

Existence of solutions for some quasilinear elliptic system with weight and measure-valued right hand side

El Houcine Rami[1](http://orcid.org/0000-0003-4087-9104) · Elhoussine Azroul¹ · Abdelkrim Barbara¹

Received: 26 August 2019 / Accepted: 8 October 2023 / Published online: 27 October 2023 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023

Abstract

Let Ω be an open bounded domain in \mathbb{R}^n , we prove the existence of a solution *u* for the nonlinear elliptic system

$$
\text{(QES)}\begin{cases}\n-div\sigma(x, u(x), Du(x)) = \mu & \text{in } \Omega\\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(0.1)

where μ is Radon measure on Ω with finite mass. In particular, we show that if the coercivity rate of σ lies in the range $\left[\frac{s+1}{s}, \left(\frac{s+1}{s}\right)(2-\frac{1}{n})\right]$ with $s \in \left(\frac{n}{p} \infty\right) \cap \left(\frac{1}{p-1} \infty\right)$, then *u* is approximately differentiable and the equation holds with $\hat{D}u$ replaced by ap $\hat{D}u$. The proof relies on an approximation of μ by smooth functions f_k and a compactness result for the corresponding solutions u_k . This follows from a detailed analysis of the Young measure $\{\delta_u(x) \otimes \vartheta(x)\}\$ generated by the sequence (u_k, Du_k) , and the div-curl type inequality $\langle \vartheta(x), \sigma(x, u, \cdot) \rangle \leq \overline{\sigma}(x) \langle \vartheta(x), \cdot \rangle$ for the weak limit $\overline{\sigma}$ of the sequence.

Keywords Nonlinear elliptic system · Mesure-valued · Young measure · The div-curl type inequality

Mathematics Subject Classification 35J46 · 35J62

1 Introduction

We consider the existence and compactness questions for elliptic systems of the form

$$
\text{(QES)}\begin{cases}\n-div\sigma(x, u(x), Du(x)) = \mu & \text{in } \Omega\\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1.1)

 \boxtimes El Houcine Rami ramielhoucine@gmail.com Elhoussine Azroul elhoussine.azroul@gmail.com

> Abdelkrim Barbara babdelkarim66@hotmail.com

¹ Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B.P 1796 Atlas Fez, Morocco

with measure-valued right hand side $\mu \in M(\Omega, \mathbb{R}^m)$ on an open, bounded domain Ω in \mathbb{R}^n , we denote by $M(\Omega, \mathbb{R}^m)$, with $m \in \mathbb{N}^*$, the Banach space of vectors μ of bounded Radon measures

$$
\mu=(\mu_1,\ldots,\mu_m)\quad with\quad \mu_i\in M(\Omega)\quad for\quad i=1,\ldots,m.
$$

With $M(\Omega)$ be a vector space of bounded Radon measures.

 $\omega = {\omega_{ij} \mid 0 \le i \le n, 1 \le j \le m}$ is a family of weight functions defined on Ω with $\omega_{ij}(x) > 0$ for almost every $x \in \Omega$ and $\omega^* = {\omega_{ij}^{*} = \omega_{ij}^{1-p'}}$, $0 \le i \le n, 1 \le j \le m$, $(\frac{1}{p} + \frac{1}{p'} = 1)$. In this paper we are interested in the solution *u* in the Sobolev space $W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$, and estimations in the weak Lebesgues spaces. We assume that σ satisfies the following hypotheses (H_0) – (H_3) explained below. We denote by $M^{m \times n}$ the real vector space of $m \times n$ matrices equipped with the inner product $M : N = \sum_{ij} M_{ij} N_{ij}$. The Jacobian matrix of a function $u : \Omega \longrightarrow \mathbb{R}^m$ is denoted by

$$
Du(x)=(D_1u(x), D_2u(x),..., D_nu(x))
$$
 with $D_i=\partial/\partial x_i$.

Let $\omega = {\omega_{ij} \mid 0 \le i \le n, 1 \le j \le m}$, and $\overline{\omega_0} = (\omega_{0j})$ for all $1 \le j \le m$ the weight functions system defined in Ω satisfying the following integrability conditions

$$
\omega_{ij} \in L_{loc}^1(\Omega), \quad \omega_{ij}^{\frac{-1}{p-1}} \in L_{loc}^1(\Omega)
$$
 (1.2)

$$
\omega_{ij}^{-s} \in L^1(\Omega) \tag{1.3}
$$

for some $s \in \left(\frac{n}{p} \infty\right) \cap \left(\frac{1}{p-1} \infty\right)$. The space $W^{1,p}(\Omega, \omega, \mathbb{R}^m)$ is the set of functions

$$
\left\{u=u(x)\mid u\in L^p(\Omega,\overline{\omega_0},\mathbb{R}^m),\ D_{ij}u=\frac{\partial u^i}{\partial x_j}\in L^p(\Omega,\omega_{ij},\mathbb{R}^m),\ 1\leq i\leq n,\ 1\leq j\leq m\right\}
$$

with

$$
L^p(\Omega, \omega_{ij}, \mathbb{R}^m) = \left\{ u = u(x) \mid \mid u \mid \omega_{ij}^{\frac{1}{p}} \in L^p(\Omega, \mathbb{R}^m) \right\}.
$$

The weighted space $W^{1,p}(\Omega, \omega, \mathbb{R}^m)$ can be equipped by the norm

$$
||u||_{1,p,\omega} = \left(\sum_{j=1}^m \int_{\Omega} |u_j|^p w_{0j} dx + \sum_{1 \leq i \leq n, 1 \leq j \leq m} \int_{\Omega} |D_{ij}u|^p \omega_{ij} dx\right)^{\frac{1}{p}}.
$$

The norm $\| \cdot \|_{1,\omega,p}$ is equivalent to the norm $\| \cdot \|$ iii on $W_0^{1,p}(\Omega,\omega,\mathbb{R}^m)$, defined by $|||$ u $||| = (\sum$ 1≤*i*≤*n*,1≤ *j*≤*m* \overline{a} $\int_{\Omega} |D_{ij}u|^p \omega_{ij} dx$, The condition [\(1.2\)](#page-1-0) implies $(W^{1,p}(\Omega, \omega, \mathbb{R}^m), \| \cdot \|_{1,p,\omega})$ is a Banach space and $C_0^{\infty}(\Omega, \mathbb{R}^m)$ subspace of $(W_1^{1,p}(\Omega,\omega,\mathbb{R}^m))$. The space $(W_0^{1,p}(\Omega,\omega,\mathbb{R}^m))$ is the closure of $C_0^{\infty}(\Omega,\mathbb{R}^m)$ in $W^{1,p}(\Omega, \omega, \mathbb{R}^m)$ for the norm $\lVert \cdot \rVert_{1,p,\omega}^p$. The condition [\(1.3\)](#page-1-0), implies

$$
W^{1,p}(\Omega,\omega,\mathbb{R}^m)\hookrightarrow W^{1,p_s}(\Omega,\mathbb{R}^m)\hookrightarrow L^r(\Omega,\mathbb{R}^m),\tag{1.4}
$$

for all $1 \leq r \leq p_s^*$ if $p \times s \leq n(s+1)$, and $\forall r \geq 1$ if $p \times s > n(s+1)$ with $p_s = \frac{p \times s}{s+1}$ and $p_s^* = \frac{n \times p \times s}{n(s+1) - p \times s}$, for proof see [\[1](#page-17-0)].

Our article deals with the existence of a weak solution of system declared at the top in each of the four cases located in the part of the hypotheses in (H_2) and in a Sobolev space with weights, but the article in [\[2](#page-17-1)] treats in a weightless Sobolev space.

2 Hypothesis

- (H_0) (Continuity) $\sigma : \Omega \times \mathbb{R}^m \times \mathbb{M}^{m \times n} \longrightarrow \mathbb{M}^{m \times n}$ is a Carathéodory function, i.e: $x \mapsto \sigma(x, u, p)$ is measurable for every (u, p) and $(u, p) \mapsto \sigma(x, u, p)$ is continuous for almost every $x \in \Omega$.
- (*H*₁) (Coercivity and growth): There exist constants $c_1, c_2, \beta > 0$ and $\lambda_1 \in L^{p'}(\Omega)$, $\lambda_2 \in$ $L^1(\Omega)$, $\lambda_3 \in L^{(\frac{p}{\alpha})'}(\Omega)$, $0 < \alpha < p$, $1 < q < \frac{p^2}{\alpha}$, $0 < \theta < \frac{n(p_s-1)}{n-1}$, such that, for all $1 \leq r \leq n$, and $1 \leq s \leq m$

$$
|\sigma_{rs}(x, u, F)| \leq \beta \omega_{rs}^{\frac{1}{p}} \left[\lambda_1 + c_1 \sum_{j=1}^{m} \gamma_{j}^{\frac{1}{p'}} |u_j|^{\frac{q}{p'}} + c_1 \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{\theta} \right]
$$

$$
\sigma(x, u, F) : F \geq -\lambda_2 - \sum_{j=1}^{m} \lambda_3 \gamma_{j}^{\frac{\alpha}{p}} |u_j|^{\frac{q\alpha}{p}} + c_2 \sum_{i,j} \omega_{ij} |F_{ij}|^{p}.
$$

(H_2) (Monotonicity) σ satisfies one of the following conditions:

a) For all $x \in \Omega$, $u \in \mathbb{R}^m$ the function $F \mapsto \sigma(x, u, F)$ is a C^1 and monotone function, which means $(\sigma(x, u, F) - \sigma(x, u, G)) : (F - G) \geq 0$, for all $x \in \Omega, u \in \mathbb{R}^m$, and $F, G \in \mathbb{M}^{m \times n}$.

b) There exist a function $W : \Omega \times \mathbb{R}^m \times \mathbb{M}^{m \times n} \to \mathbb{R}$ such that $\sigma(x, u, F) = \frac{\partial W}{\partial F}(x, u, F)$, and the function $F \mapsto W(x, u, F)$ is a convex C^1 function.

c) σ is strictly monotone, i.e. σ is monotone, i.e., $(\sigma(x, u, F) - \sigma(x, u, G)) : (F - G)$ 0 and $(σ(x, u, F) – σ(x, u, G))$: $(F – G) = 0$. implies $F = G$.

d) The function $F \mapsto \sigma(x, u, F)$ is strictly *p*-quasi-monotone, i.e.,

 $\int_{M^{m \times n}} (\sigma(x, u, \lambda) - \sigma(x, u, \overline{\lambda}))$: $(\lambda - \overline{\lambda}) dv(\lambda) > 0$, for all homogeneous $W^{1,p}$ gradient Young measures *ν* with center of mass $\bar{\lambda} = \langle v; \text{Id} \rangle = \int_{M^{m \times n}} \lambda d\nu(\lambda)$ which

are not a single Dirac mass.

(*H*₃) (structure conditions) i) (Angle condition) for all $x \in \Omega$, $u \in \mathbb{R}^m$ and $F \in \mathbb{M}^{m \times n}$ there holds

 $\sigma(x, u, F)$: $MF > 0$, for all matrices $M \in M^{m \times m}$ of the form $M = Id - a \otimes a$ with $|a|$ ≤ 1. ii) (The sign condition) for all *x* ∈ Ω , *u* ∈ \mathbb{R}^m and F ∈ $\mathbb{M}^{m \times n}$, we have $\sigma_j(x, u, F)$: $F_j \geq 0$, for all $1 \leq j \leq m$ where F_j and σ_j are the columns *j* of the matrix F and σ , respectively.

(*H*₄) (The Hardy-Type Inequality) There exist $c > 0$, a weight function $\gamma = (\gamma_i)_{1 \le i \le m}$, and a parameter $1 < q < \frac{p^2}{\alpha}$ (*H*₁), such that:

$$
\left(\sum_{j=1}^m \int_{\Omega} \gamma_j \mid u_j \mid^q dx\right)^{\frac{1}{q}} \leq c \left(\sum_{i,j} \int_{\Omega} \omega_{ij} \mid D_{ij} u \mid^p dx\right)^{\frac{1}{p}}
$$

Remark 2.1 1. Assumption (H_0) ensures that $\sigma(x, u(x), U(x))$ is measurable on Ω for measurable function $u : \Omega \longrightarrow \mathbb{R}^m$ and $U : \Omega \longrightarrow \mathbb{M}^{m \times n}$. A typical example for a

 $\circled{2}$ Springer

.

function σ satisfying (H_0) is $\sigma(x, u, p) = \xi(x, u, p)p$ with a real valued non-negative function ξ.

2. A serious technical obstacle is that for $p_s \in (1, 2 - 1/n]$ solutions of the system [\(1.1\)](#page-0-0) in general do not belong to the Sobolev space $W^{1,1}(\Omega, \omega, \mathbb{R}^m)$ [\[2\]](#page-17-1).

This fact has led to the use of normalized solutions in [\[2](#page-17-1)] and generalized entropy solutions in $\left[3\right]$ $\left[3\right]$ $\left[3\right]$ for elliptic equations of the above type. We will use a notion of solution where the weak derivative *Du* is replaced by the approximate derivative apDu. Recall that a measurable function *u* is said to be approximately differentiable at $x \in \Omega$ if there exists a matrix $F_x \in M^{m \times n}$ such that for all $\epsilon > 0$, $\lim_{r \to 0} \frac{1}{r^n}$ meas $\{y \in B(x, r) : |u(y) - u(x) - F_x(y - x)| > \epsilon r\} = 0$. We write ap $Du(x) = F_x$.

Definition 2.1 A measurable function $u : \Omega \longrightarrow \mathbb{R}^m$ is called a solution of the system [\(1.1\)](#page-0-0) if:

- **(i)** *u* is almost everywhere approximately differentiable.
- **(ii)** $\eta \circ u \in W^{1,1}(\Omega, \omega, \mathbb{R}^m)$, for all, $\eta \in C_0^1(\mathbb{R}^m, \mathbb{R}^m)$.
- **(iii)** $\sigma(x, u, \text{apDu}) \in L^1(\Omega, M^{m \times n});$
- (iv) The equation $-div \sigma(x, u(x), Du(x)) = \mu$ holds in the sense of distributions. Moreover we say that *u* satisfies the boundary condition [\(1.2\)](#page-1-0) if $\eta \circ u \in W_0^{1,1}(\Omega, \omega, \mathbb{R}^m)$, for all, $\eta \in C^1(\mathbb{R}^m, \mathbb{R}^m) \cap L^\infty(\mathbb{R}^m, \mathbb{R}^m)$ with $\eta = \text{Id}$ on $B(0, r)$, for some $r > 0$, and $|D\eta(y)| \le c(1+|y|)^{-1}$, with $c < \infty$.
- **Remark 2.2** 1. The conditions in Definition (2.1) (except (ii)) are the weakest possible in order to define the system (1.1) in the sense of distributions. Note that if *u* is approximately differentiable, then apDu is measurable, so $\sigma(\cdot, u, \text{apDu})$ is measurable.
- 2. The assumption $\eta \circ u \in W^{1,1}(\Omega, \mathbb{R}^m)$ ensures minimal regularity of *u*. For example, if $\mu = 0$, and $\sigma(x, u, p) = \sigma(p)$ with $\sigma(0) = 0$, then piecewise constant functions *u* satisfy $apDu = 0$ a.e. but are not admissible solutions. The following theorem is the main result in this paper.

Theorem 2.1 Let Ω be a bounded, open set. We suppose that the hypotheses (H_0) – (H_2) – (H_3) *and the coercivity condition in* (*H*1) *are satisfied. Let* μ *denote a IRm-valued Radon measure on* Ω with finite mass. Then the system [\(1.1\)](#page-0-0) has a solution u in the sense of Definition [2.1](#page-3-0), *which satisfies the weak Lebesgue space estimate*

$$
||u||_{L^{t_{ps}}^* \sim (\Omega, R^m)}^* + ||apDu||_{L^{t_{ps}} \sim (\Omega, M^{m \times n})}^* \leq C,
$$
\n(2.1)

with the constant C depending on $|\Omega|$, *c*, *c*₂, *and* $|| \lambda_3 ||_{L^{(\frac{p}{\alpha})}(\Omega)}$, *with* $t_{p_s} = \frac{n(p_s-1)}{n-1}$ *and* $(\Omega$ $t_{p_s}^* = \frac{n(p_s-1)}{n-p_s}$ is the Sobolev exponent of t_{p_s} . If $c_2 = 0$ the right hand side of [\(1.2\)](#page-1-0) *reduces to* $C(c_1) \, \left\| \mu^{\frac{1}{p-1}} \right\|_M$.

Remark 2.3 1. If $p_s > 2 - \frac{1}{n}$, then $t_{p_s} > 1$ and $Du \in L^1(\Omega, M^{m \times n})$.

- 2. If $p > n$ one can replace the $L^{s, \infty}$ -norm of *u* in (1.3) by the $C^{0, \beta}$ -norm with $\beta = 1 \frac{n}{p}$. For $p = q = n$ it is an open question whether $Du \in L^{n,\infty}$. See Section 7 [\[4](#page-18-0)] for the (weaker) inclusion $u \in BMO_{loc}$.
- 3. The exponent in [\(1.2\)](#page-1-0) are optimal as can be seen from the nonlinear Green's function $G_p(x) = c |x|^{\frac{-n}{s^*}}$ for the *p*-Laplace equation: $-div(|Du|^{p-2}Du) = \delta_0$ in $\mathbb{R}^m, n \geq 3$. In particular, $L^{s,\infty}$ cannot be replaced by L^s where $L^{s,\infty}$, is a Laurent space.

4. The pointwise monotonicity condition can be replaced by a weaker integrated version, called quasi-monotonicity.

The key point in the proof of the theorem, is the div-curl inequality for the Young measure ${\{\vartheta_x\}}_{x \in \Omega}$ generated by a sequence Du_k of gradients of approximate solutions. Together with the identity. (1.4)

apDu(x) = $\langle \vartheta_x, Id \rangle$. The div-curl inequality implies easily that $\sigma(\cdot, u_k, Du_k)$ converges weakly in L^1 to $\sigma(\cdot, u, \text{apDu})$. [\(1.4\)](#page-1-1) is a consequence of general properties of young measures if $p > 2 - \frac{1}{n}$ since in this case Du_k is bounded in L^s for some $s > 1$. If $1 < p \le 2 - \frac{1}{n}$ one only has the weaker bounds.

3 Some preliminary lemmas

In this section, we will also use the Young measures, and Inequality div-curl for assume the convergence of subsequence $u_k \longrightarrow u$ in measure and for almost every subsequence, with *u* is approximately differentiable, and apDu = v_x , Id >, v_x is the Young measures generated by a sequence Du_k .

Lemma 3.1 *Let* u_k : $\Omega \longrightarrow \mathbb{R}^m$ a sequence of measurable functions such that:

$$
\sup_{k \in \mathbb{N}} \int_{\Omega} |u_k|^s dx < +\infty \text{ for some } s > 0.
$$
 (3.1)

We suppose that for each $\alpha > 0$ *the sequence of truncated functions* $\{T_\alpha(u_k)\}_{k \in \mathbb{N}}$ *is precompact in* $L^1(\Omega, \mathbb{R}^m)$. Then there exists a measurable function u on Ω such that for a *subsequence* $u_k \rightarrow u$ *in measure.*

Proof Choose a subsequence of $\{u_k\}$ (not relabeled) which generates a Young measure $\{\vartheta_x\}_{x \in \Omega}$. By [3.1](#page-4-0) and Theorem (Young, Tartar, Ball) the measure v_x are probability measure for almost every a $x \in \Omega$ and $T_\alpha(u_k) \longrightarrow v_\alpha = \langle v_x; T_\alpha \rangle$, weakly in $L^1(\Omega, \mathbb{R}^m)$ and in fact strongly since $T_\alpha(u_k)$ is precompact in L^1 . Consequently there exists a subsequence such that $T_\alpha(u_{k_l}) \longrightarrow v_\alpha$ almost uniformly, i.e.

$$
T_{\alpha}(u_{k_l}) \longrightarrow v_{\alpha} \text{ uniformly up to a set of arbitrary small measure.} \tag{3.2}
$$

Let $M_{\alpha} = \{x \in \Omega : |v_{\alpha}(x)| < \alpha\}$. Then for each $\epsilon > 0$ and $\delta > 0$ there exists a set E_{ϵ} of measure meas(E_{ϵ}) < ϵ and an index $l_0(\epsilon; \delta)$ such that: $|T_{\alpha}(u_{k_l})|$ < $|v_{\alpha}(x)| + \delta$ for all $x \in M_\alpha \backslash E_\epsilon$ and all $l > l_0$. It follows that $u_{k_l}(x) \longrightarrow v_\alpha(x)$ for almost every $x \in M_\alpha \backslash E_\epsilon$ consider first $x \in M_\beta$; $\beta < \alpha$ and then the union over $\beta < \alpha$). Since $\varepsilon > 0$ was arbitrary it follows that $v_x = \delta_{v_\alpha}(x)$ for almost every $x \in M_\alpha$ In view of the Ball's theorem it suffices to show that $\cup M_\alpha$ has full measure. Now clearly $M_\alpha \subset M_\beta$ for $\alpha < \beta$ since $T_\beta(u_{k_l}) \longrightarrow T_\beta(v_\alpha) = v_\alpha$ almost everywhere in M_α and therefore $v_\alpha = v_\beta$ on M_α . By [\(3.2\)](#page-4-1) there exists for each $\epsilon > 0$ a set E_{ϵ} , and an index $l_0(\epsilon, \alpha)$ such that meas (E_{ϵ}) < ϵ and $| u_{k_l} | \geq | T_\alpha(u_{k_l}) | \geq \frac{\alpha}{2}$ on $(\Omega \backslash E_\epsilon) \backslash M_\alpha$ for all $l \geq l_0$. In view of [\(3.2\)](#page-4-1) this implies meas $((\Omega \setminus E_{\epsilon}) \setminus M_{\alpha}) \le \frac{c}{\alpha^{s}} \epsilon \longrightarrow 0$ we deduce meas $(\Omega \setminus \cup M_{\alpha}) = \lim_{\alpha \longrightarrow \infty} \text{meas}(\Omega \setminus M_{\alpha}) = 0$

Lemma 3.2 *Let* Ω *be a domain in* \mathbb{R}^n *with* $|\Omega| < \infty$ *and* $u_k \in W^{1,1}(\Omega, \mathbb{R}^m)$. *Suppose that there exist* $p > 1$ *and s* > 0 *such that:*

$$
\sup_{k} \sum_{i,j} \int_{|u_k| \le \alpha} \omega_{ij} |D_{ij} u_k|^p dx \le c(\alpha) < \infty, \ \forall \alpha > 0,
$$
\n(3.3)

and sup_{*k*∈*IN*} \int_{Ω} |*u_k*|^{*s*} *dx* ≤ *c* < ∞. *Then there exist a subsequence <i>u_{k_j*} *and a measurable* f unction $u : \Omega \longrightarrow \mathbb{R}^m$ such that $u_{k_j} \longrightarrow u$ in measure. Moreover u is for almost every $x \in \Omega$ Ω approximately differentiable, for all $\eta \in C_0^1(\Omega, \mathbb{R}^m)$ there holds $\eta \circ u \in W^{1,p}(\Omega, \omega, \mathbb{R}^m)$. $if \ u_k \in W_0^{1,1}(\Omega, \mathbb{R}^m)$ then $\eta \circ u \in W_0^{1,1}(\Omega, \mathbb{R}^m) \cap W^{1,p}(\Omega, \omega, \mathbb{R}^m)$ provided that $\eta = Id$ *on* $B(0, r)$ *for some* $r > 0$.

Proof Choose

$$
(u_k)_{\alpha} = \begin{cases} u_k & \text{if} \quad |u_k| \leq \alpha, \\ 0 & \text{if} \quad |u_k| > \alpha. \end{cases}
$$

For the hypotheses:

$$
\sum_{i,j}\int_{\Omega}\omega_{ij}|D_{ij}(u_k)_{\alpha}|^p dx = \sum_{i,j}\int_{|u_k|\leq \alpha}\omega_{ij}|D_{ij}u_k|^p dx \leq c(\alpha) < \infty.
$$

Then, $(u_k)_{\alpha} \in W_0^{1,1}(\Omega, w, \mathbb{R}^m)$ and for [\(1.4\)](#page-1-1), (H_4) and $|D|u|| \leq |Du|$ we have

$$
\int_{\Omega} |DT_{\alpha}(|u_{k}|)|^{p_{s}} dx = \int_{|u_{k}| \leq \alpha} |D|u_{k}|^{p_{s}} dx
$$
\n
$$
\leq \sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij}(u_{k})_{\alpha}|^{p} dx
$$
\n
$$
\leq c(\alpha) < +\infty
$$

Hence by the compact Sobolev embedding $W_s^{1,p_s}(\Omega) \hookrightarrow \hookrightarrow L^{p_s}(\Omega)$, we have ${T_\alpha(|u_k|)}$ is precompact in $L^1(\Omega)$. And, if $\eta \in C_0^\infty(B(0, 3\alpha), \mathbb{R}^m)$ a symmetric radial such that $\eta =$ Id on $B(0, 2\alpha)$, then by [\(1.2\)](#page-1-0) and [\(3.3\)](#page-4-2) $\sum_{i,j}$ $\overline{1}$ $\int_{\Omega} \omega_{ij} |D_{ij} (\eta(u_k))|^p dx = \sum_{ij} \int_{|u_k| \leq \alpha} \omega_{ij} |D_{ij}(u_k)|^p dx +$ $\sum_{i,j}$ $\overline{1}$ $\int_{\alpha < |u_k| \leq 2\alpha} \omega_{ij} |D_{ij}(id)|^p dx + \sum_{i,j}$ $\overline{}$ $\int_{2\alpha < |u_k| \leq 3\alpha} \omega_{ij} |D_{ij}(\eta(u_k))|^{p} dx \leq c(\alpha) +$ $c \sum_{i,j} \parallel \omega_{ij} \parallel_{L^1_{loc}(\Omega)} + c < \infty$. Then, by [\(1.4\)](#page-1-1), $\eta(u_k)$ is precompact in $L^{p_s}(\Omega, \mathbb{R}^m)$, and as in Lemma 8 [\[2\]](#page-17-1), there exist a measurable function $u : \Omega \longrightarrow \mathbb{R}^m$ such that $u_k \longrightarrow u$ in measure, with $u(x) = \langle \vartheta_x, \text{Id} \rangle$ for almost every $x \in \Omega$ and *u* is approximately differentiable because $\eta(u_k) \to \eta(u)$ in $W^{1,P}(\Omega, \omega, R^m)$ and $apDu = ap(\eta \circ u)$.

Lemma 3.3 *Let u_k be as in Lemma* [\(3.2\)](#page-4-3) *with* $p > 1$ *. Then the Young measure* ϑ_x *generated by (a subsequence of) Duk has the following properties:*

- (a) ϑ_x *is a probability measure for almost every* $x \in \Omega$.
- **(b)** ϑ_x *has finite* p_s -*th*-moment for almost every $x \in \Omega$, *i.e.*, $\int_{M^{m \times n}} |\lambda|^{p_s} d\vartheta_x(\lambda)$ *is finite for almost every* $x \in \Omega$.
- (c) ϑ_x *satisfies* $\langle \vartheta_x, Id \rangle = \vartheta_x$ *apDu(x) almost everywhere in* Ω *.*
- *(d)* ϑ_x *is a homogeneous* W^{1,P_s} -gradient young measure for almost every $x \in \Omega$.

Proof Let $\tilde{\vartheta}_x$ denote the Young measure generated by (a subsequence of) the sequence ${u_k, Du_k}.$ By Lemma [3.2](#page-4-3) we have:

$$
\widetilde{\vartheta_x} = \delta_{u(x)} \otimes \vartheta_x.
$$

 \mathcal{L} Springer

Let $\eta \in C_0^{\infty}(B(0, 2\alpha), \mathbb{R}^m)$, $\eta = Id$ on $B(0, \alpha)$, and let ϑ^{η} be the Young measure generated by

$$
D(\eta \circ u_k) = (D\eta)(u_k)Du(x),
$$

then ϑ^{η} is a probability measure, has finite *p*-th moment and

$$
\langle \vartheta^{\eta}, Id \rangle = (D(\eta \circ u))(x) = D\eta(u(x)) \text{apDu}(x).
$$

It follows for $\varphi \in C_0^{\infty}(M^{m \times n})$, that:

$$
\varphi(D(\eta \circ u_k)) \to \langle \vartheta^{\eta}, \varphi \rangle = \int_{M^{m \times n}} \varphi(\lambda) d\vartheta_x^{\eta}(\lambda).
$$

Based on the proof [\(3.2\)](#page-4-3), we have $\sum_{i,j} \int_{\Omega} |\omega_{ij} D_{ij}(\eta \circ u_k)|^p dx < \infty$, and by [\(1.4\)](#page-1-1)

 $\sup_{k \in \mathbb{N}} \int_{\Omega} |D(\eta \circ u_k)|^{ps} dx < \infty$, and the (Ball's Theorem, proof lemma 9 [\[2\]](#page-17-1)) we conclude (a)-(b)-(c)- and (d).

4 Approximate solutions and a priori bounds

We introduce the following approximating problems

$$
-div\sigma(x, u_k, Du_k) = f_k \ in \ \Omega. \tag{4.1}
$$

$$
u_k = 0 \text{ on } \partial\Omega. \tag{4.2}
$$

With $f_k \in W^{-1,p'}(\Omega, \omega^*, \mathbb{R}^m) \cap L^1(\Omega, \mathbb{R}^m)$ and $f_k \to^* \mu$ *in* $M(\Omega, \mathbb{R}^m)$ such that $|| f_k ||_{L^1(\Omega, \mathbb{R}^m)} \le || \mu ||_{M(\Omega, \mathbb{R}^m)}$. By [\[5\]](#page-18-1) and using the assumptions (H_0) , (H_1) , (H_2) and (*H*₄), the problem [\(4.1\)](#page-6-0) and [\(4.2\)](#page-6-0) has a solution u_k $u_k \in W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ u_k is the subsequence approximates solutions of (1.1) . The results of Theorem (2.1) is the consequence of the following proposition

Proposition 4.1 *Let,* $f \in L^1(\Omega, \mathbb{R}^m)$ *and* σ *satisfies* (H_0) *, the coercivity of* (H_1) *and* (H_3) *. If* $u \in W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ *is a solution of*

$$
-div\sigma(x, u, Du) = f \quad in \Omega. \tag{4.3}
$$

in the sense of distributions. Then

$$
u\in L^{t_{ps}^*,\infty}(\Omega,\,I\!\!R^m),\quad Du\in L^{t_{ps},\infty}(\Omega,\,I\!\!R^m)
$$

and

$$
\|u\|_{L^{t_{p_s,\infty}}(\Omega,\mathbb{R}^m)}^* + \|Du\|_{L^{t_{p_s,\infty}}(\Omega,M^{m\times n})}^* \n\leq C\Big(|\Omega|, \|\lambda_1\|_{L^1(\Omega)}, \|\lambda_3\|_{L^{(\frac{p}{\alpha})'}(\Omega)}, \|f\|_{L^1(\Omega,\mathbb{R}^m)}\Big)\sum_{i,j}\int_{|u|\leq\alpha}\omega_{ij}|D_{ij}u|^pdx \n\leq M\alpha + L, \quad \forall \alpha > 0,
$$

M and L are the constants depending on:

$$
\|\lambda_1\|_{L^1(\Omega)}, \|\lambda_3\|_{L^{(\frac{p}{\alpha})'}(\Omega)}, \|\ f\|_{L^1(\Omega, \,R^m)}, \, c_2.
$$

$$
c_2 \cdot \sum_{i,j} \int_{|u| \le \alpha} \omega_{ij} |D_{ij}u|^p dx \le \alpha \| f \|_{L^1(\Omega, \mathbb{R}^m)} + \| \lambda_2 \|_{L^1(\Omega)}
$$

+ $c \| \lambda_3 \|_{L^{\left(\frac{p}{\alpha}\right)'} \left(\sum_{j=1}^m \int_{|u| \le \alpha} \gamma_j |u_j|^q dx \right)^{\frac{\alpha}{p}}$ (4.4)

Choose:

$$
(u)_{\alpha} = \begin{cases} u & \text{if} \quad |u| \leq \alpha, \\ 0 & \text{if} \quad |u| > \alpha. \end{cases}
$$

Then $u \in W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ because $u \in W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ and by Hardy-Type inequality

$$
\sum_{j}^{m} \int_{|u| \le \alpha} \gamma_j |u_j|^q dx = \sum_{j}^{m} \int_{|u| \le \alpha} \gamma_j |(u_\alpha)_j|^q dx
$$

$$
\le c \left(\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij} u_\alpha|^p dx \right)^{\frac{q}{p}}
$$

$$
\le c \left(\sum_{i,j} \int_{|u| \le \alpha} \omega_{ij} |D_{ij} u_\alpha|^p dx \right)^{\frac{q}{p}}
$$

By [\(4.4\)](#page-7-0)

$$
c_2 \left(\sum_{ij} \int_{|u| \le \alpha} \omega_{ij} |D_{ij} u|^p dx \right) \le \alpha \parallel f \parallel_{L^1(\Omega, \mathbb{R}^m)} + \parallel \lambda_2 \parallel_{L^1(\Omega)}
$$

+ $c \parallel \lambda_3 \parallel_{L^{(\frac{p}{\alpha})'}} \left(\sum_{i,j} \int_{|u| \le \alpha} \omega_{ij} |D_{ij} u|^p dx \right)^{\frac{\alpha q}{p^2}}$

and $\frac{\alpha q}{p^2}$ < 1. Then

$$
\left(\sum_{ij}\int_{|u|\leq\alpha}\omega_{ij}|D_{ij}u|^pdx\right)\leq c\left(\alpha\parallel f\parallel_{L^1(\Omega,\,R^m)}+\parallel\lambda_2\parallel_{L^1(\Omega)}\right)\leq M\alpha+L,\quad(4.5)
$$

with $L = L\left(c, \|\lambda_2\|_{L^1(\Omega)}, c\|\lambda_3\|_{L^{\left(\frac{p}{\alpha}\right)}}\right)$ and $M = M\left(c_1, c_2\|\lambda_3\|, \|f\|_{L^1(\Omega, R^m)}\right)$, we choose u^{α} = min(|*u*|, α), then by $|D|u|| \le |Du|$

$$
\int_{\Omega} |Du^{\alpha}|^{p_s} dx = \int_{|u| \leq \alpha} |D|u||^{p_s} dx + 0 \leq \int_{|u| \leq \alpha} |Du|^{p_s} dx = \int_{\Omega} |Du_{\alpha}|^{p_s} dx
$$

$$
\leq \left(\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij} u_{\alpha}|^{p} dx\right)^{\frac{p_s}{p}} = \left(\sum_{i,j} \int_{|u| \leq \alpha} \omega_{ij} |D_{ij} u|^{p} dx\right)^{\frac{p_s}{p}}
$$

 \hat{Z} Springer

And by [\(4.5\)](#page-7-1), and $p_s \leq p$, we have:

$$
\int_{\Omega} |Du^{\alpha}|^{p_s} dx \leq c \left(\alpha \parallel f \parallel_{|L^1(\Omega, R^m)} + \parallel \lambda_1 \parallel_{L^1(\Omega)} \right). \tag{4.6}
$$

By (1.4) and (4.6) , we have

$$
\int_{\Omega} |u^{\alpha}|^{p_s^*} dx \leq c \left(\int_{\Omega} |Du^{\alpha}|^{p_s} dx \right)^{\frac{p_s^*}{p}} \leq c \left(\alpha \parallel f \parallel_{L^1(\Omega; \, R^m)} + \parallel \lambda_1 \parallel_{L^1(\Omega)} \right)^{\frac{p_s^*}{p}} \tag{4.7}
$$

Then

$$
\lambda_{|u|}(\alpha) = \alpha^{-p_s^*} \int_{|u| > \alpha} \alpha^{p_s^*} dx \le \alpha^{-p_s^*} \int_{|u| > \alpha} |u^{\alpha}|^{p_s^*} dx
$$

$$
\le c\alpha^{-p_s^*} (\alpha \parallel f \parallel_{L^1(\Omega, \mathbb{R}^m)} + \parallel \lambda_2 \parallel_{L^1(\Omega)})^{\frac{p_s^*}{p}} \tag{4.8}
$$

and we continue in the same way as in a case that is non-degenerated [\[2\]](#page-17-1) by replacing *p* by *ps* as well as

$$
||u||_{L^{t_{p_s}^*,\infty}}^*(\Omega, R^m) = \sup_{\alpha > 0} \alpha |\lambda_{|u|}(\alpha)|^{\frac{1}{t_{p_s}^*}}
$$

\n
$$
\leq |\Omega| + \sup_{\alpha > 1} \alpha |\lambda_{|u|}(\alpha)|^{\frac{1}{t_{p_s}^*}}
$$

\n
$$
\leq |\Omega| + c(||f||_{L^{1}(\Omega, R^m)}^{\frac{1}{p_s-1}}, ||\lambda_2||_{L^{1}(\Omega)}^{\frac{1}{p_s-1}})
$$

i.e.

$$
||u||_{L^{t_{p_s}^*,\infty}}^*(\Omega, R^m) \le c \left(|\Omega|, ||\lambda_2||_{L^1(\Omega)}, ||\lambda_3||_{L^{(\frac{p}{\alpha})}(\Omega)}; c_2, ||f||_{L^1(\Omega, R^m)} \right), \quad (4.9)
$$

on the other hen, by using ($p_s \leq p$) and thinks to [\(1.4\)](#page-1-1), we obtain

$$
\lambda_{|Du|}(s) \leq s^{-p_s} \int_{|u| \leq \alpha} |Du|^{p_s} dx + \lambda_{|u|}(\alpha)
$$

\n
$$
= s^{-p_s} \int_{|u| \leq \alpha} |Du_{\alpha}|^{p_s} dx + \lambda_{|u|}(\alpha)
$$

\n
$$
\leq s^{-p_s} \left(\sum_{i,j} \int_{|u| \leq \alpha} \omega_{ij} |D_{ij} u_{\alpha}|^p dx \right) + \lambda_{|u|}(\alpha)
$$

\n
$$
\leq s^{-p_s} \left(\sum_{i,j} \int_{|u| \leq \alpha} \omega_{ij} |D_{ij} u|^p dx \right) + \lambda_{|u|}(\alpha)
$$

By [\(4.5\)](#page-7-1) and [\(4.8\)](#page-8-1):

$$
\lambda_{|Du|}(s) \le c \left(\max \left(\frac{\alpha}{s^{p_s}}, \frac{1}{s^{p_s}} \right) + \max \left(\alpha^{-p_s^*}, \alpha^{\frac{p_s^*}{p_s} - p_s^*} \right) \right)
$$

or $-t_{p_s}^* = \frac{p_s^*}{p_s} - p_s^*$, so as in [\[6\]](#page-18-2)

$$
\parallel Du \parallel_{L^{t_{ps},\infty}(\Omega,M^{m\times n})}^{\ast} \leq c \left(|\Omega|, \parallel \lambda_2 \parallel_{L^{1}(\Omega)}, \parallel \lambda_3 \parallel_{L^{2}(\Omega/\Omega)}, c_2, \parallel f \parallel_{L^{1}(\Omega;R^m)} \right). \tag{4.10}
$$

² Springer

$$
\int_{\Omega} \sigma(x, u, Du) : D(S_{\alpha}(u))dx = \sum_{i=1}^{m} |u_i| \leq \sigma_i(x, u, Du) : Du_i dx
$$

$$
\geq \int_{|u| = \max(|u_1|; \dots; |u_m|)} \sum_{i=1}^{m} \sigma_i(x, u, Du) : Du_i dx
$$

and like $\sum_{i=1}^{m} \sigma_i(x, u, Du)$: $Du_i dx = \sigma(x, u, Du)$: Du . By the coercivity condition in $(H₁)$ and the Hölder Inequality we obtain:

$$
c_2 \sum_{i,j} \int_{|u| \le \alpha} \omega_{ij} |D_{ij}u|^p dx \le \sqrt{m} \cdot \alpha \parallel f \parallel_{L^1(\Omega; \mathbb{R}^m)} + \parallel \lambda_2 \parallel_{L^1(\Omega)}
$$

+ $c \parallel \lambda_3 \parallel_{L^{(\frac{p}{\alpha})}(\Omega)} \left(\sum_{j=1}^m \int_{|u| \le \alpha} \gamma_j |u_j|^q dx \right)^{\frac{q}{p}}$

and we continue in the same way as in i), this completes the proof of the Proposition (4.1)

 \Box

5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to the limit in the Eq. [\(4.1\)](#page-6-0) for the solution $\{u_k\}_{k\in\mathbb{N}}$ of approximating problems. Since it is independent of the differential equation we state it a more general form using only the hypotheses (5.1) – (5.8) below:

$$
\sigma; \tau : \Omega \times \mathbb{R}^m \times M^{m \times n} \longrightarrow M^{m \times n}, \tag{5.1}
$$

is a Carathéodory function.

σ and τ satisfing one of the fellowing conditions: (5.2)

- **(i)** $\sigma(x, u, F) : MF \ge 0, \tau(x, u, F) : MF \ge 0; M = Id b \otimes b \in M^{m \times n}$, with $|b| \le 1$.
- **(ii)** $\sigma_j(x; u; F) : F_j \geq 0$, and $\tau_j(x, u, F) : F_j \geq 0$; $1 \leq j \leq m$, σ_j , τ_j and F_j is the *j*^{eme} columns of σ , τ , *F*.

$$
u_k \in W^{1,1}(\Omega, \mathbb{R}^m)
$$
 and there exists an $s \ge 0$ such that $\int_{\Omega} |Du_k|^s dx \le c$ uniformly in k

The sequence $\sigma_k(x) = \sigma(x, u_k, Du_k)$ is equiintegrale. (5.4)

The sequence u_k converges in measure to some function u ,

and u is almost everywhere approximately differentiable. (5.5)

The sequence $f_k = -div(\sigma_k + \tau_k) - \mu$ is bounded in $L^1(\Omega, \mathbb{R}^m)$. (5.6)

(5.3)

$$
D_{ij}u_k \in L_{loc}^r(\Omega, \omega_{ij}, M^{m \times n}) \text{ and } (\sigma_k + \tau_k) \in L_{loc}^r(\Omega, w^*, M^{m \times n}), \text{ for some}
$$

 $1 \le r \prec \infty$ and $(1 \le i \le n, 1 \le j \le m.)$ (5.7)

The sequence $\tau_k(x) = \tau[x](x, u, Du_k)$ converges to weakly to 0 in $L^1(\Omega, M^{m \times n})$. (5.8)

Lemma 5.1 *Suppose* [\(5.1\)](#page-9-0)–[\(5.8\)](#page-9-1). Then (after passage to a subsequence) the sequence σ_k con*verges weakly in* $L^1(\Omega, M^{m \times n})$ *and the weak limit* $\overline{\sigma}$ *is given by* $\overline{\sigma}(x) = \langle v_x; \sigma(x, u(x), \cdot) \rangle$. *Moreover the following inequality holds:*

$$
\int_{M^{m\times n}} \sigma(x, u(x), \lambda) : \lambda dv_x(\lambda) \le \overline{\sigma}(x) : apDu(x) \text{ for a.e. } x \in \Omega.
$$
 (5.9)

Proof See [\[6](#page-18-2)]

6 Passage to the limit

Proposition 6.1 *Suppose that the sequence* $(u_k)_{k \in \mathbb{N}}$ *satisfies the hypotheses* [\(5.1\)](#page-9-0)–[\(5.7\)](#page-9-1)*,* (*H*₂) *and that the Young measure* ν *generated by the sequence* $(Du_k)_{k \in \mathbb{N}}$ *satisfies: a)-c) and d)in Lemma* [\(3.3\)](#page-5-0). Then the sequence (σ_k) is weakly converge in $L^1(\Omega, M^{m \times n})$, with $\overline{\sigma}$ is *the limit and* $\overline{\sigma(x)} = \langle v_x, u(x), apDu(x) \rangle$. *If in* (H_2) *b)-c)-or d)-holds,* $\sigma(x, u_k, Du_k) \rightarrow$ $\sigma(x, u, apDu)$ *strongly in* $L^1(\Omega, M^{m \times n})$.

In the cases (c) and (d) it follows addition that $Du_k \to apDu$ *in measure.*

Proof See [\[6](#page-18-2)]. **Proof of the Theorem 2.1**

Case: $\theta = p - 1$ For using the results of Proposition [\(6.1\)](#page-10-0): we assume that (5.1) – (5.7) and the Young measure v_x generated by the sequence Du_k satisfies:(*i*), (iii) and (iii) in Lemma (3.3) , for the approximate systems (4.1) and (4.2) . By the proposition 6.1, with $u_k \in W_0^{1,p}(\Omega, w, \mathbb{R}^m)$, we have: $\|\mu\|_{L^{t_{p_s,\infty}}(\Omega, \mathbb{R}^m)} \leq$ $c\left(|\Omega|, \| \lambda_2 \|_{L^1(\Omega)}, \| \lambda_3 \|_{L^{\left(\frac{p}{\alpha}\right)}(\Omega)}, c_2, \| \mu \|_{M(\Omega, \omega^*, R^m)} \right)$ and \sum \overline{a} $\int_{|u_k| \leq \alpha} \omega_{ij} |D_{ij} u_k|^p dx \leq M\alpha + L < \infty.$ (6.1)

By $L^{t_{ps}^*$, $\iota\infty}(\Omega, \mathbb{R}^m) \hookrightarrow L^p(\Omega, \mathbb{R}^m)$ for all $1 < p < t_{p_s}^*$, then

i,*j*

$$
\|u_k\|_{L^p(\Omega, R^m)} \leq c < \infty. \tag{6.2}
$$

Now

- (5.1) is (H_0)
- (5.2) is (H_3)
- [\(5.3\)](#page-9-1): $u_k \in W_0^{1,p}(\Omega, \omega, \mathbb{R}^m) \hookrightarrow W_0^{1,p_s}(\Omega, \mathbb{R}^m)$ with $p_s > 1$, then $u_k \in W^{1,1}(\Omega, \mathbb{R}^m)$. Moreover, by the proposition

$$
\parallel Du_k \parallel_{L^{t_{p_s},\infty}(\Omega, R^m)} \leq c \left(\vert \Omega \vert, \parallel \lambda_2 \parallel_{L^1(\Omega)}, \parallel \lambda_3 \parallel_{L^{2(\frac{p}{\alpha})}(\Omega)}, c_2, \parallel \mu \parallel_{M(\Omega, \omega^*, R^m)} \right)
$$

hence

$$
\parallel Du_k \parallel_{L^s(\Omega, M^{m \times n})} \leq c > \infty, \forall 1 < s < t_{p_s}
$$

with $\sup_{k \in \mathbb{N}} \int_{\Omega} |Du_k|^s dx < \infty$.

• (5.4): Let *A* a measurable in Ω , by (H_1) and Hölder we have

$$
\int_{A} |\sigma(x, u_k, Du_k)| dx \le c \left(\sum_{r,s} \int_{\Omega} \omega_{rs} dx \right)^{\frac{1}{p}} \cdot \left[|| \lambda_1 ||_{L^{p'}(\Omega)} \right] + \left(\sum_{j=1}^{m} \int_{\Omega} \gamma_j |(u_k)_j|^q dx \right)^{\frac{1}{p'}} + \left(\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij} u_k|^p dx \right)^{\frac{1}{p'}} \right],
$$

and with (1.4) and (1.2) :

$$
\int_{A} |\sigma(x, u_k, Du_k)| dx \leq c \left(\sum_{r,s} ||\omega_{rs}||_{L_{loc}^{1}(\Omega)}^{\frac{1}{p}} \right)
$$

$$
\times \left[||\lambda_1||_{L^{p'}(\Omega)} + ||u_k||_{1,p,\omega}^{\frac{q}{p'}+} + ||u_k||_{1,p,\omega}^{\frac{p}{p'}} \right] < \infty.
$$

- [\(5.5\)](#page-9-1): By (6.1) and (6.2) and Lemma (3.2) .
- \bullet [\(5.6\)](#page-9-1): \parallel *f_k* \parallel _{*L*¹(Ω, *R^m*)} ≤ \parallel μ \parallel *M*(Ω, ω^{*}, *R^m*).

• [\(5.7\)](#page-9-1): $\forall \varepsilon > 0$ and $x_0 \in \Omega$ $\int_{B(x_0,\varepsilon)} |D_{ij} u_k|^p \omega_{ij} dx \le ||u_k||_{1,p,\omega}^p < \infty$ and by (H_3) we implies

$$
\int_{B(x_0,\varepsilon)} |\sigma_{rs}(x,u_k,Du_k)|^{p'} \omega_{rs}^* dx = \int_{B(x_0,\varepsilon)} |\sigma_{rs}(x,u_k,Du_k)|^{p'} \omega_{rs}^{1-p'} dx
$$
\n
$$
\leq c \int_{B(x_0,\varepsilon)} w^{1-p'+\frac{p'}{p}} \left[|\lambda_1|^{p'} + \sum_{j=1}^m \gamma_j |(u_k)_j|^q + \sum_{i,j} \omega_{ij} |D_{ij} u_k|^p \right] dx
$$
\n
$$
\leq c \left(||\lambda_1||_{L^{p'}(\Omega)}^{p'} + ||u_k||_{1,p,w}^{\frac{q}{p}} + ||u_k||_{1,p,w}^p + ||u_k||_{1,p,\omega}^p \right) < \infty.
$$

Then, by the Proposition $(6.1) \sigma(x, u_k, Du_k) \longrightarrow \sigma(x, u, apDu)$ $(6.1) \sigma(x, u_k, Du_k) \longrightarrow \sigma(x, u, apDu)$ in $L^1(\Omega, M^{m \times n})$ and $\forall \varphi \in C_0^{\infty}(\Omega, \mathbb{R}^m); D\varphi \in L^{\infty}(\Omega, \mathbb{M}^{m \times n})$ hence

$$
\int_{\Omega} \sigma(x, u_k, Du_k) : D\varphi dx \longrightarrow \int_{\Omega} \sigma(x, u, apDu) : D\varphi dx
$$

i.e.

$$
-div\sigma(x, u_k, apDu_k) \longrightarrow -div\sigma(x, u, apDu)
$$

 \hat{Z} Springer

In the sense of distributions. On the other hand $f_k \longrightarrow \mu$ in $L^1(\Omega, R^m)$. Then $\overline{1}$ $\iint_{\Omega} f_k \cdot \varphi dx \longrightarrow \int_{\Omega} \mu \cdot \varphi dx \quad \forall \varphi \in C_0^{\infty}(\Omega, \mathbb{R}^m) \text{ so } \mu \text{ is the solution in } W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ of the system:

$$
-div\sigma(x, u, \text{apDu}) = \mu \text{ in } \Omega
$$

$$
u = 0 \text{ on } \partial\Omega
$$

to show the estimation [\(2.1\)](#page-3-2), we take the function η in $C_0^1(B(0, 2\alpha), \mathbb{R}^m)$; $\eta =$ Id in $B(0, \alpha)$ and $|D\eta| \leq c$, then:

$$
\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij} \eta(u_k)|^p dx = \sum_{i,j} \int_{\Omega} \omega_{ij} |(D_{ij} \eta)(u_k)|^p |Du_k||^p dx
$$

\n
$$
\leq c^p \cdot \sum_{ij} \int_{|u_k| \leq \alpha} \omega_{ij} |D_{ij} u_k| dx
$$

\n
$$
+ c \sum_{i,j} \int_{|u_k| \leq 2\alpha} \omega_{ij} D_{ij} u_k |^p dx
$$

\n
$$
\leq c.c(\alpha) + c.c(2\alpha) < \infty,
$$

thanks to (6.1) .

Now, we have $\eta(u_k) \longrightarrow \eta(u)$, for every $x \in \Omega$ because η is C^{∞} . Then $\eta(u_k) \rightarrow \eta(u)$, in $W_0^{1,p}(\Omega, \omega, \mathbb{R}^m)$ and apDu = apD($\eta \circ u$) on {|u| $\prec \alpha$ }. Hence,

$$
\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij}(\eta \circ u)|^p dx \le \liminf_{k \to \infty} \int_{\Omega} w |D(\eta \circ u_k)|^p dx
$$

\n
$$
\le \liminf_{k \to \infty} \sum_{ij} \int_{|u_k| \le 2\alpha} |D_{ij}\eta(u_k)|^p |D_{ij}u_k| \omega_{ij} dx
$$

\n
$$
\le c \liminf_{k \to \infty} \int_{|u_k| \le 2\alpha} \omega_{ij} |D_{ij}u_k| |^p dx
$$

\n
$$
\le c.c(2\alpha) < \infty.
$$

Then:

$$
\sum_{i,j}\int_{|u|\leq\alpha}\omega_{ij}|apDu|^pdx=\sum_{i,j}\int_{|u_k|\leq 2\alpha}\omega_{ij}|D(\eta\circ u)|^pdx<\infty,
$$

in the same as in the proof of the Proposition [\(4.1\)](#page-6-2) by replacing u_k by *u* and f_k by μ , we obtain the estimation [\(2.1\)](#page-3-2) and this completes the proof of the Theorem [2.1](#page-3-1)

 \Box

Case: $0 < \theta < \frac{n(p_s-1)}{n-1}$ (the general case) The idea is to consider the regularized problems:

$$
-div\phi_{\varepsilon}(x, u_{\varepsilon}, Du_{\varepsilon}) = \mu \quad \text{in } \Omega, \tag{6.3}
$$

$$
u_{\varepsilon} = 0 \qquad \text{on } \partial \Omega \tag{6.4}
$$

with

$$
\phi_{\varepsilon,r,s}(x,u,F)=\sigma_{rs}(x,u,F)+\varepsilon\beta\left(\sum_{ij}\omega_{ij}^{\frac{1}{p'}}|F_{ij}|^{s-2}\right)\omega_{rs}^{\frac{1}{p}}F_{rs},
$$

 $\hat{\mathfrak{D}}$ Springer

 $\forall 1 \le r \le n, \ \forall 1 \le s \le m \text{ with } s > n + 1, \text{ and } \varepsilon < \frac{1}{2}, \text{ we have } p < s, \text{ then } s' < p'$, and $\left(\frac{s}{\alpha}\right)' < \left(\frac{p}{\alpha}\right)'$. Moreover $\exists c > 0$ which doesn't depend on *p*, *s*, such that $\omega_{rs}^{\frac{1}{p}} \leq c\omega_{rs}^{\frac{1}{s}}$ $\forall 1 \leq r \leq n$ and $1 \leq s \leq m$.

By (H_1) for σ , we obtain

$$
|\phi_{\varepsilon,r,s}(x,u,F)| \leq \beta^{'} . |\omega_{rs}|^{\frac{1}{p}} \left[\lambda_1 + \sum_{j=1}^{m} \gamma_j^{\frac{1}{p'}} |u_j|^{\frac{q}{p'}} + \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{\theta} \right] + \varepsilon \beta \omega_{rs}^{\frac{1}{p}} \left(\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{s-1} \right) \left(\theta < \frac{n(p_s - 1)}{n - 1} < n(s - 1) \right) \leq \leq \beta' \omega_{rs}^{\frac{1}{p}} \left[\lambda_1 + \sum_{j=1}^{m} \gamma_j^{\frac{1}{p'}} |u_j|^{\frac{q}{p'}} + \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{s-1} \right].
$$

And $p \leq s$, then $\frac{1}{p'} \leq \frac{1}{s'}$ and like $\omega_{rs}^{\frac{1}{p}} \leq c\omega_{rs}^{\frac{1}{s}}$, then: $|\phi_{\varepsilon,r,s}(x,u, F)| \leq$ $\beta'.|\omega_{rs}|^{\frac{1}{s}}$ $\left[\lambda_1 + \sum_{i=1}^m \gamma_j^{\frac{1}{s'}} |u_j|^{\frac{q}{s'}} + \sum_{i=1}^m \right]$ *j*=1 *i j* $\omega_{ij}^{\frac{1}{s'}}|F_{ij}|^{s-1}$ ⎤ \vert , and by (H_3) , we conclude that $\phi_{\varepsilon}(x, u, F) : F = \sigma(x, u, F) : F + \varepsilon \sum$ ω $\frac{\frac{1}{p'}}{i j} \frac{\frac{1}{p}}{\omega_{rs}^{s}} |F_{ij}|^{s-2} F_{ij}$. Frs

i,*j*,*r*,*s*

 $\geq -\lambda_2 - \sum_{j=1}^m \lambda_3 \gamma_j^{\frac{q}{s}} \cdot |u_j|^{\frac{q\alpha}{s}} + \varepsilon \sum_{ij} \omega_{ij} |F_{ij}|^s.$

On the other hand, $0 < \alpha < p - 1 < s - 1$, $1 < q < \frac{p^2}{\alpha} < \frac{s^2}{\alpha'}$, $\lambda_1 \in$ $L^{p'}(\Omega) \hookrightarrow L^{s'}(\Omega)$, and $\lambda_3 \in L^{(\frac{p}{\alpha})'}(\Omega) \hookrightarrow L^{(\frac{s}{\alpha})'}(\Omega)$ and as σ_{ε} verifies the conditions of the structures (of l'angle and sign), the strict monotony, the s-quasi monotonous with regard to F is a $C¹$ monotony in relation with F or accepting a convex potential because: $\displaystyle F \longrightarrow \varepsilon \beta \left(\sum\nolimits_{ij} \omega \right)$ $\int_{i j}^{\frac{1}{p'}} |F_{i j}|^{s-2} \bigg) \omega_{rs}^{\frac{1}{p}} F_{rs}$ verify them as well, hence σ_{ε} verifies the hypotheses (H_0) – (H_5) , for the regularized Problems [\(6.3\)](#page-12-0) and [\(6.4\)](#page-12-0), thus for the previous case, $\theta = s - 1$ of Theorem [2.1,](#page-3-1) there exists a solution, $u_{\varepsilon} \in W_0^{1,s}(\Omega, \omega, \mathbb{R}^m)$ of the system [\(6.3\)](#page-12-0) and [\(6.4\)](#page-12-0). Now showing that the conditions: i), ii) and iii), of lemma (3.3) , and the hypotheses (5.1) – (5.8) of the div-curl inequality are verified for u_{ε} with order *s* in the place of *p*.

We suppose the condition of l'angle verifying that ϕ_{ε} by testing, $T_{\alpha}(u_{\varepsilon}) \alpha > 0$ in [\(5.3\)](#page-9-1) and [\(5.4\)](#page-9-1), we get: $\int_{\Omega} \phi_{\varepsilon}(x, u_{\varepsilon}, Du_{\varepsilon}) : DT_{\alpha}(u_{\varepsilon}) dx = \int_{\Omega} \phi_{\varepsilon}(x, u_{\varepsilon}, Du_{\varepsilon}) : DT_{\alpha}(u_{\varepsilon}) dx$ $\int_{\Omega} f \cdot T_{\alpha}(u_{\varepsilon}) dx$, so $\overline{1}$ $\int_{|u_{\varepsilon}| \leq \alpha} \sigma(x, u_{\varepsilon}, Du_{\varepsilon}): Du_{\varepsilon} dx + \int$ $|u_{\varepsilon}|>\alpha$ α $\frac{\alpha}{|u_{\varepsilon}|}\sigma_{\varepsilon}(x, u_{\varepsilon}, Du_{\varepsilon}): \left(\mathrm{Id} - \frac{u_{\varepsilon}}{|u_{\varepsilon}|} \otimes \frac{u_{\varepsilon}}{|u_{\varepsilon}|}\right)$ $\bigg)$ *Du*_ε*dx* $+ \varepsilon \beta \int_{|u_{\varepsilon}| \leq \alpha}$ \sum *i*,*j* ω $\frac{1}{p'}$
ij $|D_{ij}u_{\varepsilon}|^{s-2} \sum$ *r*,*s* $\frac{1}{\omega_{rs}^p}$ $|D_{rs}u_{\varepsilon}|^2 dx$ $+\varepsilon\beta\int_{|u_{\varepsilon}|>\alpha}$ \sum *i j* ω $\frac{1}{p'}$ _{*ij*} $|D_{ij}u_{\varepsilon}|^{s-2} \sum$ *r*,*s* $\omega_{rs} D_{rs} u_{\varepsilon} \left(Id - \frac{u_{\varepsilon}}{|u_{\varepsilon}|} \otimes \frac{u_{\varepsilon}}{|u_{\varepsilon}|} \right)$ \setminus

$$
\leq \alpha. \parallel f \parallel_{L^1(\Omega, \mathbb{R}^m)}.
$$

 \mathcal{L} Springer

since

$$
\sum_{rs} |D_{rs} u_{\varepsilon}|^{s-2} D_{rs} u_{\varepsilon} \left(\mathrm{Id} - \frac{\alpha}{|u_{\varepsilon}|} \left(\frac{u_{\varepsilon}}{|u_{\varepsilon}|} \otimes \frac{u_{\varepsilon}}{|u_{\varepsilon}|} \right) \right) \geq 0
$$

so

$$
\int_{|u_{\varepsilon}| \leq \alpha} \sigma(x, u_{\varepsilon}, Du_{\varepsilon}) : Du_{\varepsilon} dx \leq \alpha \parallel f \parallel_{L^{1}(\Omega, \mathbb{R}^{m})}.
$$

And by the coercivity condition of σ in (H_1) and Hölder inequality, we get as in the proof of the Proposition [4.1](#page-6-2)

$$
\sum_{ij} \int_{|u_{\varepsilon}| \le \alpha} \omega_{ij} |D_{ij} u_{\varepsilon}|^p dx \le M' \alpha + L', \tag{6.5}
$$

And the following a priori estimation:

$$
\|u_{\varepsilon}\|_{L^{r_{\beta}}_{\rho_s(\infty)}(\Omega,R^m)}^* + \|Du_{\varepsilon}\|_{L^{t_{p_s}}(\infty)}^* \leq c < \infty,\tag{6.6}
$$

and by the injection $L^{\beta', \infty} \hookrightarrow L^{\alpha'}, \forall 0 < \alpha' < \beta',$ then $\forall, 0 < r < t_{p_s}^*$, $\forall 0 < p < t_{p_s}$

$$
\parallel u_{\varepsilon} \parallel_{L^{r}(\Omega, R^{m})} + \parallel Du_{\varepsilon} \parallel_{L^{p}(\Omega, M^{m \times n})} + \parallel Du_{\varepsilon} \parallel_{L^{t}p_{s}, \infty}^{\ast}(\Omega, M^{m \times n}) < \infty.
$$
 (6.7)

We suppose that the condition of the sign is verify.

As in the same way in the proof of the Proposition [\(4.1\)](#page-6-2), we test $S_\alpha(u_\varepsilon)$ in [\(6.3\)](#page-12-0) and [\(6.4\)](#page-12-0), we obtain (6.5) and (6.7) .

Starting with verifying that i), ii) et iii) of lemma (3.3) and the hypotheses (5.1) and (5.7) for σ_{ϵ} . By [\(6.5\)](#page-14-0)and[\(6.7\)](#page-14-1), the points i), ii) et iii) are a direct consequence of Lemmas [\(3.2\)](#page-4-3) and [\(3.3\)](#page-5-0). On the other hand:

– [\(5.1\)](#page-9-0): for σ is (*H*₀) and $\tau_{rs}(x, u, F) = εβ \left(\sum_{i,j} ω_i \right)$ 1 *p i j* |*Fi j*| *s*−2 .ω 1 *p rs Frs* is a Carathéodory function, because $x \mapsto \omega_{ij}(x)$, is measurable, so σ_{ε} is a Cathéodory function. $-$ [\(5.2\)](#page-9-2)

(i)
$$
\phi_{\varepsilon}(x, u, F)
$$
 : $MF = \sigma(x, u, F)$: $MF + \left(\sum_{rs} (\varepsilon \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{s-2}) \omega_{rs}^{\frac{1}{p}} F_{rs}\right)$
\n $(MF)_{rs} \ge 0$, with $M = \text{Id} - a \otimes a$ and $|a| \le 1$.

$$
(\mathbf{ii})
$$

$$
\phi_{rs}(x, u, F) \cdot F_j = \sigma_j(x, u, F) : F_j + \tau_j(x, u, F) \cdot F_j
$$

= $\sigma_j(x, u, F) : F_j + \sum_{l=1}^m \varepsilon \beta \left(\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |F_{ij}|^{s-1} \right) \cdot w_{lj}^{\frac{1}{p}} |F_{lj}|^2 \ge 0,$

 $\forall 1 \leq j \leq m.$

 $-$ (5, 3): $u_{\varepsilon} \in W_0^{1,s}(\Omega, \omega, \mathbb{R}^m) \hookrightarrow W_0^{1,s_s}(\Omega, \mathbb{R}^m), s_s > 1$, so $u_{\varepsilon} \in W^{1,1}(\Omega, \mathbb{R}^m)$, and by (6.7) sup_{$\varepsilon>0$} $\int_{\Omega} |Du_{\varepsilon}|^p dx < \infty, \forall, 0 < p < t_{p_s}.$

[\(4.5\)](#page-7-1): $\sigma(x, u_{\varepsilon}, Du_{\varepsilon})$ is equi-integrable as previously $\forall \Omega' \subset \Omega$, measurable, we have:

$$
\int_{\Omega'}\left|\sum_{i,j}(\omega_{ij}^{\frac{1}{p'}}\right|D_{ij}u_{\varepsilon}|^{s-2})\omega_{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon}|dx
$$

$$
\leq \left(\sum_{i,j} \int_{\Omega'} \omega_{ij} |D_{ij} u_{\varepsilon}|^{s-1} dx \right)
$$

$$
\leq c \sum_{ij} \int_{\Omega'} \omega_{ij} |D_{ij} u_{\varepsilon}|^{s} dx \leq c \| u_{\varepsilon} \|_{1,s,w}^{s}.
$$

- $-$ [\(5.5\)](#page-9-1): by [\(6.7\)](#page-14-1) and the Lemma [\(3.2\)](#page-4-3).
- $-$ [\(5.6\)](#page-9-1): by [\(6.3\)](#page-12-0), $-$ *di*v(*σ*_{*l*} + τ_{*k*}) − μ = 0, with μ ∈ *M*(Ω, *R^{<i>m*}) is bounded in *L*¹(Ω, *R^{<i>m*}).
- $-$ [\(5.7\)](#page-9-1): ∀ ε > 0 and $x_0 \in \Omega$, by the growth condition of σ_{ε} and previously with *s* in the
	- place of *p*, $\int_{B(x,\varepsilon)} |\sigma_{\varepsilon}(x,u_{\varepsilon},Du_{\varepsilon})|^s \omega_{rs}^* dx < \infty$ and
- $-$ [\(5.8\)](#page-9-1): $\int_{B(x,\varepsilon)} |D_{ij} u_{\varepsilon}|^{s} \omega_{rs} dx < || u_{\varepsilon} ||_{1,s,w}^{\varepsilon} < \infty.$

Testing that u_{ε} in [\(6.3\)](#page-12-0) and [\(6.4\)](#page-12-0)

$$
\varepsilon \beta \int_{\Omega} \left(\sum_{ij} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \right) \left(\sum_{rs} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} \right) dx
$$

\n
$$
\leq || u_{\varepsilon} ||_{L^{\infty}(\Omega, ,\mathbb{R}^m)} || \mu ||_{M(\Omega, \omega^{*}, \mathbb{R}^m)} \tag{6.8}
$$

We have $W_0^{1,s}(\Omega, w, \mathbb{R}^m) \hookrightarrow W_0^{1,s_s}(\Omega, \mathbb{R}^m) \hookrightarrow L^{\infty}(\Omega, \mathbb{R}^m)$. Then

$$
\|u_{\varepsilon}\|_{L^{\infty}(\Omega, \mathbb{R}^m)} \leq c \left(\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij} u_{\varepsilon}|^{s} dx \right)^{\frac{1}{s}}
$$

\n
$$
\leq c \left(\sum_{i,j} \int_{\Omega} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \omega_{ij}^{\frac{1}{p}} |D_{ij} u_{\varepsilon}|^{2} dx \right)^{\frac{1}{s}}
$$
(6.9)
\n
$$
\leq c \left(\int_{\Omega} \left(\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \right) \cdot \left(\sum_{r,s} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} dx \right) \right)^{\frac{1}{s}}.
$$

Thanks to (6.8) and (6.9) , we have

$$
\int_{\Omega} \sum_{ij} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \sum_{rs} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} dx
$$
\n
$$
\leq \frac{c \|\mu\|_{M(\Omega, \omega^{*}, \mathbb{R}^{m})}}{\varepsilon} \left(\int_{\Omega} \left(\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \right) \cdot \left(\sum_{rs} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} dx \right) \right) \text{So:}
$$
\n
$$
\left(\int_{\Omega} \left(\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \right) \cdot \left(\sum_{r,s} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} dx \right) \right)^{\frac{s-1}{s}} \leq \frac{c \|\mu\|_{M}}{\varepsilon},
$$

which mean that

$$
\left(\int_{\Omega}\left(\sum_{i,j}\omega_{ij}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon}|^{s-2}\right)\left(\sum_{r,s}\omega_{rs}^{\frac{1}{p}}|D_{rs}u_{\varepsilon}|^{2}dx\right)^{\frac{1}{s}}\leq\frac{c\parallel\mu\parallel_{M}}{\varepsilon},\qquad(6.10)
$$

 $\hat{\mathcal{D}}$ Springer

and

$$
\parallel u_{\varepsilon} \parallel_{L^{\infty}(\Omega, \mathbb{R}^m)} \leq c \left(c \frac{\parallel \mu \parallel_{M}}{\varepsilon} \right)^{\frac{1}{s-1}}.
$$
 (6.11)

On the other hand and \forall 1 < $p < \frac{s}{s-1}$, can write

$$
\begin{split}\n\|\epsilon & \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij}u_{\varepsilon}|^{s-2} \omega_{rs}^{\frac{1}{p}} |F_{rs}| \parallel_{L^{\frac{s}{s-1}}(\Omega, M^{m \times n})} \\
&\leq \varepsilon^{\frac{s}{s-1}} \left(\int_{\Omega} \|\sum_{i,j} \omega_{ij}^{\frac{1}{p'}} D_{ij}u_{\varepsilon}|^{s-1} \omega_{rs}^{\frac{1}{p}} \|^{\frac{s}{s-1}} dx \right)^{\frac{s-1}{s}} \\
&\leq c\varepsilon^{\frac{s}{s-1}} \left(\|\sum_{i,j} \int_{\Omega} \omega_{ij}^{\frac{1}{p'}} |D_{ij}u_{\varepsilon}|^{s-1} \omega_{rs}^{\frac{1}{p}} \|^{\frac{s}{s-1}} dx \right)^{\frac{s-1}{s}} \\
&\leq c\varepsilon^{\frac{s}{s-1}} \left(\sum_{i,j} \int_{\Omega} \omega_{ij} |D_{ij}u_{\varepsilon}|^{s-2} \sum_{r,s} \omega_{rs}^{\frac{s}{(s-1)p}} |D_{rs}u_{\varepsilon}|^{2} dx \right) < \infty.\n\end{split}
$$

thanks to [\(6.10\)](#page-15-2). Now, since $u_{\varepsilon} \in W_0^{1,s}(\Omega, \omega, \mathbb{R}^m) \hookrightarrow W_0^{1,s_s}(\Omega, \mathbb{R}^m) \hookrightarrow W_0^{1,p_s}(\Omega, \mathbb{R}^m)$, so by testing $T_\alpha(u_\varepsilon)$ in [\(6.3\)](#page-12-0) and [\(6.4\)](#page-12-0), we obtain as in the proof of the proposition [\(4.1\)](#page-6-0)

$$
\|Du_{\varepsilon}\|_{L^{\frac{n(p_s-1)}{n-1},\infty}(\Omega,M^{m\times n})}^{\ast}\leq c.\tag{6.12}
$$

By the Hölder inequality for the exponent a with a and ξ are the solutions of systems:

$$
\begin{cases}\n a' \xi = \tau > \frac{n(p_s - 1)}{n - 1} \\
 a \left((s - 1)\rho - \xi \right) = s\n\end{cases}
$$

a given system accepting the solution when $\rho < \frac{s}{s-1}$. So

$$
\int_{\Omega} |\varepsilon \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-1} \omega_{ij}^{\frac{1}{p}}|^{\rho} dx
$$
\n
$$
\leq c \int_{\Omega} \varepsilon^{\rho} \left(\sum_{i,j} \omega_{ij}^{\frac{\rho}{p'}} |D_{ij} u_{\varepsilon}|^{(s-1)\rho - \xi} \omega_{ij}^{\frac{\rho}{p}} |D_{ij} u_{\varepsilon}|^{\xi} \right)^{\rho} dx
$$
\n
$$
\leq c \varepsilon^{\rho} \left(\sum_{i,j} \int_{\Omega} \omega_{ij}^{a\rho} |D_{ij} u_{\varepsilon}|^{a((s-1)\rho - \xi)} dx \right)^{\frac{1}{a}} \cdot \left(\int_{\Omega} |Du_{\varepsilon}|^{a'\xi} dx \right)^{\frac{1}{a'}}
$$
\n
$$
\leq c \varepsilon^{\rho} \left(\sum_{i,j} \int_{\Omega} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \sum_{r,s} \omega_{rs}^{\frac{1}{p}} |D_{rs} u_{\varepsilon}|^{2} \right)^{\frac{1}{a}} \cdot ||Du_{\varepsilon}||_{L^{r}(\Omega, M^{m \times n})}^{\frac{r}{a}}.
$$

And by the injection: $L^{\frac{n(p_s-1)}{n-1}} \hookrightarrow L^{\tau} \quad \forall \tau > \frac{n(p_s-1)}{n-1}$ and thanks to [\(6.10\)](#page-15-2)–[\(6.12\)](#page-16-0), we get:

 $\hat{2}$ Springer

$$
\int_{\Omega} |\varepsilon \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-1} \omega_{ij}^{\frac{1}{p}}|^{\rho} dx \le c \cdot \varepsilon^{\rho} \left(\frac{c \parallel \mu \parallel_{M}}{\varepsilon} \right)^{\frac{s}{(s-1)a}} \cdot c^{\frac{t}{a}}
$$

$$
\le c \cdot c^{\frac{t}{a}} \varepsilon^{\frac{a((s-1)\rho-s)}{(a(s-1))}}
$$

$$
\le c \cdot c^{\frac{t}{a}} \varepsilon^{\frac{a\xi}{a(s-1)}}
$$

$$
\le c \cdot c^{\frac{t}{a}} \varepsilon^{\frac{\frac{t}{a(s-1)}}{\frac{s-1}{s-1}}}
$$

with $\frac{\xi}{s-1} > 0$. Hence

$$
\lim_{\varepsilon\to 0}\parallel\varepsilon\sum_{i,j}\omega_{ij}^{\frac{1}{p'}}|D_{ij}u_{\varepsilon}|^{s-1}\omega_{rs}^{\frac{1}{p}}D_{rs}u_{\varepsilon}\parallel_{L^{p}(\Omega,M^{m\times n})}=0,\quad\forall\rho<\frac{s}{s-1}.
$$

In particular for $\rho = 1$

$$
\lim_{\varepsilon \to \infty} \int_{\Omega} |\varepsilon \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-1} \omega_{rs}^{\frac{1}{p}} D_{rs} u_{\varepsilon}| dx = 0,
$$

which mean that

$$
\tau[\varepsilon](x, u_{\varepsilon}, Du_{\varepsilon}) = \varepsilon \sum_{i,j}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \omega_{rs}^{\frac{1}{p}} D_{rs} u_{\varepsilon} \to 0
$$

in $L^1(\Omega, M^{m \times n})$.

As well as by the Proposition [6.1,](#page-10-0) $div\sigma(x, u_{\varepsilon}, Du_{\varepsilon})$ converges to $div\sigma(x, u, \text{apDu})$, in the sense of the distributions, and as

$$
\tau[\varepsilon](x, u_{\varepsilon}, Du_{\varepsilon}) = \varepsilon \sum_{i,j} \omega_{ij}^{\frac{1}{p'}} |D_{ij} u_{\varepsilon}|^{s-2} \omega_{rs}^{\frac{1}{p}} D_{rs} u_{\varepsilon} \to 0,
$$

in $L^1(\Omega, M^{m \times n})$. Then $div \sigma_{\varepsilon}(x, u_{\varepsilon}, Du_{\varepsilon})$ converge to $div \sigma(x, u, \text{apDu})$ in the sense of distributions, i-e: u is the solution of the system

$$
\begin{cases}\n-div\sigma(x, u, \text{apDu}) = \mu & \text{in}\Omega\\ u = 0 & \text{on}\partial\Omega.\n\end{cases}
$$

In the same way as in the case of $\theta = p - 1$, we have

$$
\int_{|u| \le \alpha} |apDu|^s dx < c(\alpha) < \infty \text{ and } p < s.
$$

So we conclude as in the proof of the Proposition [6.1,](#page-10-0) in order to get the estimation of Theorem (2.1) . This completes the proof of the theorem.

References

- 1. Rami, E., Barbara, A., Azroul, E.: Existence of T-p(x)-solution of a nonhomogeneous elliptic problem with right hand side measure. J. Appl. Mathe. Phys. **9**, 2717–2732 (2021)
- 2. Hungerbühler, N., Dolzmann, G., Müller, S.: Nonlinear elliptic systems with measures Vlued right hand side. Math. Z. **226**, 545–574; zbl 895.35029 (1997)
- 3. Binelon, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., Vasquez, J.: An *L*¹ theory on existence and uniqueness of solutions of non linear elliptic equation. Ann. Math. **37**(1), 16–26 (1995)
- 4. Lions, P., Murat, F.: Solutions renormalises d'equations elliptiques **(to appear)**
- 5. Rami, E., Azroul, E., Ellekhlifi, M.: Quasilinear degenerated elliptic system in divergence form with mild monotonicity in weighted Sobolev spaces. J. Afr. Mat. **30**, 1153–1168 (2019)
- 6. Augsburger, F.: Young Measures and Quasi-linear Systems in Divergence form with Weak Monotonicity, Thesis n 1448. University Press, Fribourg (2004)
- 7. Hungerbühler, N.: Quasilinear elliptic systems in divergence form with weak monotonicity. N. Y. J. Math. **5**, 83–90 (1999)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.