1 Introduction and preliminaries

Let \(\mathcal {A}\) denote the class of functions of form

$$\begin{aligned} f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}, \end{aligned}$$
(1.1)

which are analytic in the open unit disk \(\mathcal {U}=\left\{ z\in \mathbb {C} :|z|<1\right\} \), and \(\mathcal {S}\) denote the subclass of \(\mathcal {A}\) consisting of all function which are univalent in \(\mathcal {U}\).

For two functions f and g,  analytic in \(\mathcal {U}\), we say that the function f is subordinate to g in \(\mathcal {U}\), if there exists an analytic function w in \(\mathcal {U}\) such that \(|w(z)|<1\) with \(w(0)=0\), and \(f(z)=g(w(z))\), and we denote this by \(f(z)\prec g(z)\). If g is univalent in \(\mathcal {U}\), then the subordination is equivalent to \( f(0)=g(0)\) and \(f(\mathcal {U})\subset g(\mathcal {U})\).

Using the principle of the subordination we define the class \(\mathcal {P}\) of functions with positive real part.

Definition 1.1

[6] Let \(\mathcal {P}\) denote the class of analytic functions of the form \(p(z)=1+\sum \nolimits _{n=1}^{\infty }p_{n}z^{n}\) defined on \(\mathcal {U}\) and satisfying \(p(0)=1\), \(\mathfrak {R}p(z)>0\), \(z\in \mathcal {U}\).

Any function p in \(\mathcal {P}\) has the representation \(p(z)=\dfrac{1+w(z) }{1-w(z)}\), where \(w\in \Omega \) and

$$\begin{aligned} \Omega =\{w\in \mathcal {A}: w(0)=0,|w(z)|<1\}. \end{aligned}$$
(1.2)

The class of functions with positive real part \(\mathcal {P}\) plays a crucial role in geometric function theory. Its significance can be seen from the fact that simple subclasses like class of starlike \(\mathcal {S}^{*}\), class of convex functions \(\mathcal {C}\), class of starlike functions with respect to symmetric points \(\mathcal {S}_{s}^{*}\) have been defined by using the concept of class of functions with positive real part.

Let \(\mathcal {P}[A,B]\), with \(-1\le B<A\le 1\), denote the class of analytic function p defined on \(\mathcal {U}\) with the representation \(p(z)= \dfrac{1+Aw(z)}{1+Bw(z)}\), \(z\in \mathcal {U}\), where \(w\in \Omega \).

we note that

$$\begin{aligned} p\in \mathcal {P}[A,B]\text { if and only if }p(z)\prec \dfrac{1+Az}{1+Bz} (\text {see} 7). \end{aligned}$$

The class \(\mathcal {P}[A,B,\alpha ]\) of generalized Janowski functions was introduced in [9]. For arbitrary numbers \(A,B,\alpha ,\) with \(-1\le B<A\le 1\), \(0\le \alpha <1,\) a function p analytic in \(\mathcal {U}\) with \(p(0)=1\) is in the class \(\mathcal {P}[A,B,\alpha ]\) if and only if

$$\begin{aligned} p(z)\prec \frac{1+[(1-\alpha )A+\alpha B]z}{1+Bz}\Leftrightarrow p(z)=\frac{ 1+[(1-\alpha )A+\alpha B]w(z)}{1+Bw(z)},\quad w\in \Omega . \end{aligned}$$

The definition of starlike functions with respect to k-symmetric points is as follows.

Definition 1.2

For a positive integer k, let \(\varepsilon =\exp \left( \frac{2\pi i}{k} \right) \) denote the kth root of unity for \(f\in \mathcal {A}\), let

$$\begin{aligned} M_{f,k}(z)= \sum _{v=1}^{k-1}\varepsilon ^{-v}f(\varepsilon ^v z). \frac{1}{ \sum _{v=1}^{k-1}\varepsilon ^{-v}}, \end{aligned}$$
(1.3)

be its k-weighted mean function.

A function f in \(\mathcal {A}\) is said to belong to the class \(\mathcal {S} _{k}^{*}\) if functions starlike with respect to k-symmetric points if for every r close to 1 , \(r<1\), the angular velocity of f about the point \(M_{f_{k}(z_{0})}\) positive at \(z=z_{0}\) as z traverses the circle \( |z|=r\) in the positive direction, that is

$$\begin{aligned} \mathfrak {R}\left\{ \frac{zf^{\prime }(z)}{f(z)-M_{f,k}(z_{0})}\right\} >0 \end{aligned}$$

for \(z=z_{0}\), \(|z_{0}|=r\).

Definition 1.3

[11] A function f in \(\mathcal {A}\) is univalent and starlike with respect to k-symmetric points, or briefly k-starlike if and only if

$$\begin{aligned} \mathfrak {R}\left\{ \frac{zf^{\prime }(z)}{f_{k}(z)}\right\} >0,\quad z\in \mathcal {U}, \end{aligned}$$
(1.4)

where

$$\begin{aligned} f_{k}(z)=\frac{1}{k}(f(z)-M_{f,k}(z)). \end{aligned}$$
(1.5)

If f(z) defined by (1.1) then,

$$\begin{aligned} f_{k}(z)=z+\sum _{n=2}^{\infty }\chi _{n}a_{n}z^{n},\quad (k=2,3,\dots ), \end{aligned}$$
(1.6)

where

$$\begin{aligned} \chi _{n}= {\left\{ \begin{array}{ll} 1,\quad n=lk+1, \quad l\in \mathbb {N}_{0}, \\ 0,\quad n\ne lk+1. \end{array}\right. } \end{aligned}$$
(1.7)

Al-Sarari and Latha in [1,2,3] (see also, [4]) studied some classes which related to Janowski type functions and symmetric points.

Now using the generalization of Janowski functions and the concept of k-symmetrical functions we define the following:

Definition 1.4

A function f in \(\mathcal {A}\) is said to belong to the class \( \mathcal {S}^{k}(A,B,\alpha )\), \((-1\le B<A\le 1),0\le \alpha <1\) if

$$\begin{aligned} \frac{zf^{\prime }(z)}{f_{k}(z)}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{1+Bz} ,\quad z\in \mathcal {U}, \end{aligned}$$

where \(f_{k}(z)\) defined by (1.6).

We note that for special values of \(k,\alpha ,A\) and B yield the following classes:

(i):

\(\mathcal {S}^{1}(A,B,\alpha )\)\({=}\) \(\mathcal {S}^{*}(A,B,\alpha )\) the class introduced by Polatoglu et al. [9];

(ii):

\(\mathcal {S}^{k}(A,B,0)\)\({=}\) \(\mathcal {S}^{(k)}(A,B)\) is the class studied by Kwon and Sim [8];

(iii):

\(\mathcal {S}^{k}(1,-1,0)\)\({=}\) \(\mathcal {S}_{k}^{*}\)\({=}\) \( \mathcal {S}_{k}^{*}(1,-1)\), the class is studied by Sakaguchi [11] and etc. We need the following lemmas to prove our main results.

Lemma 1.5

[5] Let \(p(z)=1+\sum _{n=1}^{\infty }p_{n}z^{n}\in \mathcal { P}[A,B,\alpha ]\), then for \(n\ge 1\),

$$\begin{aligned} |p_{n}|\le (1-\alpha )(A-B). \end{aligned}$$

Lemma 1.6

pol Any function \(f\in \mathcal {S}^{*}(A,B,\alpha )\) can be written in the form

$$\begin{aligned} f(z)=\left\{ \begin{array}{lll} z\left( 1+Bw(z)\right) ^{\frac{(1-\alpha )(A-B)}{B}}, &{} \text {if} &{} B\ne 0, \\ z\,\exp \left[ (1-\alpha )Aw(z)\right] , &{} \text {if} &{} B=0, \end{array} \right. \end{aligned}$$

where \(w\in \Omega \), and \(\Omega \) was defined by (1.2).

Lemma 1.7

[10] Let \(\phi \) be convex and g starlike Then for F analytic in \(\mathcal {U}\) with \(F(0)=1, \)

$$\begin{aligned} \frac{\phi *Fg}{\phi *g}(\mathcal {U})\subset \overline{CO}(F(\mathcal {U})) \end{aligned}$$

where \(\overline{CO}(F(\mathcal {U}))\) denotes the closed convex hull of \(F( \mathcal {U})\).

Lemma 1.8

[9] Let \(p\in \mathcal {P}[A,B,\alpha ]\), then the set of the values of p is in the closed disc with center at C(r) and having the radius \(\rho (r)\), where

$$\begin{aligned} \left\{ \begin{array}{ll} C(r)=\left( \frac{1-B[(1-\alpha )A+\alpha B]r^{2}}{1-B^{2}r^{2}},0\right) ,\quad \rho (r)=\frac{(1-\alpha )(A-B)r}{1-B^{2}r^{2}} &{} \text {if } B\ne 0, \\ C(r)=(1,0),\quad \rho (r)=(1-\alpha )|A|r &{} \text {if } B=0. \end{array} \right. \end{aligned}$$

2 Main results

Lemma 2.1

Let \(p\in \mathcal {P}[A,B,\alpha ]\). Then

$$\begin{aligned}&\left. \begin{array}{ll} \dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^{2}}{1-B^{2}r^{2}}, &{} \text {if } B\ne 0, \\ 1-(1-\alpha )Ar, &{} \text {if } B=0 \end{array} \right\} \le |p(z)| \\&\quad \le \left\{ \begin{array}{ll} \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^{2}}{1-B^{2}r^{2}}, &{} \text {if } B\ne 0, \\ 1+(1-\alpha )Ar, &{} \text {if } B=0. \end{array} \right. \end{aligned}$$

Proof

The set of the values of p is in the closed disc with center at \(C(r)= \frac{1-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}\) and having the radius \( \rho (r)=\frac{(1-\alpha )(A-B)r}{1-B^2r^2}\) using Lemma 1.8, that is

$$\begin{aligned} \left| p-\frac{1-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}\right| \le \frac{ (1-\alpha )(A-B)r}{1-B^2r^2}. \end{aligned}$$
(2.1)

Simplifying (2.1), we get the required result . \(\square \)

Theorem 2.2

If \(f\in \mathcal {S}^{k}(A,B,\alpha )\), then \(f_{k}\in \mathcal {S} (A,B,\alpha )\), where \(f_{k}\) is defined by (1.6).

Proof

Supposing that \(f\in \mathcal {S}^{k}(A,B,\alpha )\), we can get

$$\begin{aligned} \frac{zf^{\prime }(z)}{f_{k}(z)}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{1+Bz} . \end{aligned}$$
(2.2)

Substituting z by \(\varepsilon ^{\nu }z\) in (2.2), it follows

$$\begin{aligned} \frac{\varepsilon ^{\nu }zf^{\prime }(\varepsilon ^{v}z)}{f_{k}(\varepsilon ^{\nu }z)}\prec \frac{1+[(1-\alpha )A+\alpha B]\varepsilon ^{\nu }z}{ 1+B\varepsilon ^{\nu }z}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{1+Bz}, \end{aligned}$$

hence

$$\begin{aligned} \frac{\varepsilon ^{\nu -\nu j}zf^{\prime }(\varepsilon ^{\nu }z)}{ f_{k}^{\prime }(z)}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{1+Bz}. \end{aligned}$$
(2.3)

Letting \(\nu =0,1,2,\dots ,k-1\) in (2.3) and using the fact that \( \mathcal {P}[A,B,\alpha ]\) is a convex set, we deduce that

$$\begin{aligned} \frac{z\frac{1}{k}\sum _{\nu =0}^{k-1}\varepsilon ^{\nu -\nu j}f^{\prime }(\varepsilon ^{\nu }z)}{f_{k}(z)}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{ 1+Bz}, \end{aligned}$$

or equivalently

$$\begin{aligned} \frac{zf_{k}^{\prime }(z)}{f_{k}(z)}\prec \frac{1+[(1-\alpha )A+\alpha B]z}{ 1+Bz}, \end{aligned}$$

that is \(f_{k}\in \mathcal {S}(A,B,\alpha )\). \(\square \)

Theorem 2.3

Let \(f\in \mathcal {S}^{k}(A,B,\alpha )\), with \(-1\le B<A\le 1\) and \(0\le \alpha <1\). Then,

$$\begin{aligned} f(z)=\left\{ \begin{array}{ll} \int _{0}^{z}\frac{1+[(1-\alpha )A+\alpha B]\widetilde{w}(\zeta )}{1+B \widetilde{w}(\zeta )}\left( 1+Bw(\zeta )\right) ^{\frac{(1-\alpha )(A-B)}{B} }\,d\zeta , &{} \text {if } B\ne 0, \\ \int _{0}^{z}[1+A(1-\alpha )\widetilde{w}(\zeta )]\exp [(1-\alpha )Aw(\zeta )]\,d\zeta , &{} \text {if } B=0, \end{array} \right. \end{aligned}$$

for some \(w,\widetilde{w}\in \Omega \).

Proof

Supposing that \(f\in \mathcal {S}^{k}(A,B,\alpha )\), it follows that there exists a function \(\widetilde{w}\in \Omega \) such that

$$\begin{aligned} \frac{zf^{\prime }(z)}{f_{k}(z)}=\frac{1+[(1-\alpha )A+\alpha B]\widetilde{w} (z)}{1+B\widetilde{w}(z)},\;z\in \mathcal {U}. \end{aligned}$$

Using Theorem 2.2 and Lemma 1.6, we have

$$\begin{aligned} f^{\prime }(z)=\left\{ \begin{array}{ll} \frac{1+[(1-\alpha )A+\alpha B]\widetilde{w}(z)}{1+B\widetilde{w}(z)}\left( 1+Bw(z)\right) ^{\frac{(1-\alpha )(A-B)}{B}}, &{} \text {if } B\ne 0, \\ {[} 1+A(1-\alpha )\widetilde{w}(z)]\exp [(1-\alpha )Aw(z)], &{} \text {if } B=0, \end{array} \right. \end{aligned}$$

and integrating the above relations along the line connecting the origin with \(z\in \mathcal {U}\) we obtain our result. \(\square \)

Theorem 2.4

Let \(f(z)\in \mathcal {S}^{k}(A,B,\alpha )\) and is of the form (1.1). Then for \(n\ge 2\), \(-1\le B<A\le 1,0\le \alpha <1\).

$$\begin{aligned} |a_{n}|\le \prod _{m=1}^{n-1}\frac{\chi _{m}\left[ (1-\alpha )(A-B)-1\right] +m}{m+1-\chi _{m+1}}, \end{aligned}$$
(2.4)

where \(\chi _{n}\) is defined in (1.7).

Proof

By Definition 1.4, we have

$$\begin{aligned} \frac{zf^{\prime }(z)}{f_{k}(z)}=p(z),\quad p\in \mathcal {P}[A,B,\alpha ], \end{aligned}$$

then we have

$$\begin{aligned} zf^{\prime }(z)=[1+\sum _{n=1}^{\infty }p_{n}z^{n}]f_{k}(z) \end{aligned}$$

by (1.1) and (1.6), we have

$$\begin{aligned} (1-\chi _{1})z+\sum _{n=2}^{\infty }[n-\chi _{n}]a_{n}z^{n}=\left[ \sum _{n=1}^{\infty }p_{n}z^{n}\right] \left[ \sum _{n=1}^{\infty }\chi _{n}a_{n}z^{n}\right] . \end{aligned}$$

Equating coefficients of \(z^{n}\) on both sides, we have

$$\begin{aligned} a_{n}=\frac{1}{[n-\chi _{n}]}\sum _{m=1}^{n-1}p_{m}\chi _{n-m}a_{n-m},\quad \chi _{1}=1, \end{aligned}$$
(2.5)

by Lemma 1.5, we have

$$\begin{aligned} |a_{n}|\le \frac{(A-B)(1-\alpha )}{[n-\chi _{n}]}\sum _{m=1}^{n-1}\chi _{m}|a_{m}| \end{aligned}$$
(2.6)

Now we want to prove that

$$\begin{aligned} \frac{(A-B)(1-\alpha )}{[n-\chi _{n}]}\sum _{m=1}^{n-1}\chi _{m}|a_{m}|\le \prod _{m=1}^{n-1}\frac{\chi _{m}[(1-\alpha )(A-B)-1]+m}{[m+1-\chi _{m+1}]}. \end{aligned}$$
(2.7)

For this, we use the induction method.

The inequality (2.7) is true for \(n=2\) and 3.

Let the hypothesis be true for \(n=m\), we have

$$\begin{aligned} \frac{(A-B)(1-\alpha )}{[m-\chi _{m}]}\sum _{r=1}^{m-1}\chi _{r}|a_{r}|\le \prod _{r=1}^{m-1}\frac{\chi _{r}[(1-\alpha )(A-B)-1]+r}{[r+1-\chi _{r+1}]}, \end{aligned}$$

Multiplying both sides by \(\frac{\chi _{m}[(A-B)(1-\alpha )-1]+m}{[m+1-\chi _{m+1}]},\) we get

$$\begin{aligned} \prod _{r=1}^{m}\frac{\chi _{r}[(1-\alpha )(A-B)-1]+r}{[r+1-\chi _{r+1}]}\ge \frac{\chi _{m}[(A-B)(1-\alpha )-1]+m}{[m+1-\chi _{m+1}]}.\frac{ (A-B)(1-\alpha )}{[m-\chi _{m}]}\sum _{r=1}^{m-1}\chi _{r}|a_{r}|, \end{aligned}$$

since

$$\begin{aligned}&\frac{\chi _{m}[(A-B)(1-\alpha )-1]+m}{[m+1-\chi _{m+1}]}.\frac{ (A-B)(1-\alpha )}{[m-\chi _{m}]}\sum _{r=1}^{m-1}\chi _{r}|a_{r}| \\&\quad =\frac{(A-B)(1-\alpha )}{[m+1-\chi _{m+1}]}. \left[ 1+\frac{\chi _{m}(A-B)(1-\alpha )}{[m-\chi _{m}]}\right] \sum _{r=1}^{m-1}\chi _{r}|a_{r}|, \\&\quad \ge \frac{(A-B)(1-\alpha )}{[m+1-\chi _{m+1}]}.\left[ \sum _{r=1}^{m-1} \chi _{r}|a_{r}|+\chi _{m}|a_{m}|\right] , \\&\quad =\frac{(A-B)(1-\alpha )}{[m+1-\chi _{m+1}]}.\left[ \sum _{r=1}^{m}\chi _{r}|a_{r}|\right] . \end{aligned}$$

That is

$$\begin{aligned} |a_{m+1}|\le \frac{(A-B)(1-\alpha )}{[m-\chi _{m}]}\sum _{r=1}^{m}\chi _{r}|a_{r}|\le \prod _{r=1}^{m}\frac{\chi _{r}[(1-\alpha )(A-B)-1]+r}{ [r+1-\chi _{r+1}]}, \end{aligned}$$

which shows that inequality (2.7) is true for \(n=m+1\). This completes the proof. \(\square \)

We now prove the distortion theorem for the class \(\mathcal {S} ^{k}(A,B,\alpha )\).

Theorem 2.5

If \(f\in \mathcal {S}^{k}(A,B,\alpha )\), then

$$\begin{aligned}&\left. \begin{array}{ll} \dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1-Br)^{\frac{ (1-\alpha )(A-B)}{B}}, &{} \text {if } B\ne 0, \\ \left[ 1-(1-\alpha )Ar\right] \exp \left[ -(1-\alpha )Ar\right] , &{} \text {if } B=0 \end{array} \right\} \le |f^{\prime }(z)| \\&\quad \le \left\{ \begin{array}{ll} \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2} (1+Br)^{ \frac{(1-\alpha )(A-B)}{B}}, &{} \text {if } B\ne 0, \\ \left[ 1+(1-\alpha )Ar\right] \exp \left[ (1-\alpha )Ar\right] , &{} \text {if } B=0, \end{array} \right. \end{aligned}$$

where \(|z|\le r<1\).

Proof

For an arbitrary function \(f\in \mathcal {S}^{k}(A,B,\alpha )\), according to Theorem 2.2 and Lemma 1.6 we need to study the following:

  1. (i)

    If \(B\ne 0\), then there exists a function \(w\in \Omega \), such that

    \(f_{k}(z)=z\left( 1+Bw(z)\right) ^{\frac{(1-\alpha )(A-B)}{B}}\), by using Lemma 2.1 and therefore

    $$\begin{aligned}&\dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2} \left| 1+Bw(z)\right| ^{\frac{(1-\alpha )(A-B)}{B}}\le |f^{\prime }(z)| \nonumber \\&\quad \le \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2} \left| 1+Bw(z)\right| ^{\frac{(1-\alpha )(A-B)}{B}},\nonumber \\&\qquad |z|\le r<1. \end{aligned}$$
    (2.8)

    Since \(w\in \Omega \), we have

    $$\begin{aligned} 1-|B|r\le \left| 1+Bw(z)\right| \le 1+|B|r,\quad |z|\le r<1. \end{aligned}$$

    Case 1 If \(B>0\), using the fact that \(-1\le B<A\le 1\) and \( 0\le \alpha <1\), we have

    $$\begin{aligned} (1-|B|r)^{\frac{(1-\alpha )(A-B)}{B}}\le \left| 1+Bw(z)\right| ^{\frac{ (1-\alpha )(A-B)}{B}}\le (1+|B|r)^{\frac{(1-\alpha )(A-B)}{B}},\quad |z|\le r<1, \end{aligned}$$

    and from (2.8) we obtain

    $$\begin{aligned}&\dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1-|B|r)^{ \frac{(1-\alpha )(A-B)}{B}}\le |f^{\prime }(z)| \nonumber \\&\quad \le \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1+|B|r)^{ \frac{(1-\alpha )(A-B)}{B}},\nonumber \\&\qquad |z| \le r<1. \end{aligned}$$
    (2.9)

    Case 2 If \(B<0\), from the fact that \(-1\le B<A\le 1\) and \( 0\le \alpha <1\), we have

    $$\begin{aligned} (1-|B|r)^{\frac{(1-\alpha )(A-B)}{B}}\ge \left| 1+Bw(z)\right| ^{\frac{ (1-\alpha )(A-B)}{B}}\ge (1+|B|r)^{\frac{(1-\alpha )(A-B)}{B}},\quad |z|\le r<1, \end{aligned}$$

    and from (2.8) we obtain

    $$\begin{aligned}&\dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1-|B|r)^{ \frac{(1-\alpha )(A-B)}{B}}\ge |f^{\prime }(z)| \nonumber \\&\quad \ge \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1+|B|r)^{ \frac{(1-\alpha )(A-B)}{B}},\nonumber \\&\qquad |z|\le r<1. \end{aligned}$$
    (2.10)

    Now, combining the inequalities (2.9) and (2.10), we finally conclude that

    $$\begin{aligned}&\dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1-Br)^{ \frac{(1-\alpha )(A-B)}{B}}\le |f^{\prime }(z)| \nonumber \\&\quad \le \dfrac{1+(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^2}{1-B^2r^2}(1+Br)^{ \frac{(1-\alpha )(A-B)}{B}},\nonumber \\&\qquad |z|\le r<1. \end{aligned}$$
    (2.11)
  2. (ii)

    If \(B=0\), there exists a function \(w\in \Omega \), such that \( f_{k}(z)=z\exp \left[ (1-\alpha )Aw(z)\right] \), and therefore

    $$\begin{aligned}&\left[ 1-(1-\alpha )Ar\right] \left| \exp \left[ (1-\alpha )Aw(z)\right] \right| \le |f^{\prime }(z)| \le \left[ 1+(1-\alpha )Ar\right] \nonumber \\&\quad \times \left| \exp \left[ (1-\alpha )Aw(z)\right] \right| , \;|z|\le r<1. \end{aligned}$$
    (2.12)

    Since \(\left| \exp \left[ (1-\alpha )Aw(z)\right] \right| =\exp \left[ (1-\alpha )A {\mathrm{Re}}w(z)\right] \), \(z\in \mathcal {U}\), using a similar computation as in the previous case, we deduce

    $$\begin{aligned} \exp \left[ -(1-\alpha )Ar\right] \le \left| \exp \left[ (1-\alpha )Aw(z)\right] \right| \le \exp \left[ (1-\alpha )Ar\right] ,\;|z|\le r<1. \end{aligned}$$

    Thus, (2.12) yield to

    $$\begin{aligned}&\left[ 1-(1-\alpha )Ar\right] \exp \left[ -(1-\alpha )Ar\right] \le |f^{\prime }(z)| \nonumber \\&\quad \le \left[ 1+(1-\alpha )Ar\right] \exp \left[ (1-\alpha )Ar\right] ,\;|z|\le r<1, \end{aligned}$$
    (2.13)

    which completes the proof of our theorem.

\(\square \)

Theorem 2.6

Let \(f\in \mathcal {S}^{k}(A,B,\alpha )\) and let \(\phi \) be convex. Then \((f*\phi )\in \mathcal {S}^{k}(A,B,\alpha )\).

Proof

To prove that \((f*\phi )\in \mathcal {S}^{k}(A,B,\alpha )\) it is sufficient to show that

$$\begin{aligned} \frac{z(f*\phi )^{\prime }(z)}{(f*\phi )_{k}(z)}\subset \overline{CO} (F(\mathcal {U})), \end{aligned}$$

where \(F(z)=\frac{zf^{\prime }(z)}{f_{k}(z)}\). Now

$$\begin{aligned} \frac{z(f*\phi )^{\prime }(z)}{(f*\phi )_{k}(z)}= & {} \frac{zf^{\prime }(z)*\phi (z)}{(f_{k}(z)*\phi (z)} \\= & {} \frac{\phi (z)*\frac{zf^{\prime }(z)}{f_{k}(z)}.f_{k}(z)}{\phi (z)*f_{k}(z)}, \end{aligned}$$

by using Lemma 1.7 with \(f_{k}(z)\in \mathcal {S}(A,B,\alpha ),F\in \mathcal {P}[A,B,\alpha ]\), that complete the proof. \(\square \)

Corollary 2.7

Let \(f\in \mathcal {S}^{k}(A,B,\alpha )\). Then

$$\begin{aligned} F_i(z)\in \mathcal {S}^{k}(A,B,\alpha ),\quad (i=1,2,3,4), \end{aligned}$$

where

$$\begin{aligned} F_{1}(z)= & {} \int _{0}^{z}\frac{f(t)}{t}dt, \\ \qquad F_{2}(z)= & {} \int _{0}^{z}\frac{f(t)-f(xt)}{t-xt}dt,\quad |x|\le 1,x\ne 1, \\ F_{3}(z)= & {} \frac{2}{z}\int _{0}^{z}{f(t)}dt,\\ \qquad F_{4}(z)= & {} \frac{m+1}{m}\int _{0}^{z}t^{m-1}{f(t)}dt,\quad \mathfrak {R}m>0. \end{aligned}$$

Proof

Since

$$\begin{aligned} F_{1}(z)= & {} \phi _{1}(z)*f(z),\quad \phi _{1}(z)=\sum _{0}^{\infty } \frac{1}{n}z^{n}=\log (1-z)^{-1}, \\ \qquad \qquad F_{2}(z)= & {} \phi _{2}(z)*f(z), \\ \phi _{2}(z)= & {} \sum _{0}^{\infty }\frac{1-x^{n}}{n(1-x)}z^{n}= \frac{1}{1-x}\log \left( \frac{1-xz}{1-z}\right) ,\quad |x|\le 1,x\ne 1, \\ \qquad F_{3}(z)= & {} \phi _{3}(z)*f(z),\quad \phi _{3}(z)=\sum _{0}^{\infty }\frac{2}{n+1}z^{n}=\frac{-2[z+\log (1-z)]}{z}, \\ F_{4}(z)= & {} \phi _{4}(z)*f(z),\quad \phi _{4}(z)=\sum _{0}^{\infty }\frac{1+m}{n+m}z^{n},\quad \mathfrak {R}m>0. \end{aligned}$$

We note that \(\phi _{i},i=1,2,3,4\) are convex. Now using Theorem 2.6. \(\square \)

Corollary 2.8

The radius of starlikeness of the class \(\mathcal {S}^{k}(A,B,\alpha )\) is

$$\begin{aligned} r_{*}=\frac{2}{(1-\alpha )(A-B)+\sqrt{[(1-\alpha )(A-B)]^{2}+4B[(1-\alpha )A+\alpha B]}}. \end{aligned}$$
(2.14)

Proof

From Lemma 2.1

$$\begin{aligned} \mathfrak {R}\left( \frac{zf^{\prime }(z)}{f_{k}(z)}\right) \ge \dfrac{1-(1-\alpha )(A-B)r-B[(1-\alpha )A+\alpha B]r^{2}}{1-B^{2}r^{2}}. \end{aligned}$$

Hence for \(r<r_{*}\) the first hand side of the preceding inequality is positive this implies (2.14). \(\square \)