1 Introduction

Let E be a real Banach space and \(E^*\) be the dual space of E. A mapping \(\varphi :[0,\infty )\rightarrow [0,\infty )\) is called a guage function if it is strictly increasing, continuous and \(\varphi (0)=0\). Let \(\varphi \) be a gauge function, a generalized duality mapping with respect to \(\varphi ,J_{\varphi }:E\rightarrow 2^{E^*}\) is defined by, \(x\in E,\)

$$\begin{aligned} J_{\varphi }x=\{x^*\in E^*:\langle x,x^*\rangle =||x||\varphi (||x||),||x^*||=\varphi (||x||)\}, \end{aligned}$$

where \(\langle .,.\rangle \) denotes the duality pairing between element of E and that of \(E^*\). If \(\varphi (t)=t\), then \(J_\varphi \) is simply called the normalized duality mapping and is denoted by J. For any \(x\in E\), an element of \(J_\varphi x\) is denoted by \(j_{\varphi }x\).

If however \(\varphi (t)=t^{q-1}\), for some \(q>1\), then \(J_\varphi \) is still called the generalized duality mapping and is denoted by \(J_{q}\) (see, for example [1, 5]).

Let \(S(E):= \{x \in E:\Vert x\Vert = 1\}\) be the unit sphere of E. Then space E is said to have Gâteaux differentiable norm if for any \(x \in S(E)\) the limit

$$\begin{aligned} \lim _{\lambda \rightarrow 0}\frac{\Vert x + \lambda y\Vert - \Vert x\Vert }{\lambda } \end{aligned}$$
(1.1)

exists \(\forall y \in S(E)\). The norm of E is said to be uniformly G\(\hat{a}\)teaux differentiable if for each \(y\in S(E),\) the limit (1.1) is attained uniformly for \(x \in S(E).\) If E has a uniformly G\(\hat{a}\)teaux differentiable norm, then \(j:E\rightarrow E^*\) is uniformly continuous on bounded subsets of E to the weak\(^*\) topology of \(E^*\).

A mapping \(G:D(G)\subset E\rightarrow E\) is said to be accretive if for all \(x,y\in D(G)\), there exists \(j_q(x-y)\in J_q(x-y)\) such that

$$\begin{aligned} \langle Gx-Gy,j_q(x-y)\rangle \ge 0, \end{aligned}$$
(1.2)

where D(G) denote the domain of G. G is called \(\eta -strongly~accretive\) if for all \(x,y\in D(G)\), there exists \(j_q(x-y)\in J_q(x-y)\) and \(\eta \in (0,1)\) such that

$$\begin{aligned} \langle Gx-Gy,j_q(x-y)\rangle \ge \eta ||x-y||^q, \end{aligned}$$
(1.3)

Let K be a nonempty, closed and convex subset of E and \(G:K\rightarrow E\) be a nonlinear mapping. The variational inequality problem is to:

$$\begin{aligned} \text {find}~u\in K~\text {such that}~\langle Gu,j_q(v-u)\rangle \ge 0,~\forall v\in K, \end{aligned}$$

for some \(j_q(v-u)\in J_q(v-u).\) The set of solution of variational inequality problem is denoted by VI(KG). If \(E:=H\), a real Hilbert space, the variational inequality problem reduces to:

$$\begin{aligned} \text {find}~u\in K~\text {such that}~\langle Gu,v-u\rangle \ge 0,~\forall v\in K, \end{aligned}$$

which was introduced and studied by Stampacchia [16].

Variational inequality theory has emerged as an important tool in studying a wide class of related problems in Mathematical, Physical, regional, engineering and nonlinear optimization sciences (see, for instance, [8, 9, 11, 15, 2426]).

A mapping \(T:E\rightarrow E\) is \(L-Lipschitian\) if for some \(L>0,||Tx-Ty||\le L||x-y||~\forall ~x,y\in E\). If \(L\in [0,1)\), then T is called contraction mapping, but if \(L\le 1\), then T is called nonexpansive mapping. A point \(x\in E\) is called a fixed point of T if \(Tx=x\). The set of fixed points of T is denoted by \(F(T):=\{x\in E:Tx=x\}\). In Hilbert spaces H, accretive operators are called monotone where inequality (1.2) and (1.3) hold with \(j_q\) replaced by the identity map on H.

In 2000, Moudafi [14] introduced the viscosity approximation method for nonexpansive mappings. Let f be a contraction on H, starting with an arbitrary \(x_0\in H,\) define a sequence \(\{x_n\}\) recursively by

$$\begin{aligned} x_{n+1}=\alpha _n f(x_n)+(1-\alpha _n)Tx_n,~~n\ge 0, \end{aligned}$$
(1.4)

where \(\{\alpha _n\}\) is a sequence in (0,1). Xu [21] proved that under certain appropriate conditions on \(\{\alpha _n\}\), the sequence \(\{x_n\}\) generated by (1.4) strongly converges to the unique solution \(x^*\) in F of the variational inequality

$$\begin{aligned} \langle (I-f)x^*,x-x^*\rangle \ge 0,~\text {for}~~x\in F. \end{aligned}$$

In [19], he proved, under some conditions on the real sequence \(\{\alpha _n\}\), that the sequence \(\{x_n\}\) defined by \(x_0\in H\) chosen arbitrary,

$$\begin{aligned} x_{n+1}=\alpha _n b+(1-\alpha _n A)Tx_n,~~n\ge 0, \end{aligned}$$
(1.5)

converges strongly to \(x^*\in F\) which is the unique solution of the minimization problem

$$\begin{aligned} \underset{x\in F}{\min }\frac{1}{2}\langle Ax,x\rangle -\langle x,b\rangle , \end{aligned}$$

where A is a strongly positive bounded linear operator. That is, there is a constant \(\bar{\gamma }>0\) with the property

$$\begin{aligned} \langle Ax,x\rangle \ge \bar{\gamma }||x||^2,~~\forall x\in H. \end{aligned}$$

Combining the iterative method (1.4) and (1.5), Marino and Xu [13] consider the following general iterative method:

$$\begin{aligned} x_{n+1}=\alpha _n f(x_n)+(1-\alpha _n A)Tx_n,~~n\ge 0, \end{aligned}$$
(1.6)

they proved that if the sequence \(\{\alpha _n\}\) of parameters satisfies appropriate conditions, then the sequence \(\{x_n\}\) generated by (1.6) converges strongly to \(x^*\in F\) which solves the variational inequality

$$\begin{aligned} \langle (\gamma f-A)x^*,x-x^*\rangle \le 0~~x\in F, \end{aligned}$$

which is the optimality condition for the minimization problem

$$\begin{aligned} \underset{x\in F}{\min }\frac{1}{2}\langle Ax,x\rangle -h(x), \end{aligned}$$

where h is a potential function for \(\gamma f\) (i.e. \(h'(x)=\gamma f(x)\) for \(x\in H\)).

On the other hand, Yamada [24] in 2001 introduced the following hybrid iterative method:

$$\begin{aligned} x_{n+1}=Tx_n-\lambda _n\mu GTx_n,~~n\ge 0, \end{aligned}$$
(1.7)

where G is a \(\kappa \)-Lipschitzian and \(\eta \)-strongly monotone operator with \(\kappa>0,\eta >0\) and \(0<\mu <2\eta /\kappa ^2\). Under some appropriate conditions, he proved that the sequence \(\{x_n\}\) generated by (1.7) converges strongly to the unique solution of the variational inequality

$$\begin{aligned} \langle Gx^*,x-x^*\rangle \ge 0,~~\forall x\in F. \end{aligned}$$

Recently, combining (1.6) and (1.7), Tian [18] considered the following general iterative method:

$$\begin{aligned} x_{n+1}=\alpha _n\gamma f(x_n)+(I-\alpha _n\mu G)T(x_n), \end{aligned}$$
(1.8)

and proved that the sequence \(\{x_n\}\) generated by (1.8) converges strongly to the unique solution \(x^*\in F\) of the variational inequality

$$\begin{aligned} \langle (\gamma f-\mu G)x^*,x-x^*\rangle \le 0,~~\forall x\in F. \end{aligned}$$

Most recently, Ali et al [4], extended the result of Tian [18] to q-uniformly smooth Banach space whose duality mapping is weakly sequentially continuous. Under some assumptions on \(\{\alpha _n\},\gamma ,\mu \) and G being \(\eta \)-accretive mapping in (1.8), they proved that the sequence \(\{x_n\}\) generated by (1.8) converges strongly to the unique solution \(x^*\in F\) of the variational inequality

$$\begin{aligned} \langle (\gamma f-\mu G)x^*,j(x-x^*)\rangle \le 0,~~\forall x\in F. \end{aligned}$$

Let \(\{T_i\}\) be countable family of nonexpansive mapping. We denote by a set \(\textit{N}_{I}:=\{i\in \mathbb {N}:T_i\ne I\}\) (I being the identity mapping on E). Maingé [12] studied the Halpern-type scheme for approximation of a common fixed point of countable infinite family of nonexpansive mappings in a real Hilbert space. He proved the following theorems.

Theorem 1.1

(Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert space H. Let \(\{T_i\}\) be countable family of nonexpansive self-mappings of K, \(\{t_n\}\) and \(\{\sigma _{i,t_n}\}\) be sequences in (0,1) satisfying the following conditions: (i) \(\lim t_n=0,\) (ii) \(\sum _{i\ge 1}\sigma _{i,t_n}=1-t_n\), (iii) \(\forall i\in \textit{N}_{I},\)  \(\underset{n\rightarrow \infty }{\lim }\frac{t_n}{\sigma _{i,t_n}}=0.\) Define a fixed point sequence \(\{x_{t_n}\}\) by

$$\begin{aligned} x_{t_n}=t_n Cx_{t_n}+\sum _{i\ge 1}\sigma _{i,t_{n}}T_ix_{t_n},~~n\ge 1, \end{aligned}$$
(1.9)

where \(C:K\rightarrow K\) is a strict contraction. Assume \(F:=\cap ^{\infty }_{i=1}F(T_i)\ne \emptyset \), the \(\{x_{t_n}\}\) converges strongly to a unique fixed point of the contraction \(P_{F}\circ C\), where \(P_{F}\) is a metric projection from H onto F.

Theorem 1.2

(Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert space H. Let \(\{T_i\}\) be countable family of nonexpansive self-mappings of K, \(\{\alpha _n\}\) and \(\{\sigma _{i,n}\}\) be sequences in (0,1) satisfying the following conditions:

  1. (i)

    \(\sum \alpha _{n}=\infty ,\) \(\sum _{i\ge 1}\sigma _{i,n}=1-\alpha _n,\)

  2. (ii)
    $$\begin{aligned} \left\{ \begin{array}{ll} \frac{1}{\sigma _{i,n}}\Big \vert 1-\frac{\alpha _{n-1}}{\alpha _n}\Big \vert \rightarrow 0,~~\text {or}~~\sum _{n}\frac{1}{\sigma _{i,n}}|\alpha _{n-1}-\alpha _{n}|<\infty &{} \text { }\\ \frac{1}{\alpha _n}\Big \vert \frac{1}{\sigma _{i,n}}-\frac{1}{\sigma _{i,n-1}}\Big \vert \rightarrow 0,~~\text {or}~~\sum _n\Big \vert \frac{1}{\sigma _{i,n}}-\frac{1}{\sigma _{i,n-1}}\Big \vert<\infty &{} \text { }\\ \frac{1}{\sigma _{i,n}\alpha _n}\sum _{k\ge 0}|\sigma _{k,n}-\sigma _{k,n-1}|\rightarrow 0,~~\text {or}~~ \frac{1}{\sigma _{i,n}}\sum _{k\ge 0}|\sigma _{k,n}-\sigma _{k,n-1}|<\infty . \end{array} \right. \end{aligned}$$
  3. (iii)

    \(\forall i\in \textit{N}_{I},\) \(\underset{n\rightarrow \infty }{\lim }\frac{\alpha _n}{\sigma _{i,n}}=0.\)

Then, the sequence \(\{x_n\}\) define iteratively by \(x_1\in K\),

$$\begin{aligned} x_{n+1}=\alpha _n Cx_n+\sum _{i\ge 1}\sigma _{i,n}T_ix_n,~~n\ge 1, \end{aligned}$$
(1.10)

where \(C:K\rightarrow K\) is a strict contraction. Assume \(F:=\cap ^{\infty }_{i=1}F(T_i)\ne \emptyset \), the \(\{x_{n}\}\) converges strongly to a unique fixed point of the contraction \(P_{F}\circ C\), where \(P_{F}\) is a metric projection from H onto F.

Motivated by the results above, we introduce an iterative method for finding a common fixed point of an infinite family of nonexpansive mappings in q-uniformly real smooth Banach space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality problem.

2 Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space E and let the diameter of K be defined by \(d(K):= \sup \{\Vert x-y\Vert :x , y \in K \}\).   For each \(x \in K\), let \(r(x,K):=\sup \{\Vert x-y\Vert : y \in K \}\)   and let \(r(K):=\inf \{r(x,K): x \in K \}\)  denote the Chebyshev radius of K relative to itself. The normal structure coefficient N(E) of E (introduced in 1980 by Bynum [3], see also Lim [10] and the references contained therein) is defined by N(E):=\(\inf \){\(\frac{d(K)}{r(K)} \): K is a closed convex and bounded subset of E with \(d(K)>0\)}. A Banach space E such that \(N(E)>1\) is said to have uniform normal structure . It is known that every Banach space with a uniform normal structure is reflexive, and that all uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see e.g., [5, 23]).

Let E be a normed space with dimE \(\ge 2\). The modulus of smoothness of E is the function \(\rho _{E}:[0,\infty )\rightarrow [0,\infty )\) defined by

$$\begin{aligned} \rho _{E}(\tau ):=\sup \left\{ \frac{||x+y||+||x-y||}{2}-1:||x||=1;||y||=\tau \right\} . \end{aligned}$$

The space E is called uniformly smooth if and only if \(\lim _{t\rightarrow 0^{+}}\frac{\rho _{E}(t)}{t}=0.\) For some positive constant \(q\in E\) is called \(q-uniformly~smooth\) if there exists a constant \(c>0\) such that \(\rho _{E}(t)\le ct^{q},t>0.\) It is well known that if E is smooth then the duality mapping is singled-valued, and if E is uniformly smooth then the duality mapping is norm-to-norm uniformly continuous on bounded subset of E.

Lemma 2.1

Let E be a real normed space. Then

$$\begin{aligned} ||x+y||^{2}\le ||x||^{2}+2\langle y,j(x+y)\rangle , \end{aligned}$$

for all \(x,y\in E\) and for all \(j(x+y)\in J(x+y).\)

Lemma 2.2

(Xu, [22]) Let E be a real q-uniformly smooth Banach space for some \(q>1\), then there exists some positive constant \(d_{q}\) such that

$$\begin{aligned} ||x+y||^{q}\le ||x||^{q}+q\langle y,j_{q}(x)\rangle +d_{q}||y||^{q}~\forall x,y\in E~\text {and}~j_{q}\in J_{q}(x). \end{aligned}$$

Lemma 2.3

(Xu, [21]) Let \(\{a_{n}\}\) be a sequence of nonegative real numbers satisfying the following relation:

$$\begin{aligned} a_{n+1}\le (1-\alpha _{n})a_{n}+\alpha _{n}\sigma _{n}+\gamma _{n},~n\ge 0 \end{aligned}$$

where, (i) \(\{\alpha _{n}\}\subset [0,1], ~\sum \alpha _{n}=\infty ;\) (ii) \(\limsup \sigma _{n}\le 0;\) (iii) \(\gamma _{n}\ge 0;~(n\ge 0),~\sum \gamma _{n}<\infty .\) Then, \(a_{n}\rightarrow 0\) as \(n\rightarrow \infty .\)

Lemma 2.4

(Suzuki [17]) Let \(\{x_{n}\}\) and \(\{y_{n}\}\) be bounded sequence in a Banach space E and let \(\{\beta _{n}\}\) be a sequence in [0, 1] with \(0<\liminf \beta _{n}\le \limsup \beta _{n}<1.\) Suppose that \(x_{n+1}=\beta _{n}y_{n}+(1-\beta _{n})x_{n}\) for all integer \(n\ge 1\) and \({\limsup }_{n\rightarrow \infty }(||y_{n+1}-y_{n}||-||x_{n+1}-x_{n}||)\le 0.\) Then, \(\underset{n\rightarrow \infty }{\lim }||y_{n}-x_{n}||=0.\)

Lemma 2.5

(See Lemma 2.1 of Ali [2]) Let E be a real smooth and uniformly convex Banach space and let \(r>0\). Then there exists a strictly increasing, continuous and convex function \(g:[0,2r]\rightarrow R\) such that \(g(0)=0\) and \(g(||x-y)\le ||x||^2-2\langle x,jy\rangle +||y||^2\) for all \(B_{r}=\{x\in E:||x||\le r\}.\)

Lemma 2.6

Let E be a real Banach space, \(f:E\rightarrow E\) be contraction mapping with a coefficient \(0<\beta<\) and let \(G:E\rightarrow E\) be a \(\kappa -\)Lipschitzian and \(\eta -\)strongly accretive operator with \(\kappa >0,\eta \in (0,1)\). Then for \(\gamma \in (0,\frac{\mu \eta }{\beta })\),

$$\begin{aligned} \langle (\mu G-\gamma f)x-(\mu G-\gamma f)y,j(x-y)\rangle \ge (\mu \eta -\gamma \beta )||x-y||^2,~\forall x,y\in E. \end{aligned}$$

That is, \((\mu G-\gamma f)\) is strongly accretive with coefficient \((\mu \eta -\gamma \beta )\).

Let \(\mu \) be a linear continuous functional on \(l^{\infty }\) and let \(a=(a_1,a_2,\cdots )\in l^{\infty }.\) We will sometimes write \(\mu _{n}(a_n)\) in place of the value \(\mu (a)\). A linear continuous functional \(\mu \) such that \(||\mu ||=1=\mu (1)\) and \(\mu _{n}(a_n)=\mu _{n}(a_{n+1})\) for every \(a=(a_1,a_2,\cdots )\in l^{\infty }\) is called a Banach limit. It is known that if \(\mu \) is a Banach limit, then

$$\begin{aligned} \underset{n\rightarrow \infty }{\liminf }a_{n}\le \mu (a_n)\le \underset{n\rightarrow \infty }{\limsup }a_{n} \end{aligned}$$

for every \(a=(a_1,a_2,\ldots )\in l^{\infty }\) (see, for example, [5, 6])

3 Main results

In the sequel we assume for each \(\alpha \in (0,1)\), the sequence \(\{\sigma _{i,\alpha }\}\) satisfies \(\sum _{i\ge 1}\sigma _{i,\alpha }=1-\alpha \) and for the sequence \(\{\alpha _{n}\}\subset (0,1),\{\sigma _{i,n}\}=1-\alpha _{n}\).

Lemma 3.1

Let E be a \(q-\)uniformly smooth real Banach space with constant \(d_q, q>1\). Let \(f:E\rightarrow E\) be a \(\beta -\)contraction mapping with a coefficient \(\beta \in (0,1)\). Let \(T_{i}:E\rightarrow E~i\in N,\) be a family of nonexpansive maps such that \(F:=\cap ^{\infty }_{i=1}F(T_i)\ne \emptyset \) and \(G:E\rightarrow E\) be an \(\eta -\)strongly accretive mapping which is also \(\kappa -\)Lipschizian. Let \(\mu \in \Big (0,\min \Big \{1,(\frac{q\eta }{d_{q}\kappa ^{q}})^{\frac{1}{q-1}}\Big \}\Big )\) and \(\tau :=\mu \Big (\eta -\frac{\mu ^{q-1}d_{q}\kappa ^{q}}{q}\Big )\). For each \(t,\alpha \in (0,1)\) with \(\alpha < t\) and \(\beta \in (0,\frac{\tau }{\gamma })\). Assume that \(S:=\alpha u+(1-\delta )(1-\alpha )I+\delta \sum _{i\ge 1}\sigma _{i,\alpha }T_i,\) where \(\delta \) is some fixed number in (0, 1) and \(u\in E\), \(\alpha ,\sigma _{i,t}\) are in (0, 1). Define the following mapping \(W_{t}\) on E by

$$\begin{aligned} W_tx:=t\gamma f(x)+(I-\mu t G)Sx. \end{aligned}$$

where t is in (0,1). Then \(W_t\) is a strict contraction mapping. Furthermore, for any \(x,y\in E,\)

$$\begin{aligned} ||W_{t}x-W_{t}y||\le [1-t(\tau -\beta \gamma )]||x-y|| \end{aligned}$$

Proof

Observe that, for any \(x,y\in E\)

$$\begin{aligned} ||Sx-Sy||\le & {} (1-\delta )(1-\alpha )||x-y||+\delta \sum _{i\ge 1}\sigma _{i,\alpha }||T_{i}x-T_{i}y||\nonumber \\\le & {} (1-\delta )(1-\alpha )||x-y||+\delta (1-\alpha )||x-y||\nonumber \\\le & {} ||x-y||. \end{aligned}$$
(3.1)

Without loss of generality, assume \(\eta <\frac{1}{q}\). Then, as \(\mu <(\frac{q\eta }{d_{q}\kappa ^{q}})^{\frac{1}{q-1}}\), we have \(0<q\eta -\mu ^{q-1}d_{q}\kappa ^{q}\). Furthermore, from \(\eta <\frac{1}{q}\) we have \(q\eta -\mu ^{q-1}d_{q}\kappa ^{q}<1\) so that \(0<q\eta -\mu ^{q-1}d_{q}\kappa ^{q}<1\). Also as \(\mu <1\) and \(t\in (0,1)\), we obtain that \(0<t\mu (q\eta -\mu ^{q-1}d_{q}\kappa ^{q})<1\).

For each \(t,\alpha \in (0,1)\), then for any \(x,y\in E\), define \(K_{t}x=(1-t\mu G)Sx\), then from (3.1), we obtain

$$\begin{aligned} ||K_tx-K_ty||^{q}= & {} ||(1-t\mu G)Sx-(1-t\mu G)Sy||^q\\= & {} ||(Sx-Sy)-t\mu (G(Sx)-G(Sy))||^q\\\le & {} ||G(Sx)-G(Sy)||^q-qt\mu \langle G(Sx)-G(Sy),j_{q}(Sx-Sy)\rangle \\&+t^q\mu ^qd_q||Sx-Sy||^q\\\le & {} [1-t\mu (q\eta -t^{q-1}\mu ^{q-1}\kappa ^qd_q)]||x-y||^q\\\le & {} [1-qt\mu (\eta -\frac{\mu ^{q-1}\kappa ^qd_q}{q})]||x-y||^q\\\le & {} [1-t\mu (\eta -\frac{\mu ^{q-1}\kappa ^qd_q}{q})]^q||x-y||^q\\= & {} (1-t\tau )^q||x-y||^q, \end{aligned}$$

therefore

$$\begin{aligned} ||W_tx-W_ty||= & {} ||t\gamma (f(x)-f(y))+(K_t(Sx)-K_t(Sy))||\\\le & {} t\gamma ||f(x)-f(y)||+||K_t(Sx)-K_t(S_{t}y)||\\\le & {} t\beta \gamma ||x-y||+(1-t\tau )||x-y||\\= & {} [1-t(\tau -\beta \gamma )]||x-y||. \end{aligned}$$

Hence

$$\begin{aligned} ||W_tx-W_ty||\le [1-t(\tau -\beta \gamma )]||x-y||, \end{aligned}$$
(3.2)

which implies that \(W_t\) is a strict contraction, by Banach contraction mapping principle, there exists a unique fixed point \(x_t\) of \(W_t\) in E. That is,

$$\begin{aligned} x_t=t\gamma f(x_t)+(1-t\mu G)Sx_t. \end{aligned}$$
(3.3)

\(\square \)

Theorem 3.2

Let E be a q-uniformly real smooth Banach space which is also uniformly convex. Let \(T_{i},f,G,\mu ,\tau ,\beta ,\gamma ,S\) and F be as in Lemma 3.1. Let \(\{t_n\},\{\alpha _n\}\) be sequences in (0,1), such that \(\underset{n\rightarrow \infty }{\lim }t_n=0\) and \(\underset{n\rightarrow \infty }{\lim }\frac{\alpha _n}{t_n}=0\). Let \(\{x_{t_n}\}\) be a sequence satisfying (3.3), then

  1. (i)

    \(\{x_{t_n}\}\) is bounded for \(t_n\in (0,\frac{1}{\tau })\).

  2. (ii)

    \(\underset{n\rightarrow \infty }{\lim }||x_{t_n}-T_{i}x_{t_n}||=0, \quad \forall i\in \mathbb {N}.\)

  3. (iii)

    then \(\{x_{t_0}\}\) converges strongly to a common fixed point p in F which is a unique solution of the variational inequality

    $$\begin{aligned} \langle (\mu G-\gamma f)p,j(p-x)\rangle \le 0,~~\forall x\in F. \end{aligned}$$
    (3.4)

Proof

Let \(p\in F\) and \(\alpha _n\le t_n\), then

$$\begin{aligned} ||x_{t_n}-p||^2= & {} \langle t_n\gamma f(x_{t_n})+(I-\mu t_n G)Sx_{t_n}-p,j(x_{t_n}-p)\rangle \\= & {} t_n\langle \gamma f(p)-\mu G(p),j(x_{t_n}-p)\rangle +t_n\gamma \langle f(x_{t_n})-f(p),j(x_{t_n}-p)\rangle \\&+\langle (I-t_n\mu G)Sx_{t_n}-(I-t_n\mu G)p,j(x_{t_n}-p)\rangle \\\le & {} t_n\langle \gamma f(p)-\mu G(p),j(x_{t_n}-p)\rangle +\beta \gamma t_n||x_{t_n}-p||^2\\&+(1-\tau t_n)||Sx_{t_n}-p||||x_{t_n}-p||\\\le & {} t_n\langle \gamma f(p)-\mu G(p),j(x_{t_n}-p)\rangle +\beta \gamma t_n||x_{t_n}-p||^2\\&+(1-\tau t_n)[\alpha _n||u-p||+(1-\alpha _n)||x_{t_n}-p||]||x_{t_n}-p||\\\le & {} t_n\langle \gamma f(p)-\mu G(p),j(x_{t_n}-p)\rangle +[1-t_n(\tau -\gamma \beta )||x_{t_n}-p||^2\\&+(1-\tau t_n)\alpha _n||u-p||||x_{t_n}-p||. \end{aligned}$$

Since \((1-\tau t_n)(\alpha _n/t_n)\rightarrow 0\) as \(n\rightarrow \infty ,\) then there exists \(n_0\in \mathbb {N}\) such that \((1-\tau t_{n})(\alpha _n/t_n)<(\tau -\gamma \beta )/2\) for \(n\ge n_0.\) Furthermore

$$\begin{aligned} ||x_{t_n}-p||^2\le & {} \frac{\langle (\gamma f-\mu G)p,j(x_{t_n}-p)\rangle }{\tau -\gamma \beta }\nonumber \\&+\frac{(1-\tau t_n)\alpha _n}{t_n}\times \frac{||u-p||||x_{t_n}-p||}{\tau -\gamma \beta } \end{aligned}$$
(3.5)

for all \(n\ge n_0\). That is, \(||x_{t_n}-p||\le (\frac{||\gamma f(p)-\mu G(p)||}{\tau -\gamma \beta }+\frac{||u-p||}{2})\) for all \(n\ge n_0\). Thus \(\{x_{t_n}\}\) is bounded, so are \(\{f(x_{t_n})\},\{G(x_{t_n})\},\{T_i(x_{t_n})\}\) and \(\{G(T_ix_{t_n})\}\).

(ii) From (3.3), we have

$$\begin{aligned} ||x_{t_n}-Sx_{t_n}||=t_{n}||\gamma f(x_{t_n})-\mu G(Sx_{t_n})||\rightarrow 0~~\text {as}~~n\rightarrow \infty . \end{aligned}$$
(3.6)

Using Lemma 2.5, we have the following estimate

$$\begin{aligned} g(||T_ix_{t_n}-x_{t_n}||)= & {} g[||(p-T_ix_{t_n})-(p-x_{t_n})||]\nonumber \\\le & {} ||p-T_{i}x_{t_n}||^2-2\langle p-T_{i}x_{t_n},j(p-x_{t_n})\rangle +||p-x_{t_n}||^2 \nonumber \\\le & {} ||p-T_{i}x_{t_n}||^2-2\langle p-x_{t_n}+x_{t_n}-T_{i}x_{t_n},j(p-x_{t_n})\rangle +||p-x_{t_n}||^2\nonumber \\\le & {} 2||p-T_{i}x_{t_n}||^2-2\langle p-T_{i}x_{t_n},j(p-x_{t_n})\rangle +2\langle x_{t_n}-T_{i}x_{t_n},j(x_{t_n}-p)\rangle \nonumber \\\le & {} 2\langle x_{t_n}-T_{i}x_{t_n},j(x_{t_n}-p)\rangle \end{aligned}$$
(3.7)

Therefore

$$\begin{aligned} \frac{\delta }{2}\sum _{i\ge 1}\sigma _{i,n}g(||T_{i}x_{t_n}-x_{t_n}||)\le & {} \langle \delta (1-\alpha _n)x_{t_n}-\delta \sum _{i\ge 1}\sigma _{i,n}T_{i}x_{t_n},j(x_{t_n}-p)\rangle \\= & {} \langle \alpha _n(u-x_{t_n})+x_{t_n}-Sx_{t_n},j(x_{t_n}-p)\rangle \\\le & {} [\alpha _n||u-x_{t_n}||+||x_{t_n}-Sx_{t_n}||]||x_{t_n}-p||. \end{aligned}$$

Then we immediately obtain \(\underset{n\rightarrow \infty }{\lim }\sum _{i\ge 1}\sigma _{i,n}g(||T_{i}x_{t_n}-x_{t_n}||)=0,\) it follows that \(\underset{n\rightarrow \infty }{\lim }g(||T_{i}x_{t_n}-x_{t_n}||)=0~~\forall i\in \mathbb {N}.\) By the property of g we have that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }||T_{i}x_{t_n}-x_{t_n}||=0~~\forall i\in \mathbb {N}. \end{aligned}$$
(3.8)

(iii) By Lemma 2.6, \((\mu G-\gamma f)\) is strongly accretive, so the variational inequality (3.4) has a unique solution in F. Below we use \(q\in F\) to denote the unique solution of (3.4). Next, we prove that \(x_t\rightarrow q~(t\rightarrow 0).\)

Let \(\{t_{n}\}\) be a sequence in (0, 1) such that \(\{x_{t_{n}}\}\) satisfies (3.3). By writing \(\{x_{n}\}\) instead of \(\{x_{t_{n}}\},\) define a map \(\phi :E\rightarrow \mathbb {R}\) by

$$\begin{aligned} \phi (y):=\mu _n||x_{n}-y||^2,~~\forall y \in E. \end{aligned}$$

Then, \(\phi (y)\rightarrow \infty \) as \(||y||\rightarrow \infty \), \(\phi \) is continuous and convex, so as E is reflexive, there exists \(q \in E\) such that \(\phi (q)=\underset{u \in E}{\min }\phi (u)\). Hence, the set

$$\begin{aligned} K^*:=\{y \in E:\phi (y)=\underset{u \in E}{\min }\phi (u)\} \ne \emptyset . \end{aligned}$$

Since \(\underset{n\rightarrow \infty }{\lim }||x_{n}-T_{i}x_{n}||=0,\) \(\underset{n\rightarrow \infty }{\lim }||x_{n}-T_{i}^{m}x_{n}||=0,~ \mathrm{for~ any}~m\ge 1\) and \(i\in \mathbb {N}\) by induction. Now let \(v\in K^*\), we have for any \(i\in \mathbb {N}\)

$$\begin{aligned} \phi (T_{i}v)= & {} \mu _{n}||x_{n}-T_{i}v||^{2}=\mu _{n}||x_{n}-T_{i}x_{n} +T_{i}x_{n}-T_{i}v||^{2}\\\le & {} \mu _{n}||x_{n}-v||^2=\phi (v), \end{aligned}$$

and hence \(T_{i}v\in K^{*}\).

Now let \(z\in F,\) then \(z=T_{i}z,\) for any \(i\in \mathbb {N}\). Since \(K^{*}\) is a closed convex set, there exists a unique \(v^{*}\in K^{*}\) such that

$$\begin{aligned} ||z-v^{*}||=\underset{u\in K^{*}}{\min }||z-u||. \end{aligned}$$

But, for any \(i\in \mathbb {N}\)

$$\begin{aligned} ||z-T_{i}v^{*}||= & {} ||T_{i}z-T_{i}v^{*}||\le ||z-v^{*}||, \end{aligned}$$

which implies \(v^{*}=T_{i}v^{*}\) and so \(K^{*}\cap F\ne \emptyset .\)

Let \(p \in K^* \cap F\) and \(\epsilon \in (0,1)\). Then, it follows that \(\phi (p)\le \phi (p-\epsilon (G-\gamma f)p)\) and using Lemma 2.1, we obtain that

$$\begin{aligned} ||x_n-p+\epsilon (G-\gamma f)p||^2 \le ||x_n-p||^2+2\epsilon \langle (G-\gamma f)p,j(x_n-p+\epsilon (G-\gamma f)p)\rangle \end{aligned}$$

which implies

$$\begin{aligned} \mu _n\langle (\gamma f-G)p,j(x_n-p+\epsilon (G-\gamma f)p)\rangle \le 0. \end{aligned}$$

Moreover,

$$\begin{aligned} \mu _n\langle (\gamma f-G)p,j(x_n-p)\rangle= & {} \mu _n\langle (\gamma f-G)p,j(x_n-p)-j(x_n-p+\epsilon (G-\gamma f)p)\rangle \\&+\mu _n\langle (\gamma f-G)p,j(x_n-p+\epsilon (G-\gamma f)p)\rangle \\\le & {} \mu _n\langle (\gamma f-G)p,j(x_n-p)-j(x_n-p+\epsilon (G-\gamma f)p)\rangle . \end{aligned}$$

Since j is norm-to-norm uniformly continuous on bounded subsets of E, and \(\epsilon \rightarrow 0\) we have that

$$\begin{aligned} \mu _n\langle (\gamma f-G)p, j(x_n-p) \rangle \le 0. \end{aligned}$$

Now from (3.5) and since \(\underset{n\rightarrow \infty }{\lim }\frac{\alpha _n}{t_n}=0\), we have

$$\begin{aligned} \mu _n||x_{n}-p||^2\le & {} \mu _n\Big (\frac{\langle (\gamma f-\mu G)p,j(x_{n}-p)\rangle }{\tau -\gamma \beta }\Big )\\&+\mu _n\Big (\frac{(1-\tau t_n)\alpha _n}{t_n}\times \frac{||u-p||||x_{n}-p||}{\tau -\gamma \beta }\Big ) \end{aligned}$$

and so

$$\begin{aligned} \mu _{n}\Vert x_{n}-p\Vert ^{2} \le 0. \end{aligned}$$

Thus there exist a subsequence say \(\{x_{n_{j}}\}\) of \(\{x_{n}\}\) such that \({lim}_{j\rightarrow \infty }x_{n_{j}}=p.\)

By definition of \(S_{\alpha }\) as \(S_{\alpha _n}x_n:=\alpha _n u+ (1-\delta )(1-\alpha _n)x_n+\delta \sum _{i\ge 1}\sigma _{i,n}T_ix_n,\) which implies \(S_{\alpha _{n_j}}x_{n_j}:=x_{n_j}+\alpha _{n_j} (u-x_{n_j})+ \delta \sum _{i\ge 1}\sigma _{i,n_j}(T_ix_{n_j}-x_{n_j}),\) then \({lim}_{j\rightarrow \infty }Sx_{n_{j}}={lim}_{j\rightarrow \infty }x_{n_{j}}=p\) and \(S_{\alpha }p=p.\) Thus for any \(z\in F,\) using (3.3) we have

$$\begin{aligned} \langle \mu G(x_{n_{j}})-\gamma f(x_{n_{j}}),j(x_{n_{j}}-z)\rangle= & {} \frac{-1}{t_{n_{j}}}\langle (I-S)x_{n_{j}}-(I-S)p, j(x_{n_{j}}-z)\rangle \nonumber \\+ & {} \mu \langle Gx_{n_{j}}-GSx_{n_{j}}, j(x_{n_{j}}-z)\rangle \nonumber \\\le & {} \mu \langle Gx_{n_{j}}-GSx_{n_{j}}, j(x_{n_{j}}-z)\rangle , \end{aligned}$$
(3.9)

since \(\langle (I-S)x_{n_{j}}-(I-S)p, j(x_{n_{j}}-z)\rangle \ge 0.\) As G is Lipschitzian and the fact that \(\Vert x_{n_{j}}-Sx_{n_{j}}\Vert \le \alpha _{n_j} \Vert u-x_{n_j}\Vert + \delta \sum _{i\ge 1}\sigma _{i,n_j}\Vert (T_ix_{n_j}-x_{n_j})\Vert \rightarrow 0\) as \(j\rightarrow \infty ,\) we have \(Gx_{n_{j}}-GSx_{n_{j}}\rightarrow 0~\mathrm{as}~j\rightarrow \infty .\) From this and (3.9), taking limit as \(j\rightarrow \infty \) we obtain

$$\begin{aligned} \langle (\mu G-\gamma f)p,j(p-z)\rangle \le 0. \end{aligned}$$

Hence p is the unique solution of the variational inequality (3.4). Now assume there exists another subsequence of \(\{z_{n}\}\) say \(\{x_{n_{k}}\}\) such that \({lim}_{k\rightarrow \infty }x_{n_{k}}=p^{*}.\) Then, using (3.8) we have \(p^{*}\in F.\) Repeating the above argument with p replaced by \(p^{*}\) we can easily obtain that \(p^{*}\) also solved the variational inequality (3.4). By uniqueness of the solution of the variational inequality, we obtained that \(p=p^{*}\) and this completes the proof. \(\square \)

Theorem 3.3

Let E be a q-uniformly real smooth Banach space which is also uniformly convex. Let \(T_{i}:E\rightarrow E~~i\in \{1,2,\ldots \}\) be a family of nonexpansive mappings with \(F:=\cap ^{\infty }_{i=1}F(T_{i})\ne \emptyset \). Let \(G:E\rightarrow E\) be an \(\eta \)-strongly accretive map which is also \(\kappa \)-Lipschitzian. Let \(f:E\rightarrow E\) be a contraction map with coefficient \(0<\beta <1\). Let \(\{\alpha _{n}\}\) and \(\{\beta _{n}\}\) be sequences in (0,1) satisfying:

  1. (i)

    \(\underset{n\rightarrow \infty }{\lim }\beta _{n}=0~\) and \(~\sum ^{\infty }_{n=0}\beta _{n}=\infty ;\)

  2. (ii)

    \(\sum \alpha _{n}<\infty \) and \(\underset{n\rightarrow \infty }{\lim }\frac{\alpha _n}{\beta _n}=0\);

  3. (iii)

    \(\underset{n\rightarrow \infty }{\lim }\sum _{i\ge 1}|\sigma _{i,n+1}-\sigma _{i,n}|=0\) and \(\sum _{i\ge 1}\sigma _{i,n}=1-\alpha _{n}.\)

Let \(\mu , \gamma ,\) and \(\tau \) be as in Lemma 3.1 and \(\delta \in (0,1)\) be fixed. define a sequence \(\{x_{n}\}_{n=1}^{\infty }\) iteratively in E by \(x_{0}\in E\)

$$\begin{aligned} \left\{ \begin{array}{ll} y_{n}=\alpha _{n}u+(1-\delta )(1-\alpha _{n})x_{n}+\delta \sum _{i\ge 1}\sigma _{i,n}T_{i}x_{n} &{} \text { } \\ x_{n+1}=\beta _{n}\gamma f(x_{n})+(I-\beta _{n}\mu G)y_{n}. \end{array} \right. \end{aligned}$$
(3.10)

Then, \(\{x_{n}\}^{\infty }_{n=1}\) converges strongly to \(x^{*}\in F\) which is also a solution to the following variational inequality

$$\begin{aligned} \langle (\gamma f-\mu G)x^*,j(y-x^*)\rangle \le 0,\quad \forall y\in F. \end{aligned}$$
(3.11)

Proof

Since \((\mu G-\gamma f)\) is strongly accretive, then the variational inequality (3.11) has a unique solution in F. Now we show that \(\{x_{n}\}^{\infty }_{n=1}\) is bounded. Let \(p\in F\) then, for every \(i\in \mathbb {N}, T_{i}p=p\). From (3.10), we obtain

$$\begin{aligned} ||y_{n}-p||= & {} ||\alpha _nu+(1-\delta )(1-\alpha _n)x_n+\delta \sum _{i\ge 1}\sigma _{i,n}T_{i}x_n-p||\nonumber \\\le & {} \alpha _n||u-p||+(1-\delta )(1-\alpha _n)||x_n-p||\nonumber \\&+\delta \sum _{i\ge 1}\sigma _{i,n}||T_{i}x_n-p|| \nonumber \\\le & {} \alpha _n||u-p||+(1-\alpha _n)||x_n-p|| \nonumber \\\le & {} \alpha _n||u-p||+||x_n-p||. \end{aligned}$$
(3.12)

Also from (3.10) and (3.12), we obtain

$$\begin{aligned} ||x_{n+1}-p||= & {} ||\beta _{n}\gamma f(x_n)+(I-\beta _n\mu G)y_n-p|| \\\le & {} \beta \gamma \beta _n||x_n-p||+\beta _n||\gamma f(p)-\mu G(p)||\\&+||(I-\beta _n\mu G)y_n-(I-\beta _n\mu G)p|| \\\le & {} \beta \gamma \beta _n||x_n-p||+\beta _n||\gamma f(p)-\mu G(p)||\\&+(1-\tau \beta _n)||y_{n}-p|| \\\le & {} \beta \gamma \beta _n||x_n-p||+\beta _n||\gamma f(p)-\mu G(p)||\\&+(1-\tau \beta _n)[\alpha _n||u-p||+||x_n-p||] \\\le & {} [1-\beta _n(\tau -\gamma \beta )]||x_n-p||\\&+\beta _{n}[||\gamma f(p)-\mu G(p)||+||u-p||] \\\le & {} \max \Big \{||x_{n}-p||,\frac{||\gamma f(p)-\mu G(p)||+||u-p||}{\tau -\gamma \beta }\} \\\le & {} \cdots \le \max \Big \{||x_{1}-p||,\frac{||\gamma f(p)-\mu G(p)||+||u-p||}{\tau -\gamma \beta }\}. \end{aligned}$$

Therefore, \(\{x_{n}\}\) is bounded. Hence \(\{y_n\},\{T_ix_n\},\{Gy_n\},\{GT_iy_n\}\) and \(\{f(y_n)\}\) are also bounded.

Next, we show that \({\lim }_{n\rightarrow \infty }||x_{n+1}-x_{n}||=0.\) Define two sequences \(\{\lambda _{n}\}\) and \(\{z_{n}\}\) by \(\lambda _n:=(1-\delta )\alpha _n+\delta \) and

$$\begin{aligned} z_{n}:=\frac{x_{n+1}-x_{n}+\lambda _nx_{n}}{\lambda _n}. \end{aligned}$$

Observe that \(\{z_n\}\) is bounded and that

$$\begin{aligned} ||z_{n+1}-z_{n}||-||x_{n+1}-x_{n}||\le & {} \Big (\frac{\beta _{n+1}}{\lambda _{n+1}} +\frac{\beta _{n}}{\lambda _{n}}\Big )M+\Big \vert \frac{\alpha _{n+1}}{\lambda _{n+1}} -\frac{\alpha _{n}}{\lambda _{n}}\Big \vert ||u||\\&+\Big [\frac{\delta (1-\alpha _{n+1})}{\lambda _{n+1}}-1\Big ]||x_{n+1}-x_{n}||\\&+\frac{\delta M}{\lambda _{n+1}}\sum _{i\ge 1}|\sigma _{i,n+1}-\sigma _{i,n}|\\&+\frac{\delta M}{\lambda _{n+1}}\sum _{i\ge 1}\sigma _{i,n}|\lambda _{n+1}-\lambda _{n}| \end{aligned}$$

for some real number \(M:={\sup }_{n\ge 1}\{||\gamma f(x_n)-\mu G(y_n)||,||T_{i}x_n||,i=1,2,...\}\).

This implies

$$\begin{aligned} \underset{n\rightarrow \infty }{\limsup }(||z_{n+1}-z_{n}||-||x_{n+1}-x_{n}||)\le 0, \end{aligned}$$

and by Lemma 2.4, we obtain

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }||z_n-x_n||=0. \end{aligned}$$

Hence

$$\begin{aligned} ||x_{n+1}-x_{n}||=\lambda _n||z_n-x_n||\rightarrow 0~~\text {as}~~n\rightarrow \infty . \end{aligned}$$
(3.13)

and from (3.10), we also obtain

$$\begin{aligned} ||x_{n+1}-y_{n}||=\beta _n||\gamma _nf(x_n)-\mu G(y_n)||\rightarrow 0~~\text {as}~~n\rightarrow \infty . \end{aligned}$$
(3.14)

from (3.13) and (3.14), we have

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }||x_{n}-y_{n}||=0. \end{aligned}$$
(3.15)

Next we show that \(\underset{n\rightarrow \infty }{\lim }||T_ix_n-x_n||=0\) for all \(i\in \mathbb {N}.\) Since \(p\in F\), using the same argument in (3.7), we obtain

$$\begin{aligned} \frac{\delta }{2}\sum _{i\ge 1}\sigma _{i,n}g(||T_ix_n-x_n||)\le & {} \delta \sum _{i\ge 1}\sigma _{i,n}\langle x_n-T_ix_n,j(x_n-p)\rangle \\\le & {} \langle \delta (1-\alpha _n)x_n-\delta \sum _{i\ge 1}\sigma _{i,n}T_{i}x_n,j(x_n-p)\rangle \\\le & {} \langle \alpha _n(u-x_n)+x_n-y_n,j(x_{n}-p)\rangle \\\le & {} [\alpha _n||u-x_n||+||x_n-y_n||]||x_n-p||. \end{aligned}$$

From (3.15) and \(\lim _{n\rightarrow \infty }\alpha _{n}=0\), we obtain

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{i\ge 1}\sigma _{i,n}||T_{i}x_n-x_n||=0, \end{aligned}$$

it follows that for every \(i\in \mathbb {N},\)

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }||T_ix_{n}-x_n||=0. \end{aligned}$$
(3.16)

Let \(z_t=t\gamma f(z_t)+(1-t\mu G)Sz_t\), where \(S:=\alpha u+(1-\delta )(1-\alpha )I+\delta \sum _{i\ge 1}\sigma _{i,\alpha }T_i,\) as in Theorem 3.1. Then,

$$\begin{aligned} z_t-x_n=t(\gamma f(z_t)-Gz_t)+t\mu (Gz_t-G(Sz_t))+Sz_t-x_n \end{aligned}$$

Hence

$$\begin{aligned} ||z_t-x_n||^2= & {} \langle t(\gamma f(z_t)-Gz_t)+t\mu (Gz_t-G(Sz_t))+Sz_t-x_n,j(z_t-x_n)\rangle \\= & {} t\langle \gamma f(z_t)-\mu G(z_t),j(z_t-x_t)\rangle +t\mu \langle Gz_t-G(Sz_t),j(z_t-x_n)\rangle \\&+\langle Sz_t-x_n,j(z_t-x_n)\rangle \\\le & {} t\langle \gamma f(z_t)-\mu Gz_t,j(z_t-x_n)\rangle +t\mu \kappa ||z_t-Sz_t||||z_t-x_n||\\&+||Sz_t-x_n||||z_t-x_n||\\\le & {} t\langle \gamma f(z_t)-\mu Gz_t,j(z_t-x_n)\rangle +t(1+\mu )||z_t-Sz_t||||z_t-x_n||\\&+||z_t-x_n||^2+||Sx_n-x_n||||z_t-x_n||. \end{aligned}$$

Therefore

$$\begin{aligned} \langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle\le & {} (1+\mu \kappa )||z_t-Sz_t||||z_t-x_n||\\&+\frac{1}{t}||Sx_n-x_n||||z_t-x_n|| \end{aligned}$$

Now, taking limit superior as \(n\rightarrow \infty \) firstly, and then as \(t\rightarrow 0\), we have

$$\begin{aligned} \underset{t\rightarrow 0}{\limsup }\underset{n\rightarrow \infty }{\limsup }\langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \le 0 \end{aligned}$$
(3.17)

Moreover, we note that

$$\begin{aligned} \langle \gamma f(p)-\mu Gp,j(x_n-p)\rangle= & {} \langle \gamma f(p)-\mu Gp,j(x_n-p)\rangle -\langle \gamma f(p)-\mu Gp,j(x_n-z_t)\rangle \nonumber \\&+\langle \gamma f(p)-\mu Gp,j(x_n-z_t)\rangle -\langle \gamma f(p)-\mu Gz_t,j(x_n-z_t)\rangle \nonumber \\&+ \langle \gamma f(p)-\mu Gz_t,j(x_n-z_t)\rangle -\langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \nonumber \\&+ \langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \nonumber \\= & {} \langle \gamma f(p)-\mu Gp,j(x_n-p)-j(x_n-z_t)\rangle \nonumber \\&+\mu \langle Gz_t- Gp,j(x_n-z_t)\rangle \nonumber \\&+\langle \gamma f(z_t)-\gamma f(p),j(x_n-z_t)\rangle \nonumber \\&+\langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \end{aligned}$$
(3.18)

Taking limit superior as \(n\rightarrow \infty \) in (3.18), we have

$$\begin{aligned} \underset{n\rightarrow \infty }{\limsup }\langle \gamma f(p)-\mu Gp,j(x_n-p)\rangle\le & {} \underset{n\rightarrow \infty }{\limsup }\langle \gamma f(p)-\mu Gp,j(x_n-p)-j(x_n-z_t)\rangle \nonumber \\&+\mu || Gz_t- Gp||\underset{n\rightarrow \infty }{\limsup }||x_n-z_t||\nonumber \\&+||\gamma f(z_t)-\gamma f(p)||\underset{n\rightarrow \infty }{\limsup }||x_n-z_t||\nonumber \\&+\underset{n\rightarrow \infty }{\limsup }\langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \nonumber \\\le & {} \underset{n\rightarrow \infty }{\limsup }\langle \gamma f(p)-\mu Gp,j(x_n-p)-j(x_n-z_t)\rangle \nonumber \\&+((\mu +1)+\alpha \gamma )\Vert z_{t}-p\Vert \underset{n\rightarrow \infty }{\limsup }||x_n-z_t|| \nonumber \\&+\underset{n\rightarrow \infty }{\limsup }\langle \gamma f(z_t)-\mu Gz_t,j(x_n-z_t)\rangle \end{aligned}$$
(3.19)

since E has a uniformly Gâteaux differentiable norm, so j is norm-to-norm\(^{*}\) uniformly continuous on bounded subset of E. Then, from Theorem 3.1 (i.e., \(z_t\rightarrow p~~(t\rightarrow 0^{+}\))), we obtain

$$\begin{aligned} \underset{t\rightarrow 0}{\limsup }\underset{n\rightarrow \infty }{\limsup }\langle \gamma f(p)-\mu Gp,j(x_n-p)-j(x_n-z_t)\rangle =0, \end{aligned}$$

hence, using (3.17) in (3.19), we obtain

$$\begin{aligned} \underset{n\rightarrow \infty }{\limsup }\langle \gamma f(p)-\mu Gp,j(x_n-p)\rangle\le & {} \underset{t\rightarrow 0}{\limsup }\underset{n\rightarrow \infty }{\limsup }\langle \gamma f(z_t)-\mu Gz_t,j(x_n-p)\rangle \\\le & {} 0 \end{aligned}$$

Finally, we show that \(x_n\rightarrow p.\) From the recursion formula (3.10), by using (2.1) and taking \(n\ge N\) where \(N\in \mathbb {N}\) is large enough, we obtain

$$\begin{aligned} ||x_{n+1}-p||^2= & {} ||\beta _n\gamma f(x_n)-\beta _n\mu G(p)+(I-\beta _n\mu G)y_n-(I-\beta _n \mu G)p||^2 \\\le & {} ||(I\!-\!\beta _n\mu G)y_n\!-\!(I-\beta _n\mu G)p||^2+2\beta _n\langle \gamma f(x_n)-\mu G(p),j(x_{n+1}-p)\rangle \\\le & {} (1-\beta _n\tau )^2||y_n-p||^2+2\beta _n\langle \gamma f(x_{n})-\gamma f(p),j(x_{n+1}-p)\rangle \\&+2\beta _n\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle \\\le & {} \alpha _n||u-p||^2+(1-\beta _n\tau )^2||x_n-p||^2\\&+2\beta _n\langle \gamma f(x_{n})-\gamma f(p),j(x_{n+1}-p)\rangle \\&+2\beta _n\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle \end{aligned}$$

On the other hand

$$\begin{aligned} \langle \gamma f(x_{n})-\gamma f(p),j(x_{n+1}-p)\rangle\le & {} \gamma \beta ||x_n-p||||x_{n+1}-p||\\\le & {} \gamma \beta ||u-p||||x_{n}-p||\sqrt{\alpha _n}+\gamma \beta (1-\beta _n\tau )||x_n-p||^2\\&+\gamma \beta ||x_n-p||\sqrt{2|\langle \gamma f(x_n)-\gamma f(p),j(x_{n+1}-p)\rangle |}\sqrt{\beta _n} \\&+\gamma \beta ||x_n-p||\sqrt{2|\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle |}\sqrt{\beta _n}. \end{aligned}$$

Since \(\{x_n\}\) and \(\{f(x_n)\}\) are bounded, we pick a constant \(G_0>0\) such that

$$\begin{aligned}&\sup \Big \{\gamma \beta ||x_n-p||||u-p||,\gamma \beta ||x_n-p||\Big (\sqrt{2|\langle \gamma f(x_n)-\gamma f(p),j(x_{n+1}-p)\rangle |}\\&\quad +\gamma \beta \sqrt{2|\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle |}\Big )\Big \}<G_{0}, \forall n\in \mathbb {N}. \end{aligned}$$

Therefore

$$\begin{aligned} \langle \gamma f(x_{n})-\gamma f(p),j(x_{n+1}-p)\rangle \le \gamma \beta (1-\beta _n\tau )||x_n-p||^2+G_{0}(\sqrt{\alpha _n}+\sqrt{\beta _n}) \end{aligned}$$

Hence

$$\begin{aligned} ||x_{n+1}-p||^2\le & {} \alpha _n||u-p||^2+(1-\beta _n\tau )^2||x_n-p||^2\\&+2\beta _n\gamma \beta (1-\beta _n\tau )||x_n-p||^2+2\beta _nG_{0} (\sqrt{\alpha _n}+\sqrt{\beta _n}) \\&+2\beta _n\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle \\= & {} \Big [1-2\beta _n(1-\beta _n\tau )(\tau -\gamma \beta )\Big ]||x_n-p||^2+\alpha _n||u-p||^2\\&+2\beta _nG_{0}(\sqrt{\alpha _n}+\sqrt{\beta _n}) +2\beta _n\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle \\\le & {} \Big [1-\beta _n(1-\beta _n\tau )(\tau -\gamma \beta )\Big ]||x_n-p||^2+\theta _n \end{aligned}$$

where \(\theta _n:=\beta _n\Big (\alpha _n/\beta _n||u-p||^2+2G_{0}(\sqrt{\alpha _n}+\sqrt{\beta _n}). +2\langle \gamma f(p)-\mu G(p),j(x_{n+1}-p)\rangle \Big )\) By using Lemma 2.3 we obtain \(x_n\rightarrow p\) as \(n\rightarrow \infty \). This complete the proof. \(\square \)

Corollary 3.4

Let H be a real Hilbert space, \(\{z_{t}\}_{t\in (0,1)},\) be as in Theorem 3.2. Then \(\{z_{t}\}\) converges strongly to a common fixed points of the family \(\{T_{i}\}_{i=1}^{\infty }\) say p which is a unique solution of the variational inequality

$$\begin{aligned} \langle (\mu G-\gamma f)p,q-p\rangle \ge 0,~~\forall q\in F. \end{aligned}$$

Corollary 3.5

Let H be a real Hilbert space and let C a nonempty closed convex subset of H. Let \(G:H \rightarrow H,\) \(f:E \rightarrow E,\) \(\{T_{i}\}^{\infty }_{i=1}\) F, \(\{\alpha _{n}\}^{\infty }_{n = 1}\), \(\{\beta _{n}\}^{\infty }_{n =1}\) and \(\{x_{n}\}^{\infty }_{n = 1}\) be as in Theorem (3.1), then \(\{x_{n}\}^{\infty }_{n = 1}\) converges strongly to \(p \in F\), which is also the unique solution of the variational inequality

$$\begin{aligned} \langle \gamma f(p) -\mu Gp, q - p\rangle \le 0,~\forall q \in F \end{aligned}$$