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Abstract The objective of the present paper is to study results that are defined using the
notions of generalization of Janowski classes and k-symmetrical functions. A representation
theorem, coefficients inequality, distortion properties and the result on radius of starlikeness
are discussed.
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1 Introduction and preliminaries

Let A denote the class of functions of form

f (z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, and S denote the subclass of
A consisting of all function which are univalent in U .
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For two functions f and g, analytic in U , we say that the function f is subordinate to
g in U , if there exists an analytic function w in U such that |w(z)| < 1 with w(0) = 0,
and f (z) = g(w(z)), and we denote this by f (z) ≺ g(z). If g is univalent in U , then the
subordination is equivalent to f (0) = g(0) and f (U) ⊂ g(U).

Using the principle of the subordination we define the class P of functions with positive
real part.

Definition 1.1 [6] Let P denote the class of analytic functions of the form p(z) = 1 +∑∞
n=1 pnz

n defined on U and satisfying p(0) = 1, �p(z) > 0, z ∈ U .

Any function p in P has the representation p(z) = 1 + w(z)

1 − w(z)
, where w ∈ � and

� = {w ∈ A : w(0) = 0, |w(z)| < 1}. (1.2)

The class of functions with positive real part P plays a crucial role in geometric function
theory. Its significance can be seen from the fact that simple subclasses like class of starlike
S∗, class of convex functions C, class of starlike functions with respect to symmetric points
S∗
s have been defined by using the concept of class of functions with positive real part.
Let P[A, B], with −1 ≤ B < A ≤ 1, denote the class of analytic function p defined on

U with the representation p(z) = 1 + Aw(z)

1 + Bw(z)
, z ∈ U , where w ∈ �.

we note that

p ∈ P[A, B] if and only if p(z) ≺ 1 + Az

1 + Bz
(see[7]).

The class P[A, B, α] of generalized Janowski functions was introduced in [9]. For arbi-
trary numbers A, B, α, with −1 ≤ B < A ≤ 1, 0 ≤ α < 1, a function p analytic in U with
p(0) = 1 is in the class P[A, B, α] if and only if

p(z) ≺ 1 + [(1 − α)A + αB]z
1 + Bz

⇔ p(z) = 1 + [(1 − α)A + αB]w(z)

1 + Bw(z)
, w ∈ �.

The definition of starlike functions with respect to k-symmetric points is as follows.

Definition 1.2 For a positive integer k, let ε = exp
( 2π i

k

)
denote the kth root of unity for

f ∈ A, let

M f,k(z) =
k−1∑

v=1

ε−v f (εvz).
1

∑k−1
v=1 ε−v

, (1.3)

be its k-weighted mean function.
A function f in A is said to belong to the class S∗

k if functions starlike with respect to k-
symmetric points if for every r close to 1 , r < 1, the angular velocity of f about the point
M fk (z0) positive at z = z0 as z traverses the circle |z| = r in the positive direction, that is

�
{

z f ′(z)
f (z) − M f,k(z0)

}
> 0

for z = z0, |z0| = r .

Definition 1.3 [11] A function f in A is univalent and starlike with respect to k-symmetric
points, or briefly k-starlike if and only if

�
{
z f ′(z)
fk(z)

}
> 0, z ∈ U, (1.4)
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where

fk(z) = 1

k
( f (z) − M f,k(z)). (1.5)

If f (z) defined by (1.1) then,

fk(z) = z +
∞∑

n=2

χnanz
n, (k = 2, 3, . . . ), (1.6)

where

χn =
{
1, n = lk + 1, l ∈ N0,

0, n �= lk + 1.
(1.7)

Al-Sarari and Latha in [1–3] (see also, [4]) studied some classes which related to Janowski
type functions and symmetric points.

Now using the generalization of Janowski functions and the concept of k-symmetrical
functions we define the following:

Definition 1.4 A function f in A is said to belong to the class Sk(A, B, α), (−1 ≤ B <

A ≤ 1), 0 ≤ α < 1 if

z f ′(z)
fk(z)

≺ 1 + [(1 − α)A + αB]z
1 + Bz

, z ∈ U,

where fk(z) defined by (1.6).

We note that for special values of k, α, A and B yield the following classes:

(i) S1(A, B, α)=S∗(A, B, α) the class introduced by Polatoglu et al. [9];
(ii) Sk(A, B, 0)=S(k)(A, B) is the class studied by Kwon and Sim [8];
(iii) Sk(1,−1, 0)= S∗

k =S∗
k (1,−1), the class is studied by Sakaguchi [11] and etc.

We need the following lemmas to prove our main results.

Lemma 1.5 [5] Let p(z) = 1 +∑∞
n=1 pnz

n ∈ P[A, B, α], then for n ≥ 1,

|pn | ≤ (1 − α)(A − B).

Lemma 1.6 pol Any function f ∈ S∗(A, B, α) can be written in the form

f (z) =
{
z (1 + Bw(z))

(1−α)(A−B)
B , if B �= 0,

z exp [(1 − α)Aw(z)] , if B = 0,

where w ∈ �, and � was defined by (1.2).

Lemma 1.7 [10] Let φ be convex and g starlike Then for F analytic in U with F(0) = 1,

φ ∗ Fg

φ ∗ g
(U) ⊂ CO(F(U))

where CO(F(U)) denotes the closed convex hull of F(U).

Lemma 1.8 [9] Let p ∈ P[A, B, α], then the set of the values of p is in the closed disc with
center at C(r) and having the radius ρ(r), where

{
C(r) =

(
1−B[(1−α)A+αB]r2

1−B2r2
, 0
)

, ρ(r) = (1−α)(A−B)r
1−B2r2

if B �= 0,

C(r) = (1, 0), ρ(r) = (1 − α)|A|r if B = 0.
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2 Main results

Lemma 2.1 Let p ∈ P[A, B, α]. Then

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

, if B �= 0,

1 − (1 − α)Ar, if B = 0

⎫
⎬

⎭ ≤ |p(z)|

≤
⎧
⎨

⎩

1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

, if B �= 0,

1 + (1 − α)Ar, if B = 0.

Proof The set of the values of p is in the closed disc with center atC(r) = 1−B[(1−α)A+αB]r2
1−B2r2

and having the radius ρ(r) = (1−α)(A−B)r
1−B2r2

using Lemma 1.8, that is

∣∣∣∣p − 1 − B[(1 − α)A + αB]r2
1 − B2r2

∣∣∣∣ ≤
(1 − α)(A − B)r

1 − B2r2
. (2.1)

Simplifying (2.1), we get the required result .

Theorem 2.2 If f ∈ Sk(A, B, α), then fk ∈ S(A, B, α), where fk is defined by (1.6).

Proof Supposing that f ∈ Sk(A, B, α), we can get

z f ′(z)
fk(z)

≺ 1 + [(1 − α)A + αB]z
1 + Bz

. (2.2)

Substituting z by εν z in (2.2), it follows

ενz f ′(εvz)

fk(ενz)
≺ 1 + [(1 − α)A + αB]εν z

1 + Bενz
≺ 1 + [(1 − α)A + αB]z

1 + Bz
,

hence
εν−ν j z f ′(ενz)

f ′
k(z)

≺ 1 + [(1 − α)A + αB]z
1 + Bz

. (2.3)

Letting ν = 0, 1, 2, . . . , k − 1 in (2.3) and using the fact that P[A, B, α] is a convex set, we
deduce that

z 1k
∑k−1

ν=0 εν−ν j f ′(εν z)

fk(z)
≺ 1 + [(1 − α)A + αB]z

1 + Bz
,

or equivalently
z f ′

k(z)

fk(z)
≺ 1 + [(1 − α)A + αB]z

1 + Bz
,

that is fk ∈ S(A, B, α).

Theorem 2.3 Let f ∈ Sk(A, B, α), with −1 ≤ B < A ≤ 1 and 0 ≤ α < 1. Then,

f (z) =
{∫ z

0
1+[(1−α)A+αB]w̃(ζ )

1+Bw̃(ζ )
(1 + Bw(ζ))

(1−α)(A−B)
B dζ , if B �= 0,∫ z

0 [1 + A(1 − α)w̃(ζ )] exp[(1 − α)Aw(ζ)] dζ , if B = 0,

for some w, w̃ ∈ �.
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Proof Supposing that f ∈ Sk(A, B, α), it follows that there exists a function w̃ ∈ � such
that

z f ′(z)
fk(z)

= 1 + [(1 − α)A + αB]w̃(z)

1 + Bw̃(z)
, z ∈ U .

Using Theorem 2.2 and Lemma 1.6, we have

f ′(z) =
{

1+[(1−α)A+αB]w̃(z)
1+Bw̃(z) (1 + Bw(z))

(1−α)(A−B)
B , if B �= 0,

[1 + A(1 − α)w̃(z)] exp[(1 − α)Aw(z)], if B = 0,

and integrating the above relations along the line connecting the origin with z ∈ U we obtain
our result.

Theorem 2.4 Let f (z) ∈ Sk(A, B, α) and is of the form (1.1). Then for n ≥ 2, −1 ≤ B <

A ≤ 1, 0 ≤ α < 1.

|an | ≤
n−1∏

m=1

χm [(1 − α)(A − B) − 1] + m

m + 1 − χm+1
, (2.4)

where χn is defined in (1.7).

Proof By Definition 1.4, we have

z f ′(z)
fk(z)

= p(z), p ∈ P[A, B, α],

then we have

z f ′(z) = [1 +
∞∑

n=1

pnz
n] fk(z)

by (1.1) and (1.6), we have

(1 − χ1)z +
∞∑

n=2

[n − χn]anzn =
[ ∞∑

n=1

pnz
n

][ ∞∑

n=1

χnanz
n

]
.

Equating coefficients of zn on both sides, we have

an = 1

[n − χn]
n−1∑

m=1

pmχn−man−m, χ1 = 1, (2.5)

by Lemma 1.5, we have

|an | ≤ (A − B)(1 − α)

[n − χn]
n−1∑

m=1

χm |am | (2.6)

Now we want to prove that

(A − B)(1 − α)

[n − χn ]
n−1∑

m=1

χm |am | ≤
n−1∏

m=1

χm [(1 − α)(A − B) − 1] + m

[m + 1 − χm+1]
. (2.7)

For this, we use the induction method.
The inequality (2.7) is true for n = 2 and 3.
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Let the hypothesis be true for n = m, we have

(A − B)(1 − α)

[m − χm]
m−1∑

r=1

χr |ar | ≤
m−1∏

r=1

χr [(1 − α)(A − B) − 1] + r

[r + 1 − χr+1]
,

Multiplying both sides by χm [(A−B)(1−α)−1]+m
[m+1−χm+1] , we get

m∏

r=1

χr [(1 − α)(A − B) − 1] + r

[r + 1 − χr+1]
≥ χm [(A − B)(1 − α) − 1] + m

[m + 1 − χm+1]
.
(A − B)(1 − α)

[m − χm ]
m−1∑

r=1

χr |ar |,

since

χm [(A − B)(1 − α) − 1] + m

[m + 1 − χm+1]
.
(A − B)(1 − α)

[m − χm ]
m−1∑

r=1

χr |ar |

= (A − B)(1 − α)

[m + 1 − χm+1]
.

[
1 + χm (A − B)(1 − α)

[m − χm ]
]m−1∑

r=1

χr |ar |,

≥ (A − B)(1 − α)

[m + 1 − χm+1]
.

⎡

⎣
m−1∑

r=1

χr |ar | + χm |am |
⎤

⎦ ,

= (A − B)(1 − α)

[m + 1 − χm+1]
.

[ m∑

r=1

χr |ar |
]

.

That is

|am+1| ≤ (A − B)(1 − α)

[m − χm ]
m∑

r=1

χr |ar | ≤
m∏

r=1

χr [(1 − α)(A − B) − 1] + r

[r + 1 − χr+1]
,

which shows that inequality (2.7) is true for n = m + 1. This completes the proof.

We now prove the distortion theorem for the class Sk(A, B, α).

Theorem 2.5 If f ∈ Sk(A, B, α), then

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 − Br)
(1−α)(A−B)

B , if B �= 0,

[1 − (1 − α)Ar ] exp [−(1 − α)Ar ] , if B = 0

⎫
⎬

⎭ ≤ | f ′(z)|

≤
⎧
⎨

⎩

1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 + Br)
(1−α)(A−B)

B , if B �= 0,

[1 + (1 − α)Ar ] exp [(1 − α)Ar ] , if B = 0,

where |z| ≤ r < 1.

Proof For an arbitrary function f ∈ Sk(A, B, α), according to Theorem 2.2 and Lemma 1.6
we need to study the following:

(i) If B �= 0, then there exists a function w ∈ �, such that

fk(z) = z (1 + Bw(z))
(1−α)(A−B)

B , by using Lemma 2.1 and therefore

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

|1 + Bw(z)| (1−α)(A−B)
B ≤ | f ′(z)|

≤ 1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

|1 + Bw(z)| (1−α)(A−B)
B ,

|z| ≤ r < 1. (2.8)
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Since w ∈ �, we have

1 − |B|r ≤ |1 + Bw(z)| ≤ 1 + |B|r, |z| ≤ r < 1.

Case 1 If B > 0, using the fact that −1 ≤ B < A ≤ 1 and 0 ≤ α < 1, we have

(1 − |B|r) (1−α)(A−B)
B ≤ |1 + Bw(z)| (1−α)(A−B)

B ≤ (1 + |B|r) (1−α)(A−B)
B , |z| ≤ r < 1,

and from (2.8) we obtain

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 − |B|r) (1−α)(A−B)
B ≤ | f ′(z)|

≤ 1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 + |B|r) (1−α)(A−B)
B ,

|z| ≤ r < 1. (2.9)

Case 2 If B < 0, from the fact that −1 ≤ B < A ≤ 1 and 0 ≤ α < 1, we have

(1 − |B|r) (1−α)(A−B)
B ≥ |1 + Bw(z)| (1−α)(A−B)

B ≥ (1 + |B|r) (1−α)(A−B)
B , |z| ≤ r < 1,

and from (2.8) we obtain

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 − |B|r) (1−α)(A−B)
B ≥ | f ′(z)|

≥ 1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 + |B|r) (1−α)(A−B)
B ,

|z| ≤ r < 1. (2.10)

Now, combining the inequalities (2.9) and (2.10), we finally conclude that

1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 − Br)
(1−α)(A−B)

B ≤ | f ′(z)|

≤ 1 + (1 − α)(A − B)r − B[(1 − α)A + αB]r2
1 − B2r2

(1 + Br)
(1−α)(A−B)

B ,

|z| ≤ r < 1. (2.11)

(ii) If B = 0, there exists a function w ∈ �, such that fk(z) = z exp [(1 − α)Aw(z)], and
therefore

[1 − (1 − α)Ar ] |exp [(1 − α)Aw(z)]| ≤ | f ′(z)| ≤ [1 + (1 − α)Ar ]

× |exp [(1 − α)Aw(z)]| , |z| ≤ r < 1. (2.12)

Since |exp [(1 − α)Aw(z)]| = exp [(1 − α)ARew(z)], z ∈ U , using a similar computa-
tion as in the previous case, we deduce

exp [−(1 − α)Ar ] ≤ |exp [(1 − α)Aw(z)]| ≤ exp [(1 − α)Ar ] , |z| ≤ r < 1.

Thus, (2.12) yield to

[1 − (1 − α)Ar ] exp [−(1 − α)Ar ] ≤ | f ′(z)|
≤ [1 + (1 − α)Ar ] exp [(1 − α)Ar ] , |z| ≤ r < 1, (2.13)

which completes the proof of our theorem.
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Theorem 2.6 Let f ∈ Sk(A, B, α) and let φ be convex. Then ( f ∗ φ) ∈ Sk(A, B, α).

Proof To prove that ( f ∗ φ) ∈ Sk(A, B, α) it is sufficient to show that

z( f ∗ φ)′(z)
( f ∗ φ)k(z)

⊂ CO(F(U)),

where F(z) = z f ′(z)
fk (z)

. Now

z( f ∗ φ)′(z)
( f ∗ φ)k(z)

= z f ′(z) ∗ φ(z)

( fk(z) ∗ φ(z)

= φ(z) ∗ z f ′(z)
fk (z)

. fk(z)

φ(z) ∗ fk(z)
,

by using Lemma 1.7 with fk(z) ∈ S(A, B, α), F ∈ P[A, B, α], that complete the proof.

Corollary 2.7 Let f ∈ Sk(A, B, α). Then

Fi (z) ∈ Sk(A, B, α), (i = 1, 2, 3, 4),

where

F1(z) =
∫ z

0

f (t)

t
dt,

F2(z) =
∫ z

0

f (t) − f (xt)

t − xt
dt, |x | ≤ 1, x �= 1,

F3(z) = 2

z

∫ z

0
f (t)dt,

F4(z) = m + 1

m

∫ z

0
tm−1 f (t)dt, �m > 0.

Proof Since

F1(z) = φ1(z) ∗ f (z), φ1(z) =
∞∑

0

1

n
zn = log(1 − z)−1,

F2(z) = φ2(z) ∗ f (z),

φ2(z) =
∞∑

0

1 − xn

n(1 − x)
zn = 1

1 − x
log

(
1 − xz

1 − z

)
, |x | ≤ 1, x �= 1,

F3(z) = φ3(z) ∗ f (z), φ3(z) =
∞∑

0

2

n + 1
zn = −2[z + log(1 − z)]

z
,

F4(z) = φ4(z) ∗ f (z), φ4(z) =
∞∑

0

1 + m

n + m
zn, �m > 0.

We note that φi , i = 1, 2, 3, 4 are convex. Now using Theorem 2.6.

Corollary 2.8 The radius of starlikeness of the class Sk(A, B, α) is

r∗ = 2

(1 − α)(A − B) +√[(1 − α)(A − B)]2 + 4B[(1 − α)A + αB] . (2.14)
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A note on starlike functions associated… 953

Proof From Lemma 2.1

�
(
z f ′(z)
fk(z)

)
≥ 1 − (1 − α)(A − B)r − B[(1 − α)A + αB]r2

1 − B2r2
.

Hence for r < r∗ the first hand side of the preceding inequality is positive this implies (2.14).
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