

A note on starlike functions associated with symmetric points

F. Al-Sarari¹ · S. Latha² · B. A. Frasin³

Received: 28 April 2016 / Accepted: 22 April 2018 / Published online: 27 April 2018 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Abstract The objective of the present paper is to study results that are defined using the notions of generalization of Janowski classes and *k*-symmetrical functions. A representation theorem, coefficients inequality, distortion properties and the result on radius of starlikeness are discussed.

Keywords Janowski functions \cdot Subordination \cdot Starlike functions \cdot Convex functions \cdot *k*-symmetric points

Mathematics Subject Classification 30C45

1 Introduction and preliminaries

Let \mathcal{A} denote the class of functions of form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$, and \mathcal{S} denote the subclass of \mathcal{A} consisting of all function which are univalent in \mathcal{U} .

⊠ B. A. Frasin bafrasin@yahoo.com

> F. Al-Sarari alsrary@yahoo.com

S. Latha drlatha@gmail.com

- ² Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore 570 005, India
- ³ Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan

¹ Department of Mathematics, College of Sciences, Taibah University, Yanbu, Saudi Arabia

For two functions f and g, analytic in \mathcal{U} , we say that the function f is subordinate to g in \mathcal{U} , if there exists an analytic function w in \mathcal{U} such that |w(z)| < 1 with w(0) = 0, and f(z) = g(w(z)), and we denote this by $f(z) \prec g(z)$. If g is univalent in \mathcal{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Using the principle of the subordination we define the class \mathcal{P} of functions with positive real part.

Definition 1.1 [6] Let \mathcal{P} denote the class of analytic functions of the form $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ defined on \mathcal{U} and satisfying $p(0) = 1, \Re p(z) > 0, z \in \mathcal{U}$.

Any function p in \mathcal{P} has the representation $p(z) = \frac{1+w(z)}{1-w(z)}$, where $w \in \Omega$ and $\Omega = \{ w \in \mathcal{A} : w(0) = 0, |w(z)| < 1 \}.$ (1.2)

The class of functions with positive real part \mathcal{P} plays a crucial role in geometric function theory. Its significance can be seen from the fact that simple subclasses like class of starlike \mathcal{S}^* , class of convex functions \mathcal{C} , class of starlike functions with respect to symmetric points \mathcal{S}^*_s have been defined by using the concept of class of functions with positive real part.

Let $\mathcal{P}[A, B]$, with $-1 \leq B < A \leq 1$, denote the class of analytic function p defined on \mathcal{U} with the representation $p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}, z \in \mathcal{U}$, where $w \in \Omega$.

we note that

$$p \in \mathcal{P}[A, B]$$
 if and only if $p(z) \prec \frac{1 + Az}{1 + Bz}$ (see[7])

The class $\mathcal{P}[A, B, \alpha]$ of generalized Janowski functions was introduced in [9]. For arbitrary numbers A, B, α , with $-1 \le B < A \le 1, 0 \le \alpha < 1$, a function p analytic in \mathcal{U} with p(0) = 1 is in the class $\mathcal{P}[A, B, \alpha]$ if and only if

$$p(z) \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz} \Leftrightarrow p(z) = \frac{1 + [(1 - \alpha)A + \alpha B]w(z)}{1 + Bw(z)}, \quad w \in \Omega.$$

The definition of starlike functions with respect to k-symmetric points is as follows.

Definition 1.2 For a positive integer k, let $\varepsilon = \exp\left(\frac{2\pi i}{k}\right)$ denote the kth root of unity for $f \in \mathcal{A}$, let

$$M_{f,k}(z) = \sum_{\nu=1}^{k-1} \varepsilon^{-\nu} f(\varepsilon^{\nu} z) \cdot \frac{1}{\sum_{\nu=1}^{k-1} \varepsilon^{-\nu}},$$
(1.3)

be its k-weighted mean function.

A function f in A is said to belong to the class S_k^* if functions starlike with respect to k-symmetric points if for every r close to 1, r < 1, the angular velocity of f about the point $M_{f_k(z_0)}$ positive at $z = z_0$ as z traverses the circle |z| = r in the positive direction, that is

$$\Re\left\{\frac{zf'(z)}{f(z)-M_{f,k}(z_0)}\right\}>0$$

for $z = z_0$, $|z_0| = r$.

Definition 1.3 [11] A function f in A is univalent and starlike with respect to k-symmetric points, or briefly k-starlike if and only if

$$\Re\left\{\frac{zf'(z)}{f_k(z)}\right\} > 0, \quad z \in \mathcal{U},$$
(1.4)

🖄 Springer

where

$$f_k(z) = \frac{1}{k} (f(z) - M_{f,k}(z)).$$
(1.5)

If f(z) defined by (1.1) then,

$$f_k(z) = z + \sum_{n=2}^{\infty} \chi_n a_n z^n, \quad (k = 2, 3, ...),$$
 (1.6)

where

$$\chi_n = \begin{cases} 1, & n = lk+1, \quad l \in \mathbb{N}_0, \\ 0, & n \neq lk+1. \end{cases}$$
(1.7)

Al-Sarari and Latha in [1–3] (see also, [4]) studied some classes which related to Janowski type functions and symmetric points.

Now using the generalization of Janowski functions and the concept of k-symmetrical functions we define the following:

Definition 1.4 A function f in A is said to belong to the class $S^k(A, B, \alpha)$, $(-1 \le B < A \le 1)$, $0 \le \alpha < 1$ if

$$\frac{zf'(z)}{f_k(z)} \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz}, \quad z \in \mathcal{U},$$

where $f_k(z)$ defined by (1.6).

We note that for special values of k, α , A and B yield the following classes:

- (i) $S^1(A, B, \alpha) = S^*(A, B, \alpha)$ the class introduced by Polatoglu et al. [9];
- (ii) $S^k(A, B, 0) = S^{(k)}(A, B)$ is the class studied by Kwon and Sim [8];
- (iii) $S^k(1, -1, 0) = S_k^* = S_k^*(1, -1)$, the class is studied by Sakaguchi [11] and etc. We need the following lemmas to prove our main results.

Lemma 1.5 [5] Let $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \in \mathcal{P}[A, B, \alpha]$, then for $n \ge 1$, $|p_n| \le (1 - \alpha)(A - B)$.

Lemma 1.6 pol Any function $f \in S^*(A, B, \alpha)$ can be written in the form

$$f(z) = \begin{cases} z \left(1 + Bw(z)\right)^{\frac{(1-\alpha)(A-B)}{B}}, & \text{if } B \neq 0, \\ z \exp\left[(1-\alpha)Aw(z)\right], & \text{if } B = 0, \end{cases}$$

where $w \in \Omega$, and Ω was defined by (1.2).

Lemma 1.7 [10] Let ϕ be convex and g starlike Then for F analytic in U with F(0) = 1,

$$\frac{\phi * Fg}{\phi * g}(\mathcal{U}) \subset \overline{CO}(F(\mathcal{U}))$$

where $\overline{CO}(F(\mathcal{U}))$ denotes the closed convex hull of $F(\mathcal{U})$.

Lemma 1.8 [9] Let $p \in \mathcal{P}[A, B, \alpha]$, then the set of the values of p is in the closed disc with center at C(r) and having the radius $\rho(r)$, where

$$\begin{cases} C(r) = \left(\frac{1 - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2}, 0\right), & \rho(r) = \frac{(1 - \alpha)(A - B)r}{1 - B^2 r^2} \text{ if } B \neq 0, \\ C(r) = (1, 0), & \rho(r) = (1 - \alpha)|A|r & \text{ if } B = 0. \end{cases}$$

Deringer

2 Main results

Lemma 2.1 Let $p \in \mathcal{P}[A, B, \alpha]$. Then

$$\begin{split} & \frac{1-(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]r^2}{1-B^2r^2}, \ if \ B \neq 0, \\ & 1-(1-\alpha)Ar, \\ & if \ B = 0 \\ \\ & \leq \begin{cases} \frac{1+(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]r^2}{1-B^2r^2}, \ if \ B \neq 0, \\ & 1-B^2r^2 \\ & 1+(1-\alpha)Ar, \\ \end{cases} \ if \ B = 0. \end{split}$$

Proof The set of the values of p is in the closed disc with center at $C(r) = \frac{1-B[(1-\alpha)A+\alpha B]r^2}{1-B^2r^2}$ and having the radius $\rho(r) = \frac{(1-\alpha)(A-B)r}{1-B^2r^2}$ using Lemma 1.8, that is

$$\left| p - \frac{1 - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} \right| \le \frac{(1 - \alpha)(A - B)r}{1 - B^2 r^2}.$$
 (2.1)

Simplifying (2.1), we get the required result .

Theorem 2.2 If $f \in S^k(A, B, \alpha)$, then $f_k \in S(A, B, \alpha)$, where f_k is defined by (1.6).

Proof Supposing that $f \in S^k(A, B, \alpha)$, we can get

$$\frac{zf'(z)}{f_k(z)} \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz}.$$
(2.2)

Substituting z by $\varepsilon^{\nu} z$ in (2.2), it follows

$$\frac{\varepsilon^{\nu} z f'(\varepsilon^{\nu} z)}{f_k(\varepsilon^{\nu} z)} \prec \frac{1 + [(1 - \alpha)A + \alpha B]\varepsilon^{\nu} z}{1 + B\varepsilon^{\nu} z} \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz},$$

hence

$$\frac{\varepsilon^{\nu-\nu j} z f'(\varepsilon^{\nu} z)}{f'_k(z)} \prec \frac{1 + [(1-\alpha)A + \alpha B]z}{1 + Bz}.$$
(2.3)

Letting $\nu = 0, 1, 2, ..., k - 1$ in (2.3) and using the fact that $\mathcal{P}[A, B, \alpha]$ is a convex set, we deduce that

$$\frac{z_k^1 \sum_{\nu=0}^{k-1} \varepsilon^{\nu-\nu j} f'(\varepsilon^{\nu} z)}{f_k(z)} \prec \frac{1 + [(1-\alpha)A + \alpha B]z}{1 + Bz},$$

or equivalently

$$\frac{zf'_k(z)}{f_k(z)} \prec \frac{1 + [(1-\alpha)A + \alpha B]z}{1 + Bz},$$

that is $f_k \in \mathcal{S}(A, B, \alpha)$.

Theorem 2.3 Let $f \in S^k(A, B, \alpha)$, with $-1 \leq B < A \leq 1$ and $0 \leq \alpha < 1$. Then,

$$f(z) = \begin{cases} \int_0^z \frac{1 + [(1-\alpha)A + \alpha B]\widetilde{w}(\zeta)}{1 + B\widetilde{w}(\zeta)} \left(1 + Bw(\zeta)\right)^{\frac{(1-\alpha)(A-B)}{B}} d\zeta, & \text{if } B \neq 0, \\ \int_0^z [1 + A(1-\alpha)\widetilde{w}(\zeta)] \exp[(1-\alpha)Aw(\zeta)] d\zeta, & \text{if } B = 0, \end{cases}$$

for some $w, \tilde{w} \in \Omega$.

Deringer

Proof Supposing that $f \in S^k(A, B, \alpha)$, it follows that there exists a function $\widetilde{w} \in \Omega$ such that

$$\frac{zf'(z)}{f_k(z)} = \frac{1 + [(1 - \alpha)A + \alpha B]\widetilde{w}(z)}{1 + B\widetilde{w}(z)}, \ z \in \mathcal{U}.$$

Using Theorem 2.2 and Lemma 1.6, we have

$$f'(z) = \begin{cases} \frac{1 + [(1-\alpha)A + \alpha B]\widetilde{w}(z)}{1 + B\widetilde{w}(z)} (1 + Bw(z))^{\frac{(1-\alpha)(A-B)}{B}}, & \text{if } B \neq 0, \\ [1 + A(1-\alpha)\widetilde{w}(z)] \exp[(1-\alpha)Aw(z)], & \text{if } B = 0, \end{cases}$$

and integrating the above relations along the line connecting the origin with $z \in U$ we obtain our result.

Theorem 2.4 *Let* $f(z) \in S^k(A, B, \alpha)$ *and is of the form* (1.1)*. Then for* $n \ge 2, -1 \le B < A \le 1, 0 \le \alpha < 1$.

$$|a_n| \le \prod_{m=1}^{n-1} \frac{\chi_m \left[(1-\alpha)(A-B) - 1 \right] + m}{m+1 - \chi_{m+1}},$$
(2.4)

where χ_n is defined in (1.7).

Proof By Definition 1.4, we have

$$\frac{zf'(z)}{f_k(z)} = p(z), \quad p \in \mathcal{P}[A, B, \alpha],$$

then we have

$$zf'(z) = [1 + \sum_{n=1}^{\infty} p_n z^n] f_k(z)$$

by (1.1) and (1.6), we have

$$(1-\chi_1)z+\sum_{n=2}^{\infty}[n-\chi_n]a_nz^n=\left[\sum_{n=1}^{\infty}p_nz^n\right]\left[\sum_{n=1}^{\infty}\chi_na_nz^n\right].$$

Equating coefficients of z^n on both sides, we have

$$a_n = \frac{1}{[n - \chi_n]} \sum_{m=1}^{n-1} p_m \chi_{n-m} a_{n-m}, \quad \chi_1 = 1,$$
(2.5)

by Lemma 1.5, we have

$$|a_n| \le \frac{(A-B)(1-\alpha)}{[n-\chi_n]} \sum_{m=1}^{n-1} \chi_m |a_m|$$
(2.6)

Now we want to prove that

$$\frac{(A-B)(1-\alpha)}{[n-\chi_n]} \sum_{m=1}^{n-1} \chi_m |a_m| \le \prod_{m=1}^{n-1} \frac{\chi_m [(1-\alpha)(A-B)-1] + m}{[m+1-\chi_{m+1}]}.$$
(2.7)

For this, we use the induction method.

The inequality (2.7) is true for n = 2 and 3.

Deringer

Let the hypothesis be true for n = m, we have

$$\frac{(A-B)(1-\alpha)}{[m-\chi_m]} \sum_{r=1}^{m-1} \chi_r |a_r| \le \prod_{r=1}^{m-1} \frac{\chi_r[(1-\alpha)(A-B)-1]+r}{[r+1-\chi_{r+1}]},$$

Multiplying both sides by $\frac{\chi_m[(A-B)(1-\alpha)-1]+m}{[m+1-\chi_{m+1}]}$, we get

$$\prod_{r=1}^{m} \frac{\chi_r[(1-\alpha)(A-B)-1]+r}{[r+1-\chi_{r+1}]} \ge \frac{\chi_m[(A-B)(1-\alpha)-1]+m}{[m+1-\chi_{m+1}]} \cdot \frac{(A-B)(1-\alpha)}{[m-\chi_m]} \sum_{r=1}^{m-1} \chi_r |a_r|,$$

since

$$\frac{\chi_m[(A-B)(1-\alpha)-1]+m}{[m+1-\chi_{m+1}]} \cdot \frac{(A-B)(1-\alpha)}{[m-\chi_m]} \sum_{r=1}^{m-1} \chi_r |a_r|$$

$$= \frac{(A-B)(1-\alpha)}{[m+1-\chi_{m+1}]} \cdot \left[1 + \frac{\chi_m(A-B)(1-\alpha)}{[m-\chi_m]}\right] \sum_{r=1}^{m-1} \chi_r |a_r|,$$

$$\ge \frac{(A-B)(1-\alpha)}{[m+1-\chi_{m+1}]} \cdot \left[\sum_{r=1}^{m-1} \chi_r |a_r| + \chi_m |a_m|\right],$$

$$= \frac{(A-B)(1-\alpha)}{[m+1-\chi_{m+1}]} \cdot \left[\sum_{r=1}^m \chi_r |a_r|\right].$$

That is

$$|a_{m+1}| \le \frac{(A-B)(1-\alpha)}{[m-\chi_m]} \sum_{r=1}^m \chi_r |a_r| \le \prod_{r=1}^m \frac{\chi_r [(1-\alpha)(A-B)-1] + r}{[r+1-\chi_{r+1}]},$$

which shows that inequality (2.7) is true for n = m + 1. This completes the proof.

We now prove the distortion theorem for the class $S^k(A, B, \alpha)$.

Theorem 2.5 If $f \in S^k(A, B, \alpha)$, then

$$\begin{aligned} &\frac{1-(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]r^2}{1-B^2r^2}(1-Br)^{\frac{(1-\alpha)(A-B)}{B}}, & \text{if } B \neq 0, \\ &[1-(1-\alpha)Ar]\exp\left[-(1-\alpha)Ar\right], & \text{if } B = 0 \end{aligned} \right\} \leq |f'(z)| \\ &\leq \begin{cases} &\frac{1+(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]r^2}{1-B^2r^2}(1+Br)^{\frac{(1-\alpha)(A-B)}{B}}, & \text{if } B \neq 0, \\ &[1+(1-\alpha)Ar]\exp\left[(1-\alpha)Ar\right], & \text{if } B = 0, \end{cases}$$

where $|z| \leq r < 1$.

Proof For an arbitrary function $f \in S^k(A, B, \alpha)$, according to Theorem 2.2 and Lemma 1.6 we need to study the following:

(i) If
$$B \neq 0$$
, then there exists a function $w \in \Omega$, such that
 $f_k(z) = z \left(1 + Bw(z)\right)^{\frac{(1-\alpha)(A-B)}{B}}$, by using Lemma 2.1 and therefore
 $\frac{1 - (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} |1 + Bw(z)|^{\frac{(1-\alpha)(A-B)}{B}} \leq |f'(z)|$
 $\leq \frac{1 + (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} |1 + Bw(z)|^{\frac{(1-\alpha)(A-B)}{B}},$
 $|z| \leq r < 1.$
(2.8)

🖄 Springer

Since $w \in \Omega$, we have

$$1 - |B|r \le |1 + Bw(z)| \le 1 + |B|r, \quad |z| \le r < 1.$$

Case 1 If B > 0, using the fact that $-1 \le B < A \le 1$ and $0 \le \alpha < 1$, we have

$$(1-|B|r)^{\frac{(1-\alpha)(A-B)}{B}} \le |1+Bw(z)|^{\frac{(1-\alpha)(A-B)}{B}} \le (1+|B|r)^{\frac{(1-\alpha)(A-B)}{B}}, \quad |z| \le r < 1,$$

and from (2.8) we obtain

$$\frac{1 - (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 - |B|r)^{\frac{(1 - \alpha)(A - B)}{B}} \le |f'(z)|$$

$$\le \frac{1 + (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 + |B|r)^{\frac{(1 - \alpha)(A - B)}{B}},$$

$$|z| \le r < 1.$$
(2.9)

Case 2 If B < 0, from the fact that $-1 \le B < A \le 1$ and $0 \le \alpha < 1$, we have

$$(1 - |B|r)^{\frac{(1-\alpha)(A-B)}{B}} \ge |1 + Bw(z)|^{\frac{(1-\alpha)(A-B)}{B}} \ge (1 + |B|r)^{\frac{(1-\alpha)(A-B)}{B}}, \quad |z| \le r < 1,$$

and from (2.8) we obtain

$$\frac{1 - (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 - |B|r)^{\frac{(1 - \alpha)(A - B)}{B}} \ge |f'(z)|$$

$$\ge \frac{1 + (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 + |B|r)^{\frac{(1 - \alpha)(A - B)}{B}},$$

$$|z| \le r < 1.$$
 (2.10)

Now, combining the inequalities (2.9) and (2.10), we finally conclude that

$$\frac{1 - (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 - Br)^{\frac{(1 - \alpha)(A - B)}{B}} \le |f'(z)|$$

$$\le \frac{1 + (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2 r^2} (1 + Br)^{\frac{(1 - \alpha)(A - B)}{B}},$$

$$|z| \le r < 1.$$
 (2.11)

(ii) If B = 0, there exists a function $w \in \Omega$, such that $f_k(z) = z \exp[(1 - \alpha)Aw(z)]$, and therefore

$$[1 - (1 - \alpha)Ar] |\exp[(1 - \alpha)Aw(z)]| \le |f'(z)| \le [1 + (1 - \alpha)Ar] \times |\exp[(1 - \alpha)Aw(z)]|, |z| \le r < 1.$$
(2.12)

Since $|\exp[(1 - \alpha)Aw(z)]| = \exp[(1 - \alpha)ARew(z)], z \in U$, using a similar computation as in the previous case, we deduce

$$\exp[-(1-\alpha)Ar] \le |\exp[(1-\alpha)Aw(z)]| \le \exp[(1-\alpha)Ar], |z| \le r < 1.$$

Thus, (2.12) yield to

$$[1 - (1 - \alpha)Ar] \exp[-(1 - \alpha)Ar] \le |f'(z)|$$

$$\le [1 + (1 - \alpha)Ar] \exp[(1 - \alpha)Ar], |z| \le r < 1,$$
(2.13)

which completes the proof of our theorem.

Deringer

Theorem 2.6 Let $f \in S^k(A, B, \alpha)$ and let ϕ be convex. Then $(f * \phi) \in S^k(A, B, \alpha)$.

Proof To prove that $(f * \phi) \in S^k(A, B, \alpha)$ it is sufficient to show that

$$\frac{z(f * \phi)'(z)}{(f * \phi)_k(z)} \subset \overline{CO}(F(\mathcal{U})),$$

where $F(z) = \frac{zf'(z)}{f_k(z)}$. Now

$$\frac{z(f * \phi)'(z)}{(f * \phi)_k(z)} = \frac{zf'(z) * \phi(z)}{(f_k(z) * \phi(z))} \\ = \frac{\phi(z) * \frac{zf'(z)}{f_k(z)} \cdot f_k(z)}{\phi(z) * f_k(z)},$$

by using Lemma 1.7 with $f_k(z) \in S(A, B, \alpha), F \in \mathcal{P}[A, B, \alpha]$, that complete the proof.

Corollary 2.7 Let $f \in S^k(A, B, \alpha)$. Then

$$F_i(z) \in \mathcal{S}^k(A, B, \alpha), \quad (i = 1, 2, 3, 4),$$

where

$$F_{1}(z) = \int_{0}^{z} \frac{f(t)}{t} dt,$$

$$F_{2}(z) = \int_{0}^{z} \frac{f(t) - f(xt)}{t - xt} dt, \quad |x| \le 1, x \ne 1,$$

$$F_{3}(z) = \frac{2}{z} \int_{0}^{z} f(t) dt,$$

$$F_{4}(z) = \frac{m+1}{m} \int_{0}^{z} t^{m-1} f(t) dt, \quad \Re m > 0.$$

Proof Since

$$F_{1}(z) = \phi_{1}(z) * f(z), \quad \phi_{1}(z) = \sum_{0}^{\infty} \frac{1}{n} z^{n} = \log(1-z)^{-1},$$

$$F_{2}(z) = \phi_{2}(z) * f(z),$$

$$\phi_{2}(z) = \sum_{0}^{\infty} \frac{1-x^{n}}{n(1-x)} z^{n} = \frac{1}{1-x} \log\left(\frac{1-xz}{1-z}\right), \quad |x| \le 1, x \ne 1,$$

$$F_{3}(z) = \phi_{3}(z) * f(z), \quad \phi_{3}(z) = \sum_{0}^{\infty} \frac{2}{n+1} z^{n} = \frac{-2[z+\log(1-z)]}{z},$$

$$F_{4}(z) = \phi_{4}(z) * f(z), \quad \phi_{4}(z) = \sum_{0}^{\infty} \frac{1+m}{n+m} z^{n}, \quad \Re m > 0.$$

We note that ϕ_i , i = 1, 2, 3, 4 are convex. Now using Theorem 2.6.

Corollary 2.8 The radius of starlikeness of the class $S^k(A, B, \alpha)$ is

$$r_* = \frac{2}{(1-\alpha)(A-B) + \sqrt{[(1-\alpha)(A-B)]^2 + 4B[(1-\alpha)A + \alpha B]}}.$$
 (2.14)

Deringer

Proof From Lemma 2.1

$$\Re\left(\frac{zf'(z)}{f_k(z)}\right) \ge \frac{1 - (1 - \alpha)(A - B)r - B[(1 - \alpha)A + \alpha B]r^2}{1 - B^2r^2}.$$

Hence for $r < r_*$ the first hand side of the preceding inequality is positive this implies (2.14).

Acknowledgements The authors would like to thank the referee for his helpful comments and suggestions.

References

- Al-Sarari, F., Latha, S.: A few results on functions that are Janowski starlike related to (j; k)-symmetric points. Octag. Math. Mag. 21(2), 556–563 (2013)
- Al-Sarari, F., Latha, S.: Conic regions and symmetric points. Int. J. Pure. Appl. Math. 97(3), 273–285 (2014)
- Al-Sarari, F., Latha, S.: A note on Janowski functions with respect to (2j; k)-symmetric conjugate points. IOSR J. Res. Method Educ. 4(2), 39–47 (2014)
- Al-Sarari, F., Frasin, B.A., Al-Hawary, T., Latha, S.: A few results on generalized Janowski type functions associated with (*j*; *k*)-symmetrical functions. Acta Univ. Sapientiae Mathematica 8(2), 195–205 (2016)
- Aouf, M.K.: On a class of *p*-valent starlike functions of order α. Int. J. Math. Math. Sci. 10(4), 733–744 (1987)
- 6. Duren, P.L.: Univalent Functions. Springer, Berlin, Heidelberg and Tokyo (1983)
- Janowski, W.: Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 28(3), 297–326
- Kwon, O., Sim, Y.: A certain subclass of Janowski type functions associated with k-symmetic points. Commun. Korean Math. Soc. 28(1), 143–154 (2013)
- Polatoglu, Y., Bolcal, M., Sen, A., Yavuz, E.: A study on the generalization of Janowski functions in the unit disc. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 22, 27–31 (2006)
- Ruscheweyh, S., Sheil-Small, T.: Hadamard products of Schlicht functions and the Polya–Schoenberg conjecture. Comment. Math. Helv. 48, 119–135 (1979)
- 11. Sakaguchi, K.: On a certain univalent mapping. J. Math. Soc. Jpn. 11(1), 72-75 (1959)