha ^{-p_{s}^{*}},\alpha ^{\frac{p_{s}^{*}}{p_{s}}-p_{s}^{*}}\right) \right) \end{aligned}$$

or \(-t_{p_{s}}^{*}=\frac{p_{s}^{*}}{p_{s}}-p_{s}^{*},\) so as in [6]

$$\begin{aligned} \parallel Du\parallel _{L^{t_{p_{s}}, \infty }(\Omega , M^{m\times n})}^{*}\le c\left( |\Omega |, \parallel \lambda _{2}\parallel _{L^{1}(\Omega )}, \parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) _{(\Omega )}^{'}}},c_{2},\parallel f\parallel _{L^{1}(\Omega ;I\!\!R^{m})}\right) . \end{aligned}$$
(4.10)

From (4.5), (4.9) and (4.10), we obtain the result of the proposition (4.1) in case i). ii)-Suppose the angle condition in (\(H_{3}\)), let \( S_{\alpha }(y)=\left( T_{\alpha }(y_{1}); T_{\alpha }(y_{2});\ldots T_{\alpha }(y_{m})\right) ,\) \(y\in I\!\!R^{m},\) the cubic truncation, we have \(Ds_{\alpha }(y)=\text{ Id }\) if \(| y|_{max}=\max _{1\le i\le m}| y_{i}|\le \alpha ,\) in the same way as in i)- by testing \( S_{\alpha }(u)\) in (4.3). Then \(\displaystyle \int _{\Omega }\sigma (x,u,Du):D(S_{\alpha }(u))dx = \displaystyle \int _{\Omega }f \cdot S_{\alpha }(u)dx\) or

and like \(\displaystyle \sum \nolimits _{i=1}^{m}\sigma _{i}(x,u,Du):Du_{i}dx=\sigma (x,u,Du):Du.\) By the coercivity condition in \((H_{1})\) and the Hölder Inequality we obtain:

$$\begin{aligned} c_{2}\displaystyle \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| D_{ij}u|^{p}dx\le&\,\sqrt{m}.\alpha \parallel f\parallel _{L^{1}(\Omega ;I\!\!R^{m})}+\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}\\&+ c\parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) _{(\Omega )}^{'}}} \left( \sum _{j=1}^{m}\int _{\mid u|\le \alpha }\gamma _{j}| u_{j}|^{q}dx\right) ^{\frac{q}{p}} \end{aligned}$$

and we continue in the same way as in i), this completes the proof of the Proposition (4.1) \(\quad \square \)

5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to the limit in the Eq. (4.1) for the solution \(\{u_{k}\}_{k\in I\!\!N}\) of approximating problems. Since it is independent of the differential equation we state it a more general form using only the hypotheses (5.1)–(5.8) below:

$$\begin{aligned} \sigma ;\tau :\Omega \times I\!\!R^{m}\times M^{m\times n}\longrightarrow M^{m\times n}, \end{aligned}$$
(5.1)

is a Carathéodory function.

$$\begin{aligned} \sigma \text{ and } \tau \text{ satisfing } \text{ one } \text{ of } \text{ the } \text{ fellowing } \text{ conditions: } \end{aligned}$$
(5.2)
(i):

\(\sigma (x,u,F):MF\ge 0\), \(\tau (x,u,F):MF\ge 0\); \(M=\text{ Id }-b\otimes b\in M^{m\times n},\) with \(|b|\le 1.\)

(ii):

\(\sigma _{j}(x;u;F):F_{j}\ge 0\), and \(\tau _{j}(x,u,F):F_{j}\ge 0;\) \(1\le j\le m\), \(\sigma _{j},\) \(\tau _{j}\) and \(F_{j}\) is the \(j^{eme}\) columns of \(\sigma , \ \tau ,\ F.\)

$$\begin{aligned}{} & {} u_{k}\in W^{1;1}(\Omega ,I\!\!R^{m}) \text{ and } \text{ there } \text{ exists } \text{ an } s\ge 0 \text{ such } \text{ that } \int _{\Omega }\mid Du_{k}\mid ^{s}dx\le c \text{ uniformly } \text{ in } k\nonumber \\ \end{aligned}$$
(5.3)
$$\begin{aligned}{} & {} \text{ The } \text{ sequence } \sigma _{k}(x)=\sigma (x,u_{k},Du_{k}) \text{ is } \text{ equiintegrale. } \end{aligned}$$
(5.4)
$$\begin{aligned}{} & {} \text{ The } \text{ sequence } u_{k} \text{ converges } \text{ in } \text{ measure } \text{ to } \text{ some } \text{ function } u,\nonumber \\{} & {} \quad \text{ and } u \text{ is } \text{ almost } \text{ everywhere } \text{ approximately } \text{ differentiable. } \end{aligned}$$
(5.5)
$$\begin{aligned}{} & {} \text{ The } \text{ sequence } f_{k}=-div(\sigma _{k}+\tau _{k})-\mu \text{ is } \text{ bounded } \text{ in } L^{1}(\Omega ,I\!\!R^{m}). \end{aligned}$$
(5.6)
$$\begin{aligned}{} & {} D_{ij}u_{k}\in L_{loc}^{r}(\Omega ,\omega _{ij},M^{m\times n}) \text{ and } (\sigma _{k}+\tau _{k})\in L_{loc}^{r^{,}}(\Omega ,w^{*},M^{m\times n}), \text{ for } \text{ some } \nonumber \\{} & {} 1\le r\prec \infty \text{ and } (1\le i\le n,\ 1\le j\le m.) \end{aligned}$$
(5.7)
$$\begin{aligned}{} & {} \text{ The } \text{ sequence } \tau _{k}(x)=\tau [x](x,u,Du_{k}) \text{ converges } \text{ to } \text{ weakly } \text{ to } 0 \text{ in } L^{1}(\Omega ,M^{m\times n}). \end{aligned}$$
(5.8)

Lemma 5.1

Suppose (5.1)–(5.8). Then (after passage to a subsequence) the sequence \(\sigma _{k}\) converges weakly in \(L^{1}(\Omega ,M^{m\times n})\) and the weak limit \(\overline{\sigma }\) is given by \(\overline{\sigma }(x)= \langle \nu _{x};\sigma (x,u(x),\,.)\rangle .\) Moreover the following inequality holds:

$$\begin{aligned} \displaystyle \int _{M^{m\times n}},\sigma (x,u(x),\lambda ):\lambda d\nu _{x}(\lambda )\le \overline{\sigma }(x):apDu(x) \text{ for } \text{ a.e. } x\in \Omega . \end{aligned}$$
(5.9)

Proof

See [6] \(\square \)

6 Passage to the limit

Proposition 6.1

Suppose that the sequence \((u_{k})_{k\in I\!\!N}\) satisfies the hypotheses (5.1)–(5.7), \((H_{2})\) and that the Young measure \(\nu \) generated by the sequence \((Du_{k})_{k\in I\!\!N}\) satisfies: a)-c) and d)- in Lemma (3.3). Then the sequence \((\sigma _{k})\) is weakly converge in \(L^{1}(\Omega ,M^{m\times n}),\) with \(\overline{\sigma }\) is the limit and \(\overline{\sigma (x)}=\langle \nu _{x},u(x),\text{ apDu }(x)\rangle .\) If in \((H_{2})\) b)- c)-or d)-holds, \(\sigma (x,u_{k},Du_{k})\rightarrow \sigma (x,u,\text{ apDu})\) strongly in \(L^{1}(\Omega ,M^{m\times n}).\)

In the cases (c) and (d) it follows addition that \(Du_{k}\rightarrow apDu\) in measure.

Proof

See [6].

Proof of the Theorem 2.1

Case: \(\theta =p-1\) For using the results of Proposition (6.1): we assume that (5.1)–(5.7) and the Young measure \(\nu _{x}\) generated by the sequence \(Du_{k}\) satisfies:(i), (ii) and (iii) in Lemma(3.3), for the approximate systems (4.1) and (4.2). By the proposition 6.1, with \(u_{k}\in W_{0}^{1,p}(\Omega ,w,I\!\!R^{m}),\) we have: \(\parallel \mu \parallel _{L^{t_{p_{s}}^{*},\infty }(\Omega ,I\!\!R^{m})}\le c\left( |\Omega |,\parallel \lambda _{2}\parallel _{L^{1}(\Omega )},\parallel \lambda _{3} \parallel _{L^{\left( \frac{p}{\alpha }\right) _{(\Omega )}^{'}}},c_{2}, \parallel \mu \parallel _{M(\Omega ,\omega ^{*},I\!\!R^{m})}\right) \) and

$$\begin{aligned} \sum _{i,j}\int _{| u_k|\le \alpha }\omega _{ij}| D_{ij}u_k|^{p}dx\le M\alpha +L<\infty . \end{aligned}$$
(6.1)

By \(L^{t_{p_{s}}^{*},\imath \infty }(\Omega ,I\!\!R^{m})\hookrightarrow L^{p}(\Omega ,I\!\!R^{m})\) for all \(1< p< t_{p_{s}}^{*},\) then

$$\begin{aligned} \parallel u_{k}\parallel _{L^{p}(\Omega ,I\!\!R^{m})}\le c<\infty . \end{aligned}$$
(6.2)

Now

  • (5.1) is \((H_{0})\)

  • (5.2) is \((H_{3})\)

  • (5.3): \(u_{k}\in W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\hookrightarrow W_{0}^{1,p_{s}}(\Omega ,I\!\!R^{m})\) with \(p_{s}>1,\) then \(u_{k}\in W^{1,1}(\Omega ,I\!\!R^{m}).\) Moreover, by the proposition

    $$\begin{aligned} \parallel Du_{k}\parallel _{L^{t_{p_{s}},\infty }(\Omega ,I\!\!R^{m})} \le c\left( |\Omega |,\parallel \lambda _{2}\parallel _{L^{1}(\Omega )}, \parallel \lambda _{3}\parallel _{L^{\left( \frac{p}{\alpha }\right) _{(\Omega )}^{'}}},c_{2}, \parallel \mu \parallel _{M(\Omega ,\omega ^{*}, I\!\!R^{m})}\right) \end{aligned}$$

    hence

    $$\begin{aligned} \parallel Du_{k}\parallel _{L^{s}(\Omega ,M^{m\times n})}\le c>\infty ,\ \forall \ 1<s<t_{p_{s}} \end{aligned}$$

    with \(\sup _{k\in I\!\!N}\displaystyle \int _{\Omega }| Du_{k}|^{s}dx<\infty .\)

  • (5.4): Let A a measurable in \(\Omega \), by \((H_{1})\) and Hölder we have

    $$\begin{aligned} \displaystyle \int _{A} |\sigma (x,u_{k},Du_{k})|dx\le & {} c\left( \displaystyle \sum _{r,s}\int _{\Omega }\omega _{rs}dx\right) ^{\frac{1}{p}}.\left[ \parallel \lambda _{1}\parallel _{L^{p^{'}}(\Omega )}\right. \\{} & {} \left. +\,\left( \displaystyle \sum _{j=1}^{m}\int _{\Omega }\gamma _{j}|(u_{k})_{j}|^{q}dx\right) ^{\frac{1}{p^{'}}} +\left( \displaystyle \sum _{i;j}\int _{\Omega }\omega _{ij}| D_{ij}u_{k}|^{p}dx\right) ^{\frac{1}{p^{'}}}\right] , \end{aligned}$$

    and with (1.4) and (1.2):

    $$\begin{aligned} \displaystyle \int _{A}|\sigma (x,u_{k},Du_{k})| dx\le & {} c\left( \displaystyle \sum _{r,s}\parallel \omega _{rs}\parallel _{L_{loc}^{1}(\Omega )}^{\frac{1}{p}}\right) \\{} & {} \times \Bigg [\parallel \lambda _{1}\parallel _{L^{p'}(\Omega )}+\parallel u_{k} \parallel _{1,p,\omega }^{\frac{q}{pp'}}+\parallel u_{k}\parallel _{1,p,\omega }^{\frac{p}{p'}}\Bigg ] <\infty . \end{aligned}$$
  • (5.5): By (6.1) and (6.2) and Lemma (3.2).

  • (5.6): \(\parallel f_{k}\parallel _{L^{1}(\Omega ,I\!\!R^{m})}\le \parallel \mu \parallel _{M(\Omega ,\omega ^{*},I\!\!R^{m})}\).

  • (5.7): \(\forall \varepsilon >0\) and \(x_{0}\in \Omega \) \(\displaystyle \int _{B(x_{0},\varepsilon )}|D_{ij}u_{k}|^{p}\omega _{ij}dx\le \parallel u_{k}\parallel _{1,p,\omega }^{p}<\infty \) and by \((H_{3})\) we implies

    $$\begin{aligned} \displaystyle \int _{B(x_{0},\varepsilon )}|\sigma _{rs}(x,u_{k},Du_{k})|^{p'}\omega _{rs}^{*}dx= & {} \displaystyle \int _{B(x_{0},\varepsilon )}|\sigma _{rs}(x,u_{k},Du_{k})|^{p'}\omega _{rs}^{1-p'}dx \\\le & {} c\displaystyle \int _{_{B(x_{0},\varepsilon )}}w^{1-p'+\frac{p'}{p}}\left[ |\lambda _{1}|^{p'} +\displaystyle \sum _{j=1}^{m}\gamma _{j}|(u_{k})_{j}|^{q}\right. \\{} & {} \left. + \displaystyle \sum _{i,j} \omega _{ij}|D_{ij}u_{k}|^{p}\right] dx\\\le & {} c\left( \parallel \lambda _{1}\parallel _{L^{p'}(\Omega )}^{p'} +\parallel u_{k}\parallel _{1,p,w}^{\frac{q}{p}}+\parallel u_{k}\parallel _{1,p,\omega }^{p}\right) <\infty . \end{aligned}$$

    Then, by the Proposition (6.1) \(\sigma (x,u_{k},Du_{k})\longrightarrow \sigma (x,u,apDu)\) in \(L^{1}(\Omega ,I\!\!M^{m\times n})\) and \(\forall \varphi \in C_{0}^{\infty }(\Omega ,I\!\!R^{m}); \;D\varphi \in L^{\infty }(\Omega ,I\!\!M^{m\times n})\) hence

    $$\begin{aligned} \displaystyle \int _{\Omega }\sigma (x,u_{k},Du_{k}):D\varphi dx\longrightarrow \int _{\Omega }\sigma (x,u,apDu):D\varphi dx \end{aligned}$$

    i.e.

    $$\begin{aligned} -div\sigma (x,u_{k},apDu_{k})\longrightarrow -div\sigma (x,u,\text{ apDu}) \end{aligned}$$

    In the sense of distributions. On the other hand \(f_{k}{\mathop {\longrightarrow \mu }\limits ^{*}}\) in \(L^{1}(\Omega ,I\!\!R^{m}).\) Then \(\displaystyle \int _{\Omega }f_{k}.\varphi dx\longrightarrow \displaystyle \int _{\Omega }\mu .\varphi dx\;\;\;\forall \varphi \in C_{0}^{\infty }(\Omega ,I\!\!R^{m})\) so \(\mu \) is the solution in \(W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) of the system:

    $$\begin{aligned}{} & {} -div\sigma (x,u,\text{ apDu})=\mu \;\;\;\text{ in }\;\; \Omega \\{} & {} u=0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text{ on }\;\; \partial \Omega \end{aligned}$$

    to show the estimation (2.1), we take the function \(\eta \) in \(C_{0}^{1}(B(0,2\alpha ),I\!\!R^{m}); \eta = \text{ Id } \) in \(B(0,\alpha )\) and \(| D\eta |\le c,\) then:

    $$\begin{aligned} \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}\eta (u_{k})|^{p}dx= & {} \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}|(D_{ij}\eta )(u_{k})|^{p}|Du_{k}\Vert ^{p}dx\\\le & {} c^{p}.\displaystyle \sum _{ij}\int _{|u_{k}|\le \alpha }\omega _{ij}| D_{ij}u_{k})| dx\\{} & {} +\,c\displaystyle \sum _{i,j}\int _{|u_{k}|\le 2\alpha }\omega _{ij} D_{ij}u_{k}|^{p}dx\\\le & {} c.c(\alpha )+c.c(2\alpha )<\infty , \end{aligned}$$

    thanks to (6.1).

    Now, we have \(\eta (u_{k})\longrightarrow \eta (u),\) for every \(x\in \Omega \) because \(\eta \) is \(C^{\infty }.\) Then \(\eta (u_{k})\rightharpoonup \eta (u),\) in \(W_{0}^{1,p}(\Omega ,\omega ,I\!\!R^{m})\) and \(\text{ apDu } = \text{ apD }(\eta \circ u)\) on \(\left\{ |u|\prec \alpha \right\} .\) Hence,

    $$\begin{aligned} \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}(\eta \circ u)|^{p}dx\le & {} \liminf _{k\longrightarrow \infty }\int _{\Omega }w|D(\eta \circ u_{k})|^{p}dx \\\le & {} \liminf _{k\longrightarrow \infty }\displaystyle \sum _{ij}\int _{| u_{k}|\le 2\alpha }| D_{ij}\eta (u_{k})|^{p}| D_{ij}u_{k}| \omega _{ij}dx \\\le & {} \le c\liminf _{k\longrightarrow \infty }\int _{| u_{k}|\le 2\alpha }\omega _{ij}|D_{ij}u_{k})|^{p}dx \\\le & {} c.c(2\alpha )<\infty . \end{aligned}$$

    Then:

    $$\begin{aligned} \displaystyle \sum _{i,j}\int _{| u|\le \alpha }\omega _{ij}| apDu|^{p}dx=\displaystyle \sum _{i,j}\int _{| u_{k}|\le 2\alpha }\omega _{ij}| D(\eta \circ u)|^{p}dx<\infty , \end{aligned}$$

    in the same as in the proof of the Proposition (4.1) by replacing \(u_{k}\) by u and \(f_{k}\) by \(\mu \), we obtain the estimation (2.1) and this completes the proof of the Theorem 2.1\(\Box \)

Case: \(0<\theta <\frac{n(p_{s}-1)}{n-1}\) (the general case) The idea is to consider the regularized problems:

$$\begin{aligned}{} & {} -div\phi _{\varepsilon }(x,u_{\varepsilon },Du_{\varepsilon })=\mu \;\;\; \text{ in } \Omega , \end{aligned}$$
(6.3)
$$\begin{aligned}{} & {} u_{\varepsilon }= 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \text{ on } \partial \Omega \end{aligned}$$
(6.4)

with

$$\begin{aligned} \phi _{\varepsilon ,r,s}(x,u,F)=\sigma _{rs}(x,u,F)+\varepsilon \beta \left( \displaystyle \sum _{ij}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-2}\right) \omega _{rs}^{\frac{1}{p}}F_{rs}, \end{aligned}$$

\(\forall 1\le r\le n,\ \forall 1\le s\le m\) with \(s>n+1,\) and \(\varepsilon <\frac{1}{2},\) we have \(p<s,\) then \(s'<p',\) and

\((\frac{s}{\alpha })'<(\frac{p}{\alpha })'.\) Moreover \(\exists c>0\) which doesn’t depend on ps,  such that \(\omega _{rs}^{\frac{1}{p}}\le c\omega _{rs}^{\frac{1}{s}}\)

\(\forall \ 1\le r\le n\) and \(1\le s\le m.\)

By \((H_{1})\) for \(\sigma ,\) we obtain

$$\begin{aligned} |\phi _{\varepsilon ,r,s}(x,u,F)|\le & {} \beta ^{'}.| \omega _{rs}|^{\frac{1}{p}}\left[ \lambda _{1}+\sum _{j=1}^{m}\gamma _{j}^{\frac{1}{p'}}| u_{j}|^{\frac{q}{p'}}+\sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{\theta }\right] \\{} & {} +\,\varepsilon \beta \omega _{rs}^{\frac{1}{p}}\left( \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-1}\right) \left( \theta<\frac{n(p_{s}-1)}{n-1}<n(s-1)\right) \\\le & {} \le \beta '\omega _{rs}^{\frac{1}{p}}\left[ \lambda _{1}+\sum _{j=1}^{m}\gamma _{j}^{\frac{1}{p'}}| u_{j}|^{\frac{q}{p'}}+\sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-1}\right] . \end{aligned}$$

And \(p<s,\) then \(\frac{1}{p'}<\frac{1}{s'}\) and like \(\omega _{rs}^{\frac{1}{p}}\le c\omega _{rs}^{\frac{1}{s}},\) then: \(|\phi _{\varepsilon ,r,s}(x,u,F)|\le \beta '.| \omega _{rs}|^{\frac{1}{s}}\left[ \lambda _{1}+\displaystyle \sum _{j=1}^{m}\gamma _{j}^{\frac{1}{s'}}| u_{j}|^{\frac{q}{s'}}+\sum _{ij}\omega _{ij}^{\frac{1}{s'}}| F_{ij}|^{s-1}\right] ,\) and by \((H_{3}),\) we conclude that

$$\begin{aligned} \phi _{\varepsilon }(x,u,F):F=\sigma (x,u,F):F+\varepsilon \sum _{i,j,r,s} \omega _{ij}^{\frac{1}{p'}}\omega _{rs}^{\frac{1}{p}}| F_{ij}|^{s-2}F_{ij}.F_{rs} \end{aligned}$$

\(\ge -\lambda _{2}-\sum _{j=1}^{m}\lambda _{3}\gamma _{j}^{\frac{q}{s}}.| u_{j}|^{\frac{q\alpha }{s}}+\varepsilon \sum _{ij}\omega _{ij}| F_{ij}|^{s}.\)

On the other hand, \(0<\alpha<p-1<s-1,\) \(1<q<\frac{p^{2}}{\alpha }<\frac{s^{2}}{\alpha '},\) \(\lambda _{1}\in L^{p'}(\Omega )\hookrightarrow L^{s'}(\Omega ),\) and \(\lambda _{3}\in L^{(\frac{p}{\alpha })'}(\Omega )\hookrightarrow L^{(\frac{s}{\alpha })'}(\Omega )\) and as \(\sigma _{\varepsilon }\) verifies the conditions of the structures (of l’angle and sign), the strict monotony, the s-quasi monotonous with regard to F is a \(C^{1}\) monotony in relation with F or accepting a convex potential because: \(F\longrightarrow \varepsilon \beta \left( \displaystyle \sum \nolimits _{ij}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-2}\right) \omega _{rs}^{\frac{1}{p}}F_{rs}\) verify them as well, hence \(\sigma _{\varepsilon }\) verifies the hypotheses \((H_{0})\)\((H_{5}),\) for the regularized Problems (6.3) and (6.4), thus for the previous case, \(\theta =s-1\) of Theorem 2.1, there exists a solution, \(u_{\varepsilon }\in W_{0}^{1,s}(\Omega ,\omega ,I\!\!R^{m})\) of the system (6.3) and (6.4). Now showing that the conditions: i), ii) and iii), of lemma (3.3), and the hypotheses (5.1)–(5.8) of the div-curl inequality are verified for \(u_{\varepsilon }\) with order s in the place of p.

We suppose the condition of l’angle verifying that \(\phi _{\varepsilon }\) by testing, \(T_{\alpha }(u_{\varepsilon })\) \(\alpha >0\) in (5.3) and (5.4), we get: \(\displaystyle \int _{\Omega }\phi _{\varepsilon }(x,u_{\varepsilon },Du_{\varepsilon }):DT_{\alpha }(u_{\varepsilon })dx\)= \(\displaystyle \int _{\Omega }f.T_{\alpha }(u_{\varepsilon })dx,\) so

$$\begin{aligned}{} & {} \displaystyle \int _{|u_{\varepsilon }|\le \alpha }\sigma (x,u_{\varepsilon },Du_{\varepsilon }):Du_{\varepsilon }dx+ \displaystyle \int _{|u_{\varepsilon }|>\alpha }\frac{\alpha }{|u_{\varepsilon }|}\sigma _{\varepsilon }(x,u_{\varepsilon },Du_{\varepsilon }):\left( \text{ Id }-\frac{u_{\varepsilon }}{| u_{\varepsilon }|}\otimes \frac{u_{\varepsilon }}{| u_{\varepsilon }|}\right) Du_{\varepsilon }dx\\{} & {} \qquad +\,\varepsilon \beta \int _{| u_{\varepsilon }|\le \alpha }\displaystyle \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\displaystyle \sum _{r,s}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}dx\\{} & {} \qquad +\,\varepsilon \beta \int _{| u_{\varepsilon }|>\alpha }\sum _{ij}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\sum _{r,s}\omega _{rs}D_{rs}u_{\varepsilon }\left( Id-\frac{u_{\varepsilon }}{| u_{\varepsilon }|}\otimes \frac{u_{\varepsilon }}{| u_{\varepsilon }|}\right) \\{} & {} \quad \le \alpha .\parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}. \end{aligned}$$

since

$$\begin{aligned} \displaystyle \sum _{rs}| D_{rs}u_{\varepsilon }|^{s-2}D_{rs}u_{\varepsilon }\left( \text{ Id }-\frac{\alpha }{| u_{\varepsilon }|}\left( \frac{u_{\varepsilon }}{| u_{\varepsilon }|}\otimes \frac{u_{\varepsilon }}{| u_{\varepsilon }|}\right) \right) \ge 0 \end{aligned}$$

so

$$\begin{aligned} \displaystyle \int _{| u_{\varepsilon }|\le \alpha }\sigma (x,u_{\varepsilon },Du_{\varepsilon }):Du_{\varepsilon }dx\le \alpha \parallel f\parallel _{L^{1}(\Omega ,I\!\!R^{m})}. \end{aligned}$$

And by the coercivity condition of \(\sigma \) in \((H_{1})\) and Hölder inequality, we get as in the proof of the Proposition 4.1

$$\begin{aligned} \displaystyle \sum _{ij}\int _{| u_{\varepsilon }|\le \alpha }\omega _{ij}|D_{ij}u_{\varepsilon }|^{p}dx\le M'\alpha +L', \end{aligned}$$
(6.5)

And the following a priori estimation:

$$\begin{aligned} \parallel u_{\varepsilon }\parallel _{L^{t_{p_{s};\infty }^{*}}(\Omega ,I\!\!R^{m})}^{*}+\parallel Du_{\varepsilon }\parallel _{L^{t_{p_{s},\infty }}(\Omega ,I\!\!R^{m\times n})}^{*}<c<\infty , \end{aligned}$$
(6.6)

and by the injection \(L^{\beta ',\infty }\hookrightarrow L^{\alpha '},\forall 0<\alpha '<\beta ',\) then \(\forall ,\;\;0<r<t_{p_{s}}^{*},\) \(\forall 0<p<t_{p_{s}}\)

$$\begin{aligned} \parallel u_{\varepsilon }\parallel _{L^{r}(\Omega ,I\!\!R^{m})}+\parallel Du_{\varepsilon }\parallel _{L^{p}(\Omega ,I\!\!M^{m\times n})}+\parallel Du_{\varepsilon }\parallel _{L^{t_{p_{s},\infty }}(\Omega ,I\!\!M^{m\times n})}^{*}<\infty . \end{aligned}$$
(6.7)

We suppose that the condition of the sign is verify.

As in the same way in the proof of the Proposition (4.1), we test \(S_{\alpha }(u_{\varepsilon })\) in (6.3) and (6.4), we obtain (6.5) and (6.7).

Starting with verifying that i), ii) et iii) of lemma (3.3) and the hypotheses (5.1) and(5.7) for \(\sigma _{\varepsilon }\). By (6.5)and(6.7), the points i), ii) et iii) are a direct consequence of Lemmas (3.2) and (3.3). On the other hand:

  • (5.1): for \(\sigma \) is \((H_{0})\) and \(\tau _{rs}(x,u,F)=\varepsilon \beta \left( \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-2}\right) .\omega _{rs}^{\frac{1}{p}}F_{rs}\) is a Carathéodory function, because \(x\longmapsto \omega _{ij}(x),\) is measurable, so \(\sigma _{\varepsilon }\) is a Cathéodory function.

  • (5.2)

(i):

\(\phi _{\varepsilon }(x,u,F):MF=\sigma (x,u,F):MF+\left( \displaystyle \sum \nolimits _{rs} (\varepsilon \sum \nolimits _{i,j}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-2})\omega _{rs}^{\frac{1}{p}}F_{rs}\right) (MF)_{rs}\ge 0\), with \(M= \text{ Id }-a\otimes a\) and \(| a|\le 1.\)

(ii):
$$\begin{aligned} \phi _{rs}(x,u,F) \cdot F_{j}= & {} \sigma _{j}(x,u,F):F_{j}+\tau _{j}(x,u,F) \cdot F_{j} \\= & {} \sigma _{j}(x,u,F):F_{j}+\displaystyle \sum _{l=1}^{m}\varepsilon \beta \left( \displaystyle \sum _{_{i,j}}\omega _{ij}^{\frac{1}{p'}}| F_{ij}|^{s-1}\right) \cdot w_{lj}^{\frac{1}{p}}| F_{lj}|^{2}\ge 0, \end{aligned}$$

\(\forall 1\le j\le m.\)

  • (5, 3): \(u_{\varepsilon }\in W_{0}^{1,s}(\Omega ,\omega ,I\!\!R^{m})\hookrightarrow W_{0}^{1,s_{s}}(\Omega ,I\!\!R^{m}),\) \(s_{s}>1,\) so \(u_{\varepsilon }\in W^{1,1}(\Omega ,I\!\!R^{m})\), and by (6.7) \(\sup _{\varepsilon >0}\displaystyle \int _{\Omega }| Du_{\varepsilon }|^{p}dx<\infty ,\) \(\forall ,\) \(0<p<t_{p_{s}}.\)

    (4.5): \(\sigma (x,u_{\varepsilon },Du_{\varepsilon })\) is equi-integrable as previously \(\forall \;\Omega '\subset \Omega ,\) measurable, we have:

    $$\begin{aligned}{} & {} \displaystyle \int _{\Omega '}\left| \sum _{i,j}(\omega _{ij}^{\frac{1}{p'}}\right| D_{ij}u_{\varepsilon }|^{s-2})\omega _{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon }|dx\\{} & {} \quad \le \left( \displaystyle \sum _{i,j}\int _{\Omega '}\omega _{ij}| D_{ij}u_{\varepsilon }|^{s-1}dx\right) \\{} & {} \quad \le c\displaystyle \sum _{ij}\int _{\Omega '}\omega _{ij}| D_{ij}u_{\varepsilon }|^{s}dx\le c\parallel u_{\varepsilon }\parallel _{1,s,w}^{s}. \end{aligned}$$
  • (5.5): by (6.7) and the Lemma (3.2).

  • (5.6): by (6.3), \(-div(\sigma _{l}+\tau _{k})-\mu =0,\) with \(\mu \in M(\Omega ,I\!\!R^{m})\) is bounded in \(L^{1}(\Omega ,I\!\!R^{m}).\)

  • (5.7): \(\forall \;\varepsilon >0\) and \(x_{0}\in \Omega ,\) by the growth condition of \(\sigma _{\varepsilon }\) and previously with s in the place of p, \(\displaystyle \int _{B(x,{\varepsilon })}|\sigma _{\varepsilon }(x,u_{\varepsilon },Du_{\varepsilon })|^{s}\omega _{rs}^{*}dx<\infty \) and

  • (5.8): \(\displaystyle \int _{B(x,{\varepsilon })}| D_{ij}u_{\varepsilon }|^{s}\omega _{rs}dx<\parallel u_{\varepsilon }\parallel _{1,s,w}^{\varepsilon }<\infty .\)

Testing that \(u_{\varepsilon }\) in (6.3) and (6.4)

$$\begin{aligned}{} & {} \varepsilon \beta \displaystyle \int _{\Omega }\left( \displaystyle \sum _{ij}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\right) \left( \displaystyle \sum _{rs}\omega _{rs}^{\frac{1}{p}}|D_{rs} u_{\varepsilon }|^{2}\right) dx\nonumber \\{} & {} \quad \le \parallel u_{\varepsilon }\parallel _{L^{\infty }(\Omega ,I\!\!R^{m})}\parallel \mu \parallel _{M(\Omega ,\omega ^{*},I\!\!R^{m})} \end{aligned}$$
(6.8)

We have \(W_{0}^{1,s}(\Omega ,w,I\!\!R^{m})\hookrightarrow W_{0}^{1,s_{s}}(\Omega ,I\!\!R^{m})\hookrightarrow L^{\infty }(\Omega ,I\!\!R^{m}).\) Then

$$\begin{aligned} \begin{aligned} \parallel u_{\varepsilon }\parallel _{L^{\infty }(\Omega ,I\!\!R^{m})}&\le c\left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}| D_{ij}u_{\varepsilon }|^{s}dx\right) ^{\frac{1}{s}} \\&\le c\left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}^{\frac{1}{p'}} |D_{ij}u_{\varepsilon }|^{s-2}\omega _{ij}^{\frac{1}{p}}| D_{ij}u_{\varepsilon }|^{2}dx\right) ^{\frac{1}{s}} \\&\le c\left( \displaystyle \int _{\Omega }\left( \sum _{i,j}\omega _{ij}^{\frac{1}{p'}} |D_{ij}u_{\varepsilon }|^{s-2}\right) \cdot \left( \displaystyle \sum _{r,s}\omega _{rs}^{\frac{1}{p}} | D_{rs}u_{\varepsilon }|^{2}dx\right) \right) ^{\frac{1}{s}}. \end{aligned} \end{aligned}$$
(6.9)

Thanks to (6.8) and (6.9), we have

$$\begin{aligned} \displaystyle \int _{\Omega }\sum _{ij}\omega _{ij}^{\frac{1}{p'}} | D_{ij}u_{\varepsilon }|^{s-2}\displaystyle \sum _{rs}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}dx \end{aligned}$$

\(\ \ \ \le \frac{c\parallel \mu \parallel _{M(\Omega ,\omega ^{*},I\!\!R^{m})}}{\varepsilon }\left( \displaystyle \int _{\Omega }\left( \displaystyle \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\right) .\left( \displaystyle \sum _{rs}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}dx\right) \right) \) So:

$$\begin{aligned} \left( \displaystyle \int _{\Omega }\left( \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\right) \cdot \left( \displaystyle \sum _{r,s}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}dx\right) \right) ^{\frac{s-1}{s}}\le \frac{c\parallel \mu \parallel _{M}}{\varepsilon }, \end{aligned}$$

which mean that

$$\begin{aligned} \left( \int _{\Omega }(\displaystyle \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon }|^{s-2}).(\displaystyle \sum _{r,s}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}dx\right) ^{\frac{1}{s}}\le \frac{c\parallel \mu \parallel _{M}}{\varepsilon }, \end{aligned}$$
(6.10)

and

$$\begin{aligned} \parallel u_{\varepsilon }\parallel _{L^{\infty }(\Omega ,I\!\!R^{m})}\le c\left( c\frac{\parallel \mu \parallel _{M}}{\varepsilon }\right) ^{\frac{1}{s-1}}. \end{aligned}$$
(6.11)

On the other hand and \(\forall \, \; 1< p <\frac{s}{s-1},\) can write

$$\begin{aligned} \begin{aligned}&\parallel \epsilon \displaystyle \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2}\omega _{rs}^{\frac{1}{p}}| F_{rs}|\parallel _{L^{\frac{s}{s-1}}(\Omega ,I\!\!M^{m\times n})} \\&\quad \le \varepsilon ^{\frac{s}{s-1}}\left( \displaystyle \int _{\Omega }|\sum _{i,j}\omega _{ij}^{\frac{1}{p'}} D_{ij}u_{\varepsilon }|^{s-1}\omega _{rs}^{\frac{1}{p}}|^{\frac{s}{s-1}}dx\right) ^{\frac{s-1}{s}}\\&\quad \le c\varepsilon ^{\frac{s}{s-1}}\left( |\displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-1}\omega _{rs}^{\frac{1}{p}}|^{\frac{s}{s-1}}dx\right) ^{\frac{s-1}{s}}\\&\quad \le c\varepsilon ^{\frac{s}{s-1}}\left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij} |D_{ij}u_{\varepsilon }|^{s-2}\displaystyle \sum _{r,s}\omega _{rs}^{\frac{s}{(s-1)p}} | D_{rs}u_{\varepsilon }|^{2}dx\right) <\infty . \end{aligned} \end{aligned}$$

thanks to (6.10). Now, since \(u_{\varepsilon }\in W_{0}^{1,s}(\Omega ,\omega ,I\!\!R^{m})\hookrightarrow W_{0}^{1,s_{s}}(\Omega ,I\!\!R^{m})\,\hookrightarrow \,W_{0}^{1,p_{s}}(\Omega ,I\!\!R^{m}),\) so by testing \(T_{\alpha }(u_{\varepsilon })\) in (6.3) and (6.4), we obtain as in the proof of the proposition (4.1)

$$\begin{aligned} \parallel Du_{\varepsilon }\parallel ^*_{L^{\frac{n(p_{s}-1)}{n-1},\infty }(\Omega ,I\!\!M^{m\times n})}\le c. \end{aligned}$$
(6.12)

By the Hölder inequality for the exponent a with a and \(\xi \) are the solutions of systems:

$$\begin{aligned} \left\{ \begin{array}{rcl} a'\xi = \tau &{} > &{} \frac{n(p_{s}-1)}{n-1} \\ a\left( (s-1)\rho -\xi \right) &{} = &{} s \end{array} \right. \end{aligned}$$

a given system accepting the solution when \(\rho <\frac{s}{s-1}.\) So

$$\begin{aligned}{} & {} \int _{\Omega } | \varepsilon \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon }|^{s-1} \omega _{ij}^{\frac{1}{p}}|^{\rho }dx\\{} & {} \quad \le c\displaystyle \int _{\Omega }\varepsilon ^{\rho }\left( \displaystyle \sum _{i,j} \omega _{ij}^{\frac{\rho }{p'}}| D_{ij}u_{\varepsilon }|^{(s-1)\rho -\xi } \omega _{ij}^{\frac{\rho }{p}}| D_{ij}u_{\varepsilon }|^{\xi }\right) ^{\rho }dx\\{} & {} \quad \le c\varepsilon ^{\rho }\left( \displaystyle \sum _{i,j}\int _{\Omega }\omega _{ij}^{a\rho }| D_{ij}u_{\varepsilon }|^{a\left( (s-1)\rho -\xi \right) }dx\right) ^{\frac{1}{a}}. \left( \int _{\Omega }| Du_{\varepsilon }|^{a'\xi }dx\right) ^{\frac{1}{a'}}\\{} & {} \quad \le c\varepsilon ^{\rho }\left( \displaystyle \sum _{i,j}\int _{\Omega } \omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2} \displaystyle \sum _{r,s}\omega _{rs}^{\frac{1}{p}}| D_{rs}u_{\varepsilon }|^{2}\right) ^{\frac{1}{a}}. \parallel Du_{\varepsilon }\parallel _{L^{\tau }(\Omega ,I\!\!M^{m\times n})}^{\frac{\tau }{a}}. \end{aligned}$$

And by the injection: \(L^{\frac{n(p_{s}-1)}{n-1}}\hookrightarrow L^{\tau }\qquad \forall \tau >\frac{n(p_{s}-1)}{n-1}\) and thanks to (6.10)–(6.12), we get:

$$\begin{aligned} \displaystyle \int _{\Omega }|\varepsilon \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon }|^{s-1} \omega _{ij}^{\frac{1}{p}}|^{\rho }dx\le & {} c.\varepsilon ^{\rho }\left( \frac{c\parallel \mu \parallel _{M}}{\varepsilon }\right) ^{\frac{s}{(s-1)a}}.c^{\frac{\tau }{a}} \\\le & {} c.c^{\frac{\tau }{a}}\varepsilon ^{\frac{a\left( (s-1)\rho -s)\right) }{a(s-1)}}\\\le & {} c.c^{\frac{\tau }{a}}\varepsilon ^{\frac{a\xi }{a(s-1)}}\\\le & {} c.c^{\frac{\tau }{a}}.\varepsilon ^{\frac{\xi }{s-1}} \end{aligned}$$

with \(\frac{\xi }{s-1}>0.\) Hence

$$\begin{aligned} \lim _{\varepsilon \longrightarrow }\parallel \varepsilon \displaystyle \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-1}\omega _{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon }\parallel _{L^{p}(\Omega ,I\!\!M^{m\times n})}=0,\quad \forall \rho <\frac{s}{s-1}. \end{aligned}$$

In particular for \(\rho =1\)

$$\begin{aligned} \lim _{\varepsilon \longrightarrow }\int _{\Omega }|\varepsilon \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-1}\omega _{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon }| dx=0, \end{aligned}$$

which mean that

$$\begin{aligned} \tau [\varepsilon ]\left( x,u_{\varepsilon },Du_{\varepsilon }\right) =\varepsilon \displaystyle \sum _{i,j}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon }|^{s-2} \omega _{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon }\rightharpoonup 0 \end{aligned}$$

in \(L^{1}(\Omega ,I\!\!M^{m\times n}).\)

As well as by the Proposition 6.1,\(div\sigma (x,u_{\varepsilon },Du_{\varepsilon })\) converges to \(div\sigma (x,u,\text{ apD }u),\) in the sense of the distributions, and as

$$\begin{aligned} \tau [\varepsilon ]\left( x,u_{\varepsilon },Du_{\varepsilon }\right) =\varepsilon \sum _{i,j}\omega _{ij}^{\frac{1}{p'}}| D_{ij}u_{\varepsilon }|^{s-2} \omega _{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon }\rightharpoonup 0, \end{aligned}$$

in \(L^{1}(\Omega ,I\!\!M^{m\times n}).\) Then \(div\sigma _{\varepsilon }(x,u_{\varepsilon },Du_{\varepsilon })\) converge to \(div\sigma (x,u,\text{ apD }u)\) in the sense of distributions, i-e: u is the solution of the system

$$\begin{aligned} \left\{ \begin{array}{ll} -div\sigma (x,u,\text{ apD }u) = \mu &{}\quad \text{ in } \Omega \\ u = 0 &{}\quad \text{ on } \partial \Omega . \end{array} \right. \end{aligned}$$

In the same way as in the case of \(\theta =p-1\), we have

$$\begin{aligned} \displaystyle \int _{| u|\le \alpha }| apDu|^{s}dx<c(\alpha )<\infty \text{ and } p<s. \end{aligned}$$

So we conclude as in the proof of the Proposition 6.1, in order to get the estimation of Theorem (2.1). This completes the proof of the theorem. \(\square \)