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Abstract
Let � be an open bounded domain in IRn, we prove the existence of a solution u for the
nonlinear elliptic system

(QES)

{−divσ (x, u (x) , Du (x)) = μ in �

u = 0 on ∂�,
(0.1)

where μ is Radon measure on � with finite mass. In particular, we show that if the coer-

civity rate of σ lies in the range ] s+1
s , ( s+1

s )(2 − 1
n )] with s ∈

(
n
p ∞

)
∩
(

1
p−1 ∞

)
, then

u is approximately differentiable and the equation holds with Du replaced by apDu. The
proof relies on an approximation of μ by smooth functions fk and a compactness result for
the corresponding solutions uk . This follows from a detailed analysis of the Young mea-
sure {δu(x) ⊗ ϑ(x)} generated by the sequence (uk, Duk), and the div-curl type inequality
〈ϑ(x), σ (x, u, ·)〉 ≤ σ(x)〈ϑ(x), ·〉 for the weak limit σ of the sequence.

Keywords Nonlinear elliptic system · Mesure-valued · Young measure · The div-curl type
inequality

Mathematics Subject Classification 35J46 · 35J62

1 Introduction

We consider the existence and compactness questions for elliptic systems of the form

(QES)

{−divσ (x, u (x) , Du (x)) = μ in �

u = 0 on ∂�,
(1.1)
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with measure-valued right hand sideμ ∈ M(�, IRm) on an open, bounded domain� in IRn,

we denote by M(�, IRm), with m ∈ IN∗, the Banach space of vectors μ of bounded Radon
measures

μ = (μ1, . . . μm) wi th μi ∈ M(�) f or i = 1, . . . , m.

With M(�) be a vector space of bounded Radon measures.
ω = {

ωi j | 0 ≤ i ≤ n, 1 ≤ j ≤ m
}
is a family of weight functions defined on � with

ωi j (x) > 0 for almost every x ∈ � and ω∗ = {ω∗
i j = ω

1−p′
i j , 0 ≤ i ≤ n, 1 ≤ j ≤ m},

( 1p + 1
P ′ = 1). In this paper we are interested in the solution u in the Sobolev space

W 1,p
0 (�, ω, IRm), and estimations in the weak Lebesgues spaces. We assume that σ sat-

isfies the following hypotheses (H0)–(H3) explained below. We denote by IMm×n the real
vector space of m × n matrices equipped with the inner product M : N =

∑
i j

Mi j Ni j . The

Jacobian matrix of a function u : � −→ IRm is denoted by

Du(x) = (D1u(x), D2u(x), . . . , Dnu(x)) with Di = ∂/∂xi .

Let ω = {
ωi j | 0 ≤ i ≤ n, 1 ≤ j ≤ m

}
, and ω0 = (ω0 j ) for all 1 ≤ j ≤ m the weight

functions system defined in � satisfying the following integrability conditions

ωi j ∈ L1
loc(�), ω

−1
p−1

i j ∈ L1
loc(�) (1.2)

ω−s
i j ∈ L1(�) (1.3)

for some s ∈
(

n
p ∞

)
∩
(

1
p−1 ∞

)
. The space W 1,p(�, ω, IRm) is the set of functions

{
u = u(x) | u ∈ L p(�, ω0, IRm), Di j u = ∂ui

∂x j
∈ L p(�, ωi j , IRm), 1 ≤ i ≤ n, 1 ≤ j ≤ m}

}

with

L p(�, ωi j , IRm) =
{

u = u(x) | | u | ωi j
1
p ∈ L p(�, IRm)

}
.

The weighted space W 1,p(�, ω, IRm) can be equipped by the norm

‖u‖1,p,ω =
⎛
⎝ m∑

j=1

∫
�

|u j |pw0 j dx +
∑

1≤i≤n,1≤ j≤m

∫
�

|Di j u|pωi j dx

⎞
⎠

1
p

.

The norm ‖ · ‖1,ω,p is equivalent to the norm ||| · ||| on W 1,p
0 (�, ω, IRm),

defined by ||| u |||= (
∑

1≤i≤n,1≤ j≤m

∫
�

|Di j u|pωi j dx)
1
p . The condition (1.2)

implies (W 1,p(�, ω, IRm), ‖·‖1,p,ω) is a Banach space and C∞
0 (�, IRm) subspace of

(W 1,p(�, ω, IRm). The space (W 1,p
0 (�, ω, IRm) is the closure of C∞

0 (�, IRm) in
W 1,p(�, ω, IRm) for the norm ‖·‖p

1,p,ω . The condition (1.3), implies

W 1,p(�, ω, IRm) ↪→ W 1,ps (�, IRm) ↪→ Lr (�, IRm), (1.4)

for all 1 ≤ r ≤ p∗
s if p × s ≤ n(s + 1), and ∀r ≥ 1 if p × s > n(s + 1) with ps = p×s

s+1 and

p∗
s = n×p×s

n(s+1)−p×s ,for proof see [1].
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Our article deals with the existence of a weak solution of system declared at the top in
each of the four cases located in the part of the hypotheses in (H2) and in a Sobolev space
with weights, but the article in [2] treats in a weightless Sobolev space.

2 Hypothesis

(H0) (Continuity) σ : � × IRm × IMm×n −→ IMm×n is a Carathéodory function, i.e:
x �−→ σ(x, u, p) is measurable for every (u, p) and (u, p) �−→ σ(x, u, p) is
continuous for almost every x ∈ �.

(H1) (Coercivity and growth): There exist constants c1, c2, β > 0 and λ1 ∈ L p′
(�), λ2 ∈

L1(�), λ3 ∈ L(
p
α
)
′
(�), 0 < α < p, 1 < q <

p2

α
, 0 < θ <

n(ps−1)
n−1 , such that, for all

1 ≤ r ≤ n, and 1 ≤ s ≤ m

|σrs(x, u, F)| ≤ βω
1
p

rs

⎡
⎣λ1 + c1

m∑
j=1

γ

1
p′

j |u j |
q
p′ + c1

∑
i, j

ω

1
p′

i j |Fi j |θ
⎤
⎦

σ(x, u, F) : F ≥ −λ2 −
m∑

j=1

λ3γ
α
p

j |u j |
qα
p + c2

∑
i, j

ωi j |Fi j |p.

(H2) (Monotonicity) σ satisfies one of the following conditions:
a) For all x ∈ �, u ∈ IRm the function F �−→ σ(x, u, F) is a C1 and monotone func-
tion, which means (σ (x, u, F) − σ(x, u, G)) : (F − G) ≥ 0, for all x ∈ �, u ∈ IRm ,
and F, G ∈ IMm×n .

b) There exist a function W : � × IRm × IMm×n → R such that
σ(x, u, F) = ∂W

∂ F (x, u, F), and the function F �−→ W (x, u, F) is a convex C1 func-
tion.
c) σ is strictlymonotone, i.e. σ is monotone, i.e., (σ (x, u, F)−σ(x, u, G)) : (F −G) ≥
0 and (σ (x, u, F) − σ(x, u, G)) : (F − G) = 0. implies F = G.

d) The function F �−→ σ(x, u, F) is strictly p-quasi-monotone, i.e.,∫
IMm×n (σ (x, u, λ) − σ(x, u, λ̄)) : (λ − λ̄)dν(λ) > 0, for all homogeneous W 1,p-

gradient Young measures ν with center of mass λ̄ = 〈ν; Id〉 =
∫

IMm×n
λdν(λ) which

are not a single Dirac mass.
(H3) (structure conditions) i) (Angle condition) for all x ∈ �, u ∈ IRm and F ∈ IMm×n

there holds
σ(x, u, F) : M F ≥ 0, for all matrices M ∈ IMm×m of the form M = Id − a ⊗ a with
|a| ≤ 1. ii) (The sign condition) for all x ∈ �, u ∈ IRm and F ∈ IMm×n, we have
σ j (x, u, F) : Fj ≥ 0, for all 1 ≤ j ≤ m where Fj and σ j are the columns j of the
matrix F and σ, respectively.

(H4) (The Hardy-Type Inequality) There exist c > 0, a weight function γ = (γ j )1≤ j≤m , and

a parameter 1 < q <
p2

α
(H1), such that:

⎛
⎝ m∑

j=1

∫
�

γ j | u j |q dx

⎞
⎠

1
q

≤ c

⎛
⎝∑

i, j

∫
�

ωi j | Di j u |p dx

⎞
⎠

1
p

.

Remark 2.1 1. Assumption (H0) ensures that σ(x, u(x), U (x)) is measurable on � for
measurable function u : � −→ IRm and U : � −→ IMm×n . A typical example for a
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function σ satisfying (H0) is σ(x, u, p) = ξ(x, u, p)p with a real valued non-negative
function ξ.

2. A serious technical obstacle is that for ps ∈ (1, 2− 1/n] solutions of the system (1.1) in
general do not belong to the Sobolev space W 1,1(�, ω, IRm) [2].

This fact has led to the use of normalized solutions in [2] and generalized entropy solutions
in [3] for elliptic equations of the above type.Wewill use a notion of solution where the weak
derivative Du is replaced by the approximate derivative apDu.Recall that a measurable func-
tion u is said to be approximately differentiable at x ∈ � if there exists a matrix Fx ∈ IMm×n

such that for all ε > 0, lim
r→0

1

rn
meas {y ∈ B(x, r) : |u(y) − u(x) − Fx (y − x)| > εr} = 0.

We write apDu(x) = Fx .

Definition 2.1 A measurable function u : � −→ IRm is called a solution of the system (1.1)
if:

(i) u is almost everywhere approximately differentiable.
(ii) η ◦ u ∈ W 1,1(�, ω, IRm), for all, η ∈ C1

0 (IRm, IRm).
(iii) σ(x, u, apDu) ∈ L1(�, IMm×n);
(iv) The equation−divσ(x, u(x), Du(x)) = μholds in the sense of distributions.Moreover

we say that u satisfies the boundary condition (1.2) if η ◦ u ∈ W 1,1
0 (�, ω, IRm), for

all, η ∈ C1(IRm, IRm) ∩ L∞(IRm, IRm) with η = Id on B(0, r), for some r > 0, and
|Dη(y)| ≤ c(1 + |y|)−1, with c < ∞.

Remark 2.2 1. The conditions in Definition (2.1) (except (ii)) are the weakest possible in
order to define the system (1.1) in the sense of distributions.Note that if u is approximately
differentiable, then apDu is measurable, so σ(·, u, apDu) is measurable.

2. The assumption η ◦ u ∈ W 1,1(�, IRm) ensures minimal regularity of u. For example,
if μ = 0, and σ(x, u, p) = σ(p) with σ(0) = 0, then piecewise constant functions u
satisfy apDu = 0 a.e. but are not admissible solutions. The following theorem is the main
result in this paper.

Theorem 2.1 Let � be a bounded, open set. We suppose that the hypotheses (H0)–(H2)–(H3)

and the coercivity condition in (H1) are satisfied. Let μ denote a IRm-valued Radon measure
on � with finite mass. Then the system (1.1) has a solution u in the sense of Definition 2.1,
which satisfies the weak Lebesgue space estimate

‖u‖∗
Lt∗ps ,∞ (�,IRm )

+ ‖apDu‖∗
Ltps ,∞ (�,IMm×n)

≤ C, (2.1)

with the constant C depending on |�|, c, c2, and ‖ λ3 ‖
L(

p
α ), (�)

, with tps = n(ps−1)
n−1 and

t∗ps
= n(ps−1)

n−ps
is the Sobolev exponent of tps . If c2 = 0 the right hand side of (1.2) reduces to

C(c1)
∥∥∥μ 1

p−1

∥∥∥
M

.

Remark 2.3 1. If ps > 2 − 1
n , then tps > 1 and Du ∈ L1(�, Mm×n).

2. If p > n one can replace the Ls,∞-norm of u in (1.3) by the C0,β -norm with β = 1− n
p .

For p = q = n it is an open question whether Du ∈ Ln,∞. See Section 7 [4] for the
(weaker) inclusion u ∈ B M Oloc.

3. The exponent in (1.2) are optimal as can be seen from the nonlinear Green’s function

G p(x) = c |x | −n
s∗ for the p-Laplace equation: −div(|Du|p−2 Du) = δ0 in IRm , n ≥ 3.

In particular, Ls,∞ cannot be replaced by Ls where Ls,∞, is a Laurent space.
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4. The pointwise monotonicity condition can be replaced by a weaker integrated version,
called quasi-monotonicity.
The key point in the proof of the theorem, is the div-curl inequality for the Youngmeasure
{ϑx }xε� generated by a sequence Duk of gradients of approximate solutions. Together
with the identity. (1.4)
apDu(x) =< ϑx , I d > . The div-curl inequality implies easily that σ(·, uk, Duk) con-
verges weakly in L1 to σ(·, u, apDu). (1.4) is a consequence of general properties of
young measures if p > 2 − 1

n since in this case Duk is bounded in Ls for some s > 1.
If 1 < p ≤ 2 − 1

n one only has the weaker bounds.

3 Some preliminary lemmas

In this section, we will also use the Young measures, and Inequality div-curl for assume the
convergence of subsequence uk −→ u in measure and for almost every subsequence, with u
is approximately differentiable, and apDu =< νx , Id >, νx is the Young measures generated
by a sequence Duk .

Lemma 3.1 Let uk: : � −→ IRm a sequence of measurable functions such that:

sup
k∈IN

∫
�

|uk |sdx < +∞ for some s > 0. (3.1)

We suppose that for each α > 0 the sequence of truncated functions {Tα(uk)}k∈IN is pre-
compact in L1(�, IRm). Then there exists a measurable function u on � such that for a
subsequence uk −→ u in measure.

Proof Choose a subsequence of {uk} (not relabeled) which generates a Young measure
{ϑx }x∈�. By 3.1 and Theorem (Young, Tartar, Ball) the measure νx are probability mea-
sure for almost every a x ∈ � and Tα(uk) −→ vα = 〈νx ; Tα〉, weakly in L1(�, IRm) and
in fact strongly since Tα(uk) is precompact in L1. Consequently there exists a subsequence
such that Tα(ukl ) −→ vα almost uniformly, i.e.

Tα(ukl ) −→ vα uniformly up to a set of arbitrary small measure. (3.2)

Let Mα = {x ∈ � : |vα(x) |< α} . Then for each ε > 0 and δ > 0 there exists a set Eε

of measure meas(Eε) < ε and an index l0(ε; δ) such that: |Tα(ukl )| < |vα(x)| + δ for all
x ∈ Mα\Eε and all l > l0. It follows that ukl (x) −→ vα(x) for almost everyx ∈ Mα\Eε

consider first x ∈ Mβ; β < α and then the union over β < α). Since ε > 0 was arbitrary
it follows that νx = δvα (x) for almost every x ∈ Mα In view of the Ball’s theorem it
suffices to show that ∪Mα has full measure. Now clearly Mα ⊂ Mβ for α < β since
Tβ(ukl ) −→ Tβ(vα) = vα almost everywhere in Mα and thereforevα = vβ on Mα. By
(3.2) there exists for each ε > 0 a set Eε, and an index l0(ε, α) such that meas (Eε) < ε and
| ukl | ≥ | Tα(ukl ) | ≥ α

2 on (�\Eε)\Mα for all l ≥ l0. In view of (3.2) this implies meas
((�\Eε)\Mα) ≤ c

αs ε −→ 0 we deduce meas(�\ ∪ Mα) = limα−→∞ meas(�\Mα) = 0 ��

Lemma 3.2 Let � be a domain in IRn with |�| < ∞ and uk ∈ W 1,1(�, IRm). Suppose that
there exist p > 1 and s > 0 such that:

sup
k

∑
i, j

∫
|uk |≤α

ωi j |Di j uk |pdx ≤ c(α) < ∞, ∀α > 0, (3.3)
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and supk∈IN

∫
�

|uk |sdx ≤ c < ∞. Then there exist a subsequence uk j and a measurable

function u : � −→ IRm such that uk j −→ u in measure. Moreover u is for almost every x ∈
� approximately differentiable, for all η ∈ C1

0 (�, IRm) there holds η◦u ∈ W 1,p(�, ω, IRm).

if uk ∈ W 1,1
0 (�, IRm) then η ◦ u ∈ W 1,1

0 (�, IRm) ∩ W 1,p(�, ω, IRm) provided that η = Id
on B(0, r) for some r > 0.

Proof Choose

(uk)α =
{

uk if |uk | ≤ α,

0 if |uk | > α.

For the hypotheses:

∑
i, j

∫
�

ωi j |Di j (uk)α|pdx =
∑
i, j

∫
|uk |≤α

ωi j |Di j uk |pdx ≤ c(α) < ∞.

Then, (uk)α ∈ W 1,1
0 (�,w, IRm) and for (1.4), (H4) and |D|u|| ≤ |Du| we have

∫
�

|DTα(|uk |)|ps dx =
∫

|uk |≤α

|D|uk |)|ps dx

≤
∑
i, j

∫
�

ωi j |Di j (uk)α|pdx

≤ c(α) < +∞
Hence by the compact Sobolev embedding W 1,ps

s (�) ↪→↪→ L ps (�), we
have {Tα(|uk |)} is precompact in L1(�). And, if η ∈ C∞

0 (B(0, 3α), IRm)

a symmetric radial such that η = Id on B(0, 2α), then by (1.2)

and (3.3)
∑

i, j

∫
�

ωi j |Di j (η(uk)) |pdx =
∑

i j

∫
|uk |≤α

ωi j |Di j (uk)|pdx +
∑

i, j

∫
α<|uk |≤2α

ωi j |Di j (id)|pdx +
∑

i, j

∫
2α<|uk |≤3α

ωi j |Di j (η(uk)) |pdx ≤ c(α) +
c
∑

i, j
‖ ωi j ‖L1

loc(�) +c < ∞. Then, by (1.4), η(uk) is precompact in L ps (�, IRm), and

as in Lemma 8 [2], there exist a measurable function u : � −→ IRm such that uk −→ u
in measure, with u(x) =< ϑx , Id > for almost every x ∈ � and u is approximately
differentiable because η(uk)⇀η(u) in W 1,P (�, ω, IRm) and apDu = ap(η ◦ u). ��

Lemma 3.3 Let uk be as in Lemma (3.2) with p > 1. Then the Young measure ϑx generated
by (a subsequence of) Duk has the following properties:

(a) ϑx is a probability measure for almost every x ∈ �.
(b) ϑx has finite ps-th- moment for almost every x ∈ �, i.e.,

∫
Mm×n | λ |ps dϑx (λ) is finite

for almost every x ∈ �.
(c) ϑx satisfies < ϑx , Id >= apDu(x) almost everywhere in �.

(d) ϑx is a homogeneous W 1,Ps -gradient young measure for almost every x ∈ �.

Proof Let ϑ̃x denote the Young measure generated by (a subsequence of) the sequence
{uk, Duk}. By Lemma 3.2 we have:

ϑ̃x = δu(x) ⊗ ϑx .
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Let η ∈ C∞
0 (B(0, 2α), IRm), η = I d on B(0, α), and letϑη be theYoungmeasure generated

by

D(η ◦ uk) = (Dη)(uk)Du(x),

then ϑη is a probability measure, has finite p-th moment and

< ϑη, I d >= (D(η ◦ u))(x) = Dη(u(x))apDu(x).

It follows for ϕ ∈ C∞
0 (Mm×n), that:

ϕ(D(η ◦ uk))⇀〈ϑη, ϕ〉 =
∫

Mm×n
ϕ(λ)dϑη

x (λ).

Based on the proof (3.2), we have
∑

i, j

∫
�

|ωi j Di j (η ◦ uk)|pdx < ∞, and by (1.4)
supk∈IN

∫
�

|D(η ◦ uk)|ps dx < ∞, and the (Ball’s Theorem, proof lemma 9 [2]) we
conclude (a)-(b)-(c)- and (d). ��

4 Approximate solutions and a priori bounds

We introduce the following approximating problems

−divσ(x, uk, Duk) = fk in �. (4.1)

uk = 0 on ∂�. (4.2)

With fk ∈ W −1,p
′
(�, ω∗, IRm) ∩ L1(�, IRm) and fk⇀

∗μ in M(�, IRm) such that
‖ fk ‖L1(�,IRm )≤‖ μ ‖M(�,IRm ) . By [5] and using the assumptions (H0), (H1),(H2) and

(H4), the problem (4.1) and (4.2) has a solution uk uk ∈ W 1,p
0 (�, ω, IRm) uk is the subse-

quence approximates solutions of (1.1). The results of Theorem (2.1) is the consequence of
the following proposition

Proposition 4.1 Let, f ∈ L1(�, IRm) and σ satisfies (H0), the coercivity of (H1) and (H3).

If u ∈ W 1,p
0 (�, ω, IRm) is a solution of

− divσ(x, u, Du) = f in �. (4.3)

in the sense of distributions. Then

u ∈ Lt∗ps ,∞(�, IRm), Du ∈ Ltps ,∞(�, IRm)

and

‖ u ‖∗
Lt∗ps ,∞

(�,IRm )
+ ‖ Du ‖∗

Ltps ,∞(�,Mm×n)

≤ C

(
|�|, ‖ λ1 ‖L1(�), ‖ λ3 ‖

L(
p
α )

′
(�)

, ‖ f ‖L1(�,IRm )

)∑
i, j

∫
|u|≤α

ωi j |Di j u|pdx

≤ Mα + L, ∀α > 0,

M and L are the constants depending on:

‖ λ1 ‖L1(�), ‖ λ3 ‖
L(

p
α )

′
(�)

, ‖ f ‖L1(�,IRm ), c2.
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Proof We suppose the condition of l’angle in (H3). Let α > 0. Testing Tα(u) in (4.3) and
we use the coercivity condition in (H1), and Hölder inequality, we have

c2.
∑
i, j

∫
|u|≤α

ωi j |Di j u|pdx ≤ α ‖ f ‖L1(�,IRm ) + ‖ λ2 ‖L1(�)

+ c ‖ λ3 ‖
L( p

α )
′

⎛
⎝ m∑

j=1

∫
|u|≤α

γ j | u j |q dx

⎞
⎠

α
p

(4.4)

Choose:

(u)α =
{

u if |u| ≤ α,

0 if |u| > α.

Then u ∈ W 1,p
0 (�, ω, IRm) because u ∈ W 1,p

0 (�, ω, IRm) and by Hardy-Type inequality

m∑
j

∫
|u|≤α

γ j |u j |qdx =
m∑
j

∫
|u|≤α

γ j |(uα) j |qdx

≤ c

⎛
⎝∑

i, j

∫
�

ωi j |Di j uα|pdx

⎞
⎠

q
p

≤ c

⎛
⎝∑

i; j

∫
|u|≤α

ωi j |Di j uα|pdx

⎞
⎠

q
p

By (4.4)

c2

⎛
⎝∑

i j

∫
|u|≤α

ωi j |Di j u|pdx

⎞
⎠ ≤ α ‖ f ‖L1(�,IRm ) + ‖ λ2 ‖L1(�)

+ c ‖ λ3 ‖
L( p

α )
′ .

⎛
⎝∑

i, j

∫
|u|≤α

ωi j |Di j u|pdx

⎞
⎠

αq
p2

and αq
p2

< 1. Then

⎛
⎝∑

i j

∫
|u|≤α

ωi j |Di j u|pdx

⎞
⎠ ≤ c

(
α ‖ f ‖L1(�,IRm ) + ‖ λ2 ‖L1(�)

) ≤ Mα + L, (4.5)

with L = L
(

c, ‖ λ2 ‖L1(�), c ‖ λ3 ‖
L( p

α )
.

)
and M = M

(
c1, c2 ‖ λ3 ‖, ‖ f ‖L1(�,IRm )

)
,

we choose uα = min(|u|, α), then by |D|u|| ≤ |Du|∫
�

|Duα|ps dx =
∫

|u|≤α

|D|u||ps dx + 0 ≤
∫

|u|≤α

|Du|ps dx =
∫

�

|Duα|ps dx

≤
⎛
⎝∑

i, j

∫
�

ωi j |Di j uα|pdx

⎞
⎠

ps
p

=
⎛
⎝∑

i, j

∫
|u|≤α

ωi j |Di j u|pdx

⎞
⎠

ps
p
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And by (4.5), and ps ≤ p, we have:∫
�

|Duα|ps dx ≤ c
(
α ‖ f ‖|L1(�,IRm ) + ‖ λ1 ‖L1(�)

)
. (4.6)

By (1.4) and (4.6), we have

∫
�

|uα|p∗
s dx ≤ c

(∫
�

|Duα|ps dx

) p∗
s
p ≤ c

(
α ‖ f ‖L1(�;IRm ) + ‖ λ1 ‖L1(�)

) p∗
s
p (4.7)

Then

λ|u|(α) = α−p∗
s

∫
|u|>α

α p∗
s dx ≤ α−p∗

s

∫
|u|>α

|uα|p∗
s dx

≤ cα−p∗
s
(
α ‖ f ‖L1(�,IRm ) + ‖ λ2 ‖L1(�)

) p∗
s
p (4.8)

and we continue in the same way as in a case that is non-degenerated [2] by replacing p by
ps as well as

‖u‖∗
Lt∗ps ,∞(�, IRm) = sup

α>0
α|λ|u|(α)|

1
t∗ps

≤ |�| + sup
α>1

α|λ|u|(α)|
1

t∗ps

≤ |�| + c(‖ f ‖
1

ps −1

L1(�,IRm )
, ‖ λ2 ‖

1
ps −1

L1(�)
)

i.e.

‖u‖∗
Lt∗ps ,∞(�, IRm) ≤ c

(
|�|, ‖ λ2 ‖L1(�), ‖ λ3 ‖

L( p
α )

′
(�)

; c2, ‖ f ‖L1(�,IRm )

)
, (4.9)

on the other hen, by using (ps ≤ p) and thinks to (1.4), we obtain

λ|Du|(s) ≤ s−ps

∫
|u|≤α

|Du|ps dx + λ|u|(α)

= s−ps

∫
|u|≤α

|Duα|ps dx + λ|u|(α)

≤ s−ps

⎛
⎝∑

i, j

∫
|u|≤α

ωi j |Di j uα|pdx

⎞
⎠ + λ|u|(α)

≤ s−ps

⎛
⎝∑

i, j

∫
|u|≤α

ωi j |Di j u|pdx

⎞
⎠ + λ|u|(α)

By (4.5) and (4.8):

λ|Du|(s) ≤ c

(
max

(
α

s ps
,

1

s ps

)
+ max

(
α−p∗

s , α
p∗
s

ps
−p∗

s

))

or −t∗ps
= p∗

s
ps

− p∗
s , so as in [6]

‖ Du ‖∗
Ltps ,∞(�,Mm×n)

≤ c

(
|�|, ‖ λ2 ‖L1(�), ‖ λ3 ‖

L( p
α )

′
(�)

, c2, ‖ f ‖L1(�;IRm )

)
. (4.10)
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From (4.5), (4.9) and (4.10), we obtain the result of the proposition (4.1) in case i). ii)-Suppose
the angle condition in (H3), let Sα(y) = (Tα(y1); Tα(y2); . . . Tα(ym)) , y ∈ IRm, the cubic
truncation, we have Dsα(y) = Id if |y|max = max1≤i≤m |yi | ≤ α, in the same way as in i)-

by testing Sα(u) in (4.3). Then
∫

�

σ(x, u, Du) : D(Sα(u))dx =
∫

�

f · Sα(u)dx or

∫
�

σ(x, u, Du) : D(Sα(u))dx =
m∑

i=1

|ui |≤ασi (x, u, Du) : Dui dx

≥
∫

|u|=max(|u1|;...;|um |)

m∑
i=1

σi (x, u, Du) : Dui dx

and like
∑m

i=1
σi (x, u, Du) : Dui dx = σ(x, u, Du) : Du. By the coercivity condition in

(H1) and the Hölder Inequality we obtain:

c2
∑
i, j

∫
|u|≤α

ωi j |Di j u|pdx ≤√
m.α ‖ f ‖L1(�;IRm ) + ‖ λ2 ‖L1(�)

+ c ‖ λ3 ‖
L( p

α )
′
(�)

⎛
⎝ m∑

j=1

∫
|u|≤α

γ j |u j |qdx

⎞
⎠

q
p

and we continue in the same way as in i), this completes the proof of the Proposition (4.1)
��

5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to the limit in the
Eq. (4.1) for the solution {uk}k∈IN of approximating problems. Since it is independent of the
differential equation we state it a more general form using only the hypotheses (5.1)–(5.8)
below:

σ ; τ : � × IRm × Mm×n −→ Mm×n, (5.1)

is a Carathéodory function.

σ and τ satisfing one of the fellowing conditions: (5.2)

(i) σ(x, u, F) : M F ≥ 0, τ(x, u, F) : M F ≥ 0; M = Id− b ⊗ b ∈ Mm×n, with |b| ≤ 1.
(ii) σ j (x; u; F) : Fj ≥ 0, and τ j (x, u, F) : Fj ≥ 0; 1 ≤ j ≤ m, σ j , τ j and Fj is the j eme

columns of σ, τ, F .

uk ∈ W 1;1(�, IRm) and there exists an s ≥ 0 such that
∫

�

| Duk |s dx ≤ c uniformly in k

(5.3)

The sequence σk(x) = σ(x, uk, Duk) is equiintegrale. (5.4)

The sequence uk converges in measure to some function u,

and u is almost everywhere approximately differentiable. (5.5)

The sequence fk = −div(σk + τk) − μ is bounded in L1(�, IRm). (5.6)
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Di j uk ∈ Lr
loc(�, ωi j , Mm×n) and (σk + τk) ∈ Lr ,

loc(�,w∗, Mm×n), for some

1 ≤ r ≺ ∞ and (1 ≤ i ≤ n, 1 ≤ j ≤ m.) (5.7)

The sequence τk(x) = τ [x](x, u, Duk) converges to weakly to 0 in L1(�, Mm×n). (5.8)

Lemma 5.1 Suppose (5.1)–(5.8). Then (after passage to a subsequence) the sequence σk con-
verges weakly in L1(�, Mm×n) and the weak limit σ is given by σ(x) = 〈νx ; σ(x, u(x), .)〉.
Moreover the following inequality holds:∫

Mm×n
, σ (x, u(x), λ) : λdνx (λ) ≤ σ(x) : apDu(x) for a.e. x ∈ �. (5.9)

Proof See [6] ��

6 Passage to the limit

Proposition 6.1 Suppose that the sequence (uk)k∈IN satisfies the hypotheses (5.1)–(5.7), (H2)

and that the Young measure ν generated by the sequence (Duk)k∈IN satisfies: a)-c) and d)-
in Lemma (3.3). Then the sequence (σk) is weakly converge in L1(�, Mm×n), with σ is
the limit and σ(x) = 〈νx , u(x), apDu(x)〉. If in (H2) b)- c)-or d)-holds, σ(x, uk, Duk) →
σ(x, u, apDu) strongly in L1(�, Mm×n).

In the cases (c) and (d) it follows addition that Duk → apDu in measure.

Proof See [6].
Proof of the Theorem 2.1

Case: θ = p − 1 For using the results of Proposition (6.1): we assume that
(5.1)–(5.7) and the Young measure νx generated by the sequence Duk satisfies:(i),
(i i) and (i i i) in Lemma(3.3), for the approximate systems (4.1) and (4.2). By
the proposition 6.1, with uk ∈ W 1,p

0 (�,w, IRm), we have: ‖ μ ‖
Lt∗ps ,∞

(�,IRm )
≤

c

(
|�|, ‖ λ2 ‖L1(�), ‖ λ3 ‖

L( p
α )

′
(�)

, c2, ‖ μ ‖M(�,ω∗,IRm )

)
and

∑
i, j

∫
|uk |≤α

ωi j |Di j uk |pdx ≤ Mα + L < ∞. (6.1)

By Lt∗ps ,ı∞(�, IRm) ↪→ L p(�, IRm) for all 1 < p < t∗ps
, then

‖ uk ‖L p(�,IRm )≤ c < ∞. (6.2)

Now

• (5.1) is (H0)

• (5.2) is (H3)

• (5.3): uk ∈ W 1,p
0 (�, ω, IRm) ↪→ W 1,ps

0 (�, IRm)with ps > 1, then uk ∈ W 1,1(�, IRm).

Moreover, by the proposition

‖ Duk ‖Ltps ,∞(�,IRm )≤ c

(
|�|, ‖ λ2 ‖L1(�), ‖ λ3 ‖

L( p
α )

′
(�)

, c2, ‖ μ ‖M(�,ω∗,IRm )

)
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hence

‖ Duk ‖Ls (�,Mm×n)≤ c > ∞, ∀ 1 < s < tps

with supk∈IN

∫
�

|Duk |sdx < ∞.

• (5.4): Let A a measurable in �, by (H1) and Hölder we have

∫
A

|σ(x, uk , Duk)|dx ≤ c

(∑
r ,s

∫
�

ωrsdx

) 1
p

.

⎡
⎢⎣ ‖ λ1 ‖

L p
′
(�)

+
⎛
⎝ m∑

j=1

∫
�

γ j |(uk) j |q dx

⎞
⎠

1

p
′

+
⎛
⎝∑

i; j

∫
�

ωi j |Di j uk |pdx

⎞
⎠

1

p
′
⎤
⎥⎦ ,

and with (1.4) and (1.2):

∫
A

|σ(x, uk, Duk)|dx ≤ c

(∑
r ,s

‖ ωrs ‖
1
p

L1
loc(�)

)

×
[

‖ λ1 ‖L p′
(�)

+ ‖ uk ‖
q

pp′
1,p,ω + ‖ uk ‖

p
p′
1,p,ω

]
< ∞.

• (5.5): By (6.1) and (6.2) and Lemma (3.2).
• (5.6): ‖ fk ‖L1(�,IRm )≤‖ μ ‖M(�,ω∗,IRm ).

• (5.7): ∀ε > 0 and x0 ∈ �

∫
B(x0,ε)

|Di j uk |pωi j dx ≤‖ uk ‖p
1,p,ω< ∞ and by (H3) we

implies

∫
B(x0,ε)

|σrs(x, uk , Duk)|p′
ω∗

rsdx =
∫

B(x0,ε)
|σrs(x, uk , Duk)|p′

ω
1−p′
rs dx

≤ c
∫

B(x0 ,ε)

w
1−p′+ p′

p

⎡
⎣|λ1|p′ +

m∑
j=1

γ j |(uk) j |q

+
∑
i, j

ωi j |Di j uk |p

⎤
⎦ dx

≤ c

(
‖ λ1 ‖p′

L p′
(�)

+ ‖ uk ‖
q
p
1,p,w + ‖ uk ‖p

1,p,ω

)
< ∞.

Then, by the Proposition (6.1) σ(x, uk, Duk) −→ σ(x, u, apDu) in L1(�, IMm×n) and
∀ϕ ∈ C∞

0 (�, IRm); Dϕ ∈ L∞(�, IMm×n) hence
∫

�

σ(x, uk, Duk) : Dϕdx −→
∫

�

σ(x, u, apDu) : Dϕdx

i.e.

−divσ(x, uk, apDuk) −→ −divσ(x, u, apDu)
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In the sense of distributions. On the other hand fk
∗−→ μ in L1(�, IRm). Then∫

�

fk .ϕdx −→
∫

�

μ.ϕdx ∀ϕ ∈ C∞
0 (�, IRm) soμ is the solution in W 1,p

0 (�, ω, IRm)

of the system:

−divσ(x, u, apDu) = μ in �

u = 0 on ∂�

to show the estimation (2.1), we take the function η in C1
0 (B(0, 2α), IRm); η = Id in

B(0, α) and |Dη| ≤ c, then:

∑
i, j

∫
�

ωi j |Di jη(uk)|pdx =
∑
i, j

∫
�

ωi j |(Di jη)(uk)|p|Duk‖pdx

≤ cp.
∑

i j

∫
|uk |≤α

ωi j |Di j uk)|dx

+ c
∑
i, j

∫
|uk |≤2α

ωi j Di j uk |pdx

≤ c.c(α) + c.c(2α) < ∞,

thanks to (6.1).
Now, we have η(uk) −→ η(u), for every x ∈ � because η is C∞. Then η(uk)⇀η(u),

in W 1,p
0 (�, ω, IRm) and apDu = apD(η ◦ u) on {|u| ≺ α} . Hence,

∑
i, j

∫
�

ωi j |Di j (η ◦ u)|pdx ≤ lim inf
k−→∞

∫
�

w|D(η ◦ uk)|pdx

≤ lim inf
k−→∞

∑
i j

∫
|uk |≤2α

|Di jη(uk)|p|Di j uk |ωi j dx

≤ ≤ c lim inf
k−→∞

∫
|uk |≤2α

ωi j |Di j uk)|pdx

≤ c.c(2α) < ∞.

Then:
∑
i, j

∫
|u|≤α

ωi j |apDu|pdx =
∑
i, j

∫
|uk |≤2α

ωi j |D(η ◦ u)|pdx < ∞,

in the same as in the proof of the Proposition (4.1) by replacing uk by u and fk by μ, we
obtain the estimation (2.1) and this completes the proof of the Theorem 2.1

�

Case: 0 < θ <
n(ps−1)

n−1 (the general case) The idea is to consider the regularized problems:

−divφε(x, uε, Duε) = μ in �, (6.3)

uε = 0 on ∂� (6.4)

with

φε,r ,s(x, u, F) = σrs(x, u, F) + εβ

⎛
⎝∑

i j

ω

1
p′

i j |Fi j |s−2

⎞
⎠ω

1
p

rs Frs,
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∀1 ≤ r ≤ n, ∀1 ≤ s ≤ m with s > n + 1, and ε < 1
2 , we have p < s, then s′ < p′, and

( s
α
)′ < (

p
α
)′. Moreover ∃c > 0 which doesn’t depend on p, s, such that ω

1
p

rs ≤ cω
1
s
rs

∀ 1 ≤ r ≤ n and 1 ≤ s ≤ m.

By (H1) for σ, we obtain

|φε,r ,s(x, u, F)| ≤ β
′
.|ωrs |

1
p

⎡
⎣λ1 +

m∑
j=1

γ

1
p′

j |u j |
q
p′ +

∑
i, j

ω

1
p′

i j |Fi j |θ
⎤
⎦

+ εβω
1
p

rs

⎛
⎝∑

i, j

ω

1
p′

i j |Fi j |s−1

⎞
⎠(

θ <
n(ps − 1)

n − 1
< n(s − 1)

)

≤ ≤ β ′ω
1
p

rs

⎡
⎣λ1 +

m∑
j=1

γ

1
p′

j |u j |
q
p′ +

∑
i, j

ω

1
p′

i j |Fi j |s−1

⎤
⎦ .

And p < s, then 1
p′ < 1

s′ and like ω
1
p

rs ≤ cω
1
s
rs, then: |φε,r ,s(x, u, F)| ≤

β ′.|ωrs | 1s
⎡
⎣λ1 +

m∑
j=1

γ
1
s′
j |u j |

q
s′ +

∑
i j

ω
1
s′
i j |Fi j |s−1

⎤
⎦ , and by (H3), we conclude that

φε(x, u, F) : F = σ(x, u, F) : F + ε
∑

i, j,r ,s

ω

1
p′

i j ω
1
p

rs |Fi j |s−2Fi j .Frs

≥ −λ2 − ∑m
j=1 λ3γ

q
s

j .|u j | qα
s + ε

∑
i j ωi j |Fi j |s .

On the other hand, 0 < α < p − 1 < s − 1, 1 < q <
p2

α
< s2

α′ , λ1 ∈
L p′

(�) ↪→ Ls′
(�), and λ3 ∈ L(

p
α
)′(�) ↪→ L( s

α
)′(�) and as σε verifies the conditions

of the structures (of l’angle and sign), the strict monotony, the s-quasi monotonous with
regard to F is a C1 monotony in relation with F or accepting a convex potential because:

F −→ εβ

(∑
i j

ω

1
p′

i j |Fi j |s−2
)

ω
1
p

rs Frs verify them as well, hence σε verifies the hypotheses

(H0)–(H5), for the regularized Problems (6.3) and (6.4), thus for the previous case, θ = s −1
of Theorem 2.1, there exists a solution, uε ∈ W 1,s

0 (�, ω, IRm) of the system (6.3) and (6.4).
Now showing that the conditions: i), ii) and iii), of lemma (3.3), and the hypotheses (5.1)–(5.8)
of the div-curl inequality are verified for uε with order s in the place of p.

We suppose the condition of l’angle verifying that φε by testing, Tα(uε) α > 0 in (5.3)

and (5.4), we get:
∫

�

φε(x, uε, Duε) : DTα(uε)dx=
∫

�

f .Tα(uε)dx, so

∫
|uε |≤α

σ(x, uε, Duε) : Duεdx +
∫
|uε |>α

α

|uε|σε(x, uε, Duε) :
(
Id − uε

|uε| ⊗ uε

|uε|
)

Duεdx

+ εβ

∫
|uε |≤α

∑
i, j

ω

1
p′

i j |Di j uε|s−2
∑
r ,s

ω

1
p

rs |Drsuε|2dx

+ εβ

∫
|uε |>α

∑
i j

ω

1
p′

i j |Di j uε|s−2
∑
r ,s

ωrs Drsuε

(
I d − uε

|uε| ⊗ uε

|uε|
)

≤ α. ‖ f ‖L1(�,IRm) .
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since
∑
rs

|Drsuε|s−2Drsuε

(
Id − α

|uε|
(

uε

|uε| ⊗ uε

|uε|
))

≥ 0

so ∫
|uε |≤α

σ (x, uε, Duε) : Duεdx ≤ α ‖ f ‖L1(�,IRm ) .

And by the coercivity condition of σ in (H1) and Hölder inequality, we get as in the proof
of the Proposition 4.1

∑
i j

∫
|uε |≤α

ωi j |Di j uε|pdx ≤ M ′α + L ′, (6.5)

And the following a priori estimation:

‖ uε ‖∗
L

t∗ps ;∞ (�,IRm )
+ ‖ Duε ‖∗

Ltps ,∞ (�,IRm×n)
< c < ∞, (6.6)

and by the injection Lβ ′,∞ ↪→ Lα′
,∀0 < α′ < β ′, then ∀, 0 < r < t∗ps

, ∀0 < p < tps

‖ uε ‖Lr (�,IRm ) + ‖ Duε ‖L p(�,IMm×n) + ‖ Duε ‖∗
Ltps ,∞ (�,IMm×n)

< ∞. (6.7)

We suppose that the condition of the sign is verify.
As in the same way in the proof of the Proposition (4.1), we test Sα(uε) in (6.3) and (6.4),

we obtain (6.5) and (6.7).
Starting with verifying that i), ii) et iii) of lemma (3.3) and the hypotheses (5.1) and(5.7)

for σε. By (6.5)and(6.7), the points i), ii) et iii) are a direct consequence of Lemmas (3.2)
and (3.3). On the other hand:

– (5.1): forσ is (H0) and τrs(x, u, F) = εβ

(∑
i, j ω

1
p′

i j |Fi j |s−2
)

.ω
1
p

rs Frs is aCarathéodory

function, because x �−→ ωi j (x), is measurable, so σε is a Cathéodory function.
– (5.2)

(i) φε(x, u, F) : M F = σ(x, u, F) : M F +
(∑

rs
(ε
∑

i, j
ω

1
p′

i j |Fi j |s−2)ω
1
p

rs Frs

)

(M F)rs ≥ 0, with M = Id − a ⊗ a and |a| ≤ 1.
(ii)

φrs(x, u, F) · Fj = σ j (x, u, F) : Fj + τ j (x, u, F) · Fj

= σ j (x, u, F) : Fj +
m∑

l=1

εβ

⎛
⎝∑

i, j

ω

1
p′

i j |Fi j |s−1

⎞
⎠ · w

1
p

l j |Fl j |2 ≥ 0,

∀1 ≤ j ≤ m.

– (5, 3): uε ∈ W 1,s
0 (�, ω, IRm) ↪→ W 1,ss

0 (�, IRm), ss > 1, so uε ∈ W 1,1(�, IRm), and

by (6.7) supε>0

∫
�

|Duε|pdx < ∞, ∀, 0 < p < tps .

(4.5): σ(x, uε, Duε) is equi-integrable as previously ∀ �′ ⊂ �, measurable, we have:

∫
�′

∣∣∣∣∣∣
∑
i, j

(ω

1
p′

i j

∣∣∣∣∣∣ Di j uε|s−2)ω
1
p

rs Drsuε|dx
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≤
⎛
⎝∑

i, j

∫
�′

ωi j |Di j uε|s−1dx

⎞
⎠

≤ c
∑

i j

∫
�′

ωi j |Di j uε|sdx ≤ c ‖ uε ‖s
1,s,w .

– (5.5): by (6.7) and the Lemma (3.2).
– (5.6): by (6.3),−div(σl +τk)−μ = 0,withμ ∈ M(�, IRm) is bounded in L1(�, IRm).

– (5.7): ∀ ε > 0 and x0 ∈ �, by the growth condition of σε and previously with s in the

place of p,
∫

B(x,ε)

|σε(x, uε, Duε)|sω∗
rsdx < ∞

and

– (5.8):
∫

B(x,ε)

|Di j uε|sωrsdx <‖ uε ‖ε
1,s,w< ∞.

Testing that uε in (6.3) and (6.4)

εβ

∫
�

⎛
⎝∑

i j

ω

1
p′

i j |Di j uε|s−2

⎞
⎠
(∑

rs

ω
1
p

rs |Drsuε|2
)

dx

≤‖ uε ‖L∞(�,IRm )‖ μ ‖M(�,ω∗,IRm ) (6.8)

We have W 1,s
0 (�,w, IRm) ↪→ W 1,ss

0 (�, IRm) ↪→ L∞(�, IRm). Then

‖ uε ‖L∞(�,IRm ) ≤ c

⎛
⎝∑

i, j

∫
�

ωi j |Di j uε|sdx

⎞
⎠

1
s

≤ c

⎛
⎝∑

i, j

∫
�

ω

1
p′

i j |Di j uε|s−2ω
1
p

i j |Di j uε|2dx

⎞
⎠

1
s

≤ c

⎛
⎝∫

�

⎛
⎝∑

i, j

ω

1
p′

i j |Di j uε|s−2

⎞
⎠ ·

(∑
r ,s

ω
1
p

rs |Drsuε|2dx

)⎞
⎠

1
s

.

(6.9)

Thanks to (6.8) and (6.9), we have∫
�

∑
i j

ω

1
p′

i j |Di j uε|s−2
∑
rs

ω
1
p

rs |Drsuε|2dx

≤ c‖μ‖M(�,ω∗,IRm )

ε

⎛
⎝∫

�

⎛
⎝∑

i, j

ω

1
p′

i j |Di j uε|s−2

⎞
⎠ .

(∑
rs

ω
1
p

rs |Drsuε|2dx

)⎞
⎠ So:

⎛
⎝∫

�

⎛
⎝∑

i, j

ω

1
p′

i j |Di j uε|s−2

⎞
⎠ ·

(∑
r ,s

ω
1
p

rs |Drsuε|2dx

)⎞
⎠

s−1
s

≤ c ‖ μ ‖M

ε
,

which mean that⎛
⎝∫

�

(
∑
i, j

ω

1
p′

i j |Di j uε|s−2).(
∑
r ,s

ω
1
p

rs |Drsuε|2dx

⎞
⎠

1
s

≤ c ‖ μ ‖M

ε
, (6.10)
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and

‖ uε ‖L∞(�,IRm )≤ c

(
c
‖ μ ‖M

ε

) 1
s−1

. (6.11)

On the other hand and ∀ 1 < p < s
s−1 , can write

‖ ε
∑
i, j

ω

1
p′

i j |Di j uε|s−2ω
1
p

rs |Frs | ‖
L

s
s−1 (�,IMm×n)

≤ ε
s

s−1

⎛
⎝∫

�

|
∑
i, j

ω

1
p′

i j Di j uε|s−1ω
1
p

rs | s
s−1 dx

⎞
⎠

s−1
s

≤ cε
s

s−1

⎛
⎝|

∑
i, j

∫
�

ω

1
p′

i j |Di j uε|s−1ω
1
p

rs | s
s−1 dx

⎞
⎠

s−1
s

≤ cε
s

s−1

⎛
⎝∑

i, j

∫
�

ωi j |Di j uε|s−2
∑
r ,s

ω
s

(s−1)p
rs |Drsuε|2dx

⎞
⎠ < ∞.

thanks to (6.10). Now, since uε ∈ W 1,s
0 (�, ω, IRm) ↪→ W 1,ss

0 (�, IRm) ↪→ W 1,ps
0 (�, IRm),

so by testing Tα(uε) in (6.3) and (6.4), we obtain as in the proof of the proposition (4.1)

‖ Duε ‖∗
L

n(ps −1)
n−1 ,∞

(�,IMm×n)

≤ c. (6.12)

By the Hölder inequality for the exponent a with a and ξ are the solutions of systems:

{
a′ξ = τ >

n(ps−1)
n−1

a ((s − 1)ρ − ξ) = s

a given system accepting the solution when ρ < s
s−1 . So

∫
�

|ε
∑
i, j

ω

1
p′

i j |Di j uε|s−1ω
1
p

i j |ρdx

≤ c
∫

�

ερ

⎛
⎝∑

i, j

ω

ρ

p′
i j |Di j uε|(s−1)ρ−ξω

ρ
p

i j |Di j uε|ξ
⎞
⎠

ρ

dx

≤ cερ

⎛
⎝∑

i, j

∫
�

ω
aρ
i j |Di j uε|a((s−1)ρ−ξ)dx

⎞
⎠

1
a

.

(∫
�

|Duε|a′ξ dx

) 1
a′

≤ cερ

⎛
⎝∑

i, j

∫
�

ω

1
p′

i j |Di j uε|s−2
∑
r ,s

ω
1
p

rs |Drsuε|2
⎞
⎠

1
a

. ‖ Duε ‖
τ
a
Lτ (�,IMm×n)

.

And by the injection: L
n(ps −1)

n−1 ↪→ Lτ ∀τ >
n(ps−1)

n−1 and thanks to (6.10)–(6.12), we get:
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∫
�

|ε
∑
i, j

ω

1
p′

i j |Di j uε|s−1ω
1
p

i j |ρdx ≤ c.ερ

(
c ‖ μ ‖M

ε

) s
(s−1)a

.c
τ
a

≤ c.c
τ
a ε

a((s−1)ρ−s))
a(s−1)

≤ c.c
τ
a ε

aξ
a(s−1)

≤ c.c
τ
a .ε

ξ
s−1

with ξ
s−1 > 0. Hence

lim
ε−→ ‖ ε

∑
i, j

ω

1
p′

i j |Di j uε|s−1ω
1
p

rs Drsuε ‖L p(�,IMm×n)= 0, ∀ρ <
s

s − 1
.

In particular for ρ = 1

lim
ε−→

∫
�

|ε
∑
i, j

ω

1
p′

i j |Di j uε|s−1ω
1
p

rs Drsuε|dx = 0,

which mean that

τ [ε] (x, uε, Duε) = ε

1
p′∑

i, j

|Di j uε|s−2ω
1
p

rs Drsuε⇀0

in L1(�, IMm×n).

As well as by the Proposition 6.1, divσ(x, uε, Duε) converges to divσ(x, u, apDu), in
the sense of the distributions, and as

τ [ε] (x, uε, Duε) = ε
∑
i, j

ω

1
p′

i j |Di j uε|s−2ω
1
p

rs Drsuε⇀0,

in L1(�, IMm×n). Then divσε(x, uε, Duε) converge to divσ(x, u, apDu) in the sense of
distributions, i-e: u is the solution of the system{−divσ(x, u, apDu) = μ in�

u = 0 on∂�.

In the same way as in the case of θ = p − 1, we have∫
|u|≤α

|apDu|sdx < c(α) < ∞ and p < s.

So we conclude as in the proof of the Proposition 6.1, in order to get the estimation of
Theorem (2.1). This completes the proof of the theorem. ��
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