

Modified general iterative algorithm for an infinite family of nonexpansive mappings in Banach spaces

Ugwunnadi Godwin Chidi¹

Received: 17 March 2015 / Accepted: 18 July 2016 / Published online: 26 July 2016 © African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we introduce an iterative method for finding a common fixed point of an infinite family of nonexpansive mappings in *q*-uniformly real smooth Banach space which is also uniformly convex. We proved strong convergence of the proposed iterative algorithms to the unique solution of a variational inequality problem.

Keywords Fixed point · Strongly accretive mapping · Nonexpansive mapping · Uniformly smooth and convex Banach spaces

Mathematics Subject Classification 47H09 · 47J25

1 Introduction

Let *E* be a real Banach space and E^* be the dual space of *E*. A mapping $\varphi: [0, \infty) \to [0, \infty)$ is called a guage function if it is strictly increasing, continuous and $\varphi(0) = 0$. Let φ be a gauge function, a generalized duality mapping with respect to φ , J_{φ} : $E \to 2^{E^*}$ is defined by, $x \in E$,

$$
J_{\varphi}x = \{x^* \in E^* : \langle x, x^* \rangle = ||x||\varphi(||x||), ||x^*|| = \varphi(||x||)\},\
$$

where $\langle ., . \rangle$ denotes the duality pairing between element of *E* and that of E^* . If $\varphi(t) = t$, then J_{φ} is simply called the normalized duality mapping and is denoted by *J*. For any $x \in E$, an element of $J_{\varphi}x$ is denoted by $j_{\varphi}x$.

If however $\varphi(t) = t^{q-1}$, for some $q > 1$, then J_{φ} is still called the generalized duality mapping and is denoted by J_q (see, for example [\[1](#page-13-0)[,5\]](#page-13-1)).

B Ugwunnadi Godwin Chidi ugwunnadi4u@yahoo.com

¹ Department of Mathematics, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria

Let $S(E): = \{x \in E : ||x|| = 1\}$ be the unit sphere of *E*. Then space *E* is said to have *Gâteaux differentiable norm* if for any $x \in S(E)$ the limit

$$
\lim_{\lambda \to 0} \frac{\|x + \lambda y\| - \|x\|}{\lambda} \tag{1.1}
$$

exists $\forall y$ ∈ *S*(*E*). The norm of *E* is said to be uniformly Gâteaux differentiable if for each $y \in S(E)$, the limit [\(1.1\)](#page-1-0) is attained uniformly for $x \in S(E)$. If *E* has a uniformly G \hat{a} teaux differentiable norm, then $j: E \to E^*$ is uniformly continuous on bounded subsets of E to the weak∗ topology of *E*∗.

A mapping $G: D(G) \subset E \to E$ is said to be *accretive* if for all $x, y \in D(G)$, there exists $j_q(x - y) \in J_q(x - y)$ such that

$$
\langle Gx - Gy, j_q(x - y) \rangle \ge 0,\tag{1.2}
$$

where $D(G)$ denote the domain of *G*. *G* is called η – *strongly accretive* if for all *x*, $y \in$ *D*(*G*), there exists $j_q(x - y) \in J_q(x - y)$ and $\eta \in (0, 1)$ such that

$$
\langle Gx - Gy, j_q(x - y) \rangle \ge \eta ||x - y||^q, \tag{1.3}
$$

Let *K* be a nonempty, closed and convex subset of *E* and $G: K \rightarrow E$ be a nonlinear mapping. The variational inequality problem is to:

find
$$
u \in K
$$
 such that $\langle Gu, j_q(v - u) \rangle \ge 0, \forall v \in K$,

for some $j_q(v - u) \in J_q(v - u)$. The set of solution of variational inequality problem is denoted by $VI(K, G)$. If $E: = H$, a real Hilbert space, the variational inequality problem reduces to:

find
$$
u \in K
$$
 such that $\langle Gu, v - u \rangle \ge 0, \forall v \in K$,

which was introduced and studied by Stampacchia [\[16](#page-14-0)].

Variational inequality theory has emerged as an important tool in studying a wide class of related problems in Mathematical, Physical, regional, engineering and nonlinear optimization sciences (see, for instance, [\[8](#page-13-2)[,9](#page-13-3)[,11,](#page-13-4)[15](#page-14-1)[,24](#page-14-2)[–26\]](#page-14-3)).

A mapping $T: E \to E$ is $L - Lipschitian$ if for some $L > 0$, $||Tx - Ty|| \le L||x$ *y*|| ∀ *x*, *y* ∈ *E*. If *L* ∈ [0, 1), then *T* is called contraction mapping, but if *L* ≤ 1, then *T* is called nonexpansive mapping. A point $x \in E$ is called a fixed point of *T* if $Tx = x$. The set of fixed points of *T* is denoted by $F(T)$: = { $x \in E$: $Tx = x$ }. In Hilbert spaces *H*, accretive operators are called monotone where inequality (1.2) and (1.3) hold with j_q replaced by the identity map on *H*.

In 2000, Moudafi [\[14](#page-13-5)] introduced the viscosity approximation method for nonexpansive mappings. Let *f* be a contraction on *H*, starting with an arbitrary $x_0 \in H$, define a sequence ${x_n}$ recursively by

$$
x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T x_n, \ \ n \ge 0,
$$
\n(1.4)

where $\{\alpha_n\}$ is a sequence in (0,1). Xu [\[21\]](#page-14-4) proved that under certain appropriate conditions on $\{\alpha_n\}$, the sequence $\{x_n\}$ generated by [\(1.4\)](#page-1-3) strongly converges to the unique solution x^* in *F* of the variational inequality

$$
\langle (I - f)x^*, x - x^* \rangle \ge 0, \text{ for } x \in F.
$$

In [\[19](#page-14-5)], he proved, under some conditions on the real sequence $\{\alpha_n\}$, that the sequence $\{x_n\}$ defined by $x_0 \in H$ chosen arbitrary,

$$
x_{n+1} = \alpha_n b + (1 - \alpha_n A) T x_n, \quad n \ge 0,
$$
\n
$$
(1.5)
$$

converges strongly to $x^* \in F$ which is the unique solution of the minimization problem

$$
\min_{x \in F} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle,
$$

where *A* is a strongly positive bounded linear operator. That is, there is a constant $\bar{y} > 0$ with the property

$$
\langle Ax, x \rangle \ge \bar{\gamma} ||x||^2, \ \forall x \in H.
$$

Combining the iterative method (1.4) and (1.5) , Marino and Xu [\[13\]](#page-13-6) consider the following general iterative method:

$$
x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n A) T x_n, \ \ n \ge 0,
$$
\n(1.6)

they proved that if the sequence $\{\alpha_n\}$ of parameters satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by [\(1.6\)](#page-2-1) converges strongly to $x^* \in F$ which solves the variational inequality

$$
\langle (\gamma f - A)x^*, x - x^* \rangle \le 0 \ \ x \in F,
$$

which is the optimality condition for the minimization problem

$$
\min_{x \in F} \frac{1}{2} \langle Ax, x \rangle - h(x),
$$

where *h* is a potential function for γf (i.e. $h'(x) = \gamma f(x)$ for $x \in H$).

On the other hand, Yamada [\[24\]](#page-14-2) in 2001 introduced the following hybrid iterative method:

$$
x_{n+1} = Tx_n - \lambda_n \mu G T x_n, \quad n \ge 0,
$$
\n
$$
(1.7)
$$

where *G* is a *κ*-Lipschitzian and *η*-strongly monotone operator with $\kappa > 0$, $\eta > 0$ and $0 < \mu < 2\eta/\kappa^2$. Under some appropriate conditions, he proved that the sequence $\{x_n\}$ generated by [\(1.7\)](#page-2-2) converges strongly to the unique solution of the variational inequality

$$
\langle Gx^*, x - x^* \rangle \ge 0, \ \forall x \in F.
$$

Recently, combining [\(1.6\)](#page-2-1) and [\(1.7\)](#page-2-2), Tian [\[18](#page-14-6)] considered the following general iterative method:

$$
x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n \mu G) T(x_n),
$$
\n(1.8)

and proved that the sequence $\{x_n\}$ generated by (1.8) converges strongly to the unique solution $x^* \in F$ of the variational inequality

$$
\langle (\gamma f - \mu G) x^*, x - x^* \rangle \le 0, \ \forall x \in F.
$$

Most recently, Ali et al [\[4](#page-13-7)], extended the result of Tian [\[18\]](#page-14-6) to *q*-uniformly smooth Banach space whose duality mapping is weakly sequentially continuous. Under some assumptions on $\{\alpha_n\}$, γ , μ and *G* being η -accretive mapping in [\(1.8\)](#page-2-3), they proved that the sequence $\{x_n\}$ generated by [\(1.8\)](#page-2-3) converges strongly to the unique solution $x^* \in F$ of the variational inequality

$$
\langle (\gamma f - \mu G) x^*, j(x - x^*) \rangle \le 0, \ \forall x \in F.
$$

 $\circled{2}$ Springer

Let ${T_i}$ be countable family of nonexpansive mapping. We denote by a set N_I : = $\{i \in I\}$ $\mathbb{N}: T_i \neq I$ (*I* being the identity mapping on *E*). Maingé [\[12\]](#page-13-8) studied the Halpern-type scheme for approximation of a common fixed point of *countable in f inite* family of nonexpansive mappings in a real Hilbert space. He proved the following theorems.

Theorem 1.1 (Maingé [\[12\]](#page-13-8)) *Let K be a nonempty closed convex subset of a real Hilbert space* H. Let ${T_i}$ *be countable family of nonexpansive self-mappings of K,* ${T_i}$ *and* ${T_i}$ *be sequences in (0,1) satisfying the following conditions:* (i) $\lim t_n = 0$, (ii) $\sum_{i \geq 1} \sigma_{i,t_n} = 1 - t_n$, $(iii) \forall i \in N_I, \lim_{n \to \infty}$ $\frac{t_n}{\sigma_{i,t_n}} = 0$. *Define a fixed point sequence* $\{x_{t_n}\}$ *by*

$$
x_{t_n} = t_n C x_{t_n} + \sum_{i \ge 1} \sigma_{i,t_n} T_i x_{t_n}, \ \ n \ge 1,
$$
\n(1.9)

 $where C: K \to K$ is a strict contraction. Assume $F: = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$, the $\{x_{t_n}\}$ converges *strongly to a unique fixed point of the contraction* $P_F \circ C$ *, where* P_F *is a metric projection from H onto F.*

Theorem 1.2 (Maingé [\[12\]](#page-13-8)) *Let K be a nonempty closed convex subset of a real Hilbert space H. Let* ${T_i}$ *be countable family of nonexpansive self-mappings of K,* ${\alpha_n}$ *and* ${\sigma_{i,n}}$ *be sequences in (0,1) satisfying the following conditions:*

(i)
$$
\sum \alpha_n = \infty
$$
, $\sum_{i \geq 1} \sigma_{i,n} = 1 - \alpha_n$,

(ii)
$$
\begin{cases} \frac{1}{\sigma_{i,n}} \left| 1 - \frac{\alpha_{n-1}}{\alpha_n} \right| \to 0, & or \sum_n \frac{1}{\sigma_{i,n}} |\alpha_{n-1} - \alpha_n| < \infty \\ \frac{1}{\alpha_n} \left| \frac{1}{\sigma_{i,n}} - \frac{1}{\sigma_{i,n-1}} \right| \to 0, & or \sum_n \left| \frac{1}{\sigma_{i,n}} - \frac{1}{\sigma_{i,n-1}} \right| < \infty \\ \frac{1}{\sigma_{i,n} \alpha_n} \sum_{k \geq 0} |\sigma_{k,n} - \sigma_{k,n-1}| \to 0, & or \frac{1}{\sigma_{i,n}} \sum_{k \geq 0} |\sigma_{k,n} - \sigma_{k,n-1}| < \infty. \end{cases}
$$

(iii) $\forall i \in N_I$, $\lim_{n \to \infty}$ $\frac{\alpha_n}{\sigma_{i,n}}=0.$

Then, the sequence $\{x_n\}$ *define iteratively by* $x_1 \in K$,

$$
x_{n+1} = \alpha_n C x_n + \sum_{i \ge 1} \sigma_{i,n} T_i x_n, \ \ n \ge 1,
$$
\n(1.10)

where C : *K* → *K* is a strict contraction. Assume F : $= \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$, the {*x_n*} *converges strongly to a unique fixed point of the contraction* $P_F \circ C$ *, where* P_F *is a metric projection from H onto F.*

Motivated by the results above, we introduce an iterative method for finding a common fixed point of an infinite family of nonexpansive mappings in *q*-uniformly real smooth Banach space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality problem.

2 Preliminaries

Let *K* be a nonempty, closed, convex and bounded subset of a Banach space *E* and let the diameter of *K* be defined by $d(K)$: = sup{ $||x - y||$: $x, y \in K$ }. For each $x \in K$, let $r(x, K) := \sup\{|x - y| : y \in K\}$ and let $r(K) := \inf\{r(x, K) : x \in K\}$ denote the Chebyshev radius of *K* relative to itself. The *normal structure coefficient N*(*E*) of *E* (introduced in 1980 by Bynum [\[3](#page-13-9)], see also Lim [\[10](#page-13-10)] and the references contained therein) is

defined by $N(E) := \inf \{ \frac{d(K)}{r(K)} : K \text{ is a closed convex and bounded subset of } E \text{ with } d(K) > 0 \}.$ A Banach space *E* such that $N(E) > 1$ is said to have *uniform normal structure*. It is known that every Banach space with a uniform normal structure is reflexive, and that all uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see e.g., [\[5](#page-13-1),[23](#page-14-7)]).

Let *E* be a normed space with dimE \geq 2. The *modulus of smoothness* of *E* is the function $\rho_E : [0, \infty) \rightarrow [0, \infty)$ defined by

$$
\rho_E(\tau) := \sup \left\{ \frac{||x+y|| + ||x-y||}{2} - 1 : ||x|| = 1; ||y|| = \tau \right\}.
$$

The space *E* is called *uniformly smooth* if and only if $\lim_{t\to 0^+} \frac{\rho_E(t)}{t} = 0$. For some positive constant $q \in E$ is called $q - uniformly smooth$ if there exists a constant $c > 0$ such that $\rho_E(t) \le ct^q$, $t > 0$. It is well known that if E is smooth then the duality mapping is singled-valued, and if *E* is uniformly smooth then the duality mapping is norm-to-norm uniformly continuous on bounded subset of *E*.

Lemma 2.1 *Let E be a real normed space. Then*

$$
||x + y||^2 \le ||x||^2 + 2\langle y, j(x + y) \rangle,
$$

for all x, $y \in E$ *and for all* $j(x + y) \in J(x + y)$ *.*

Lemma 2.2 *(Xu, [\[22\]](#page-14-8)) Let E be a real q-uniformly smooth Banach space for some* $q > 1$ *, then there exists some positive constant dq such that*

 $||x + y||^q \le ||x||^q + q\langle y, j_q(x) \rangle + d_q ||y||^q \forall x, y \in E$ and $j_q \in J_q(x)$.

Lemma 2.3 *(*Xu, [\[21](#page-14-4)]*) Let* {*an*} *be a sequence of nonegative real numbers satisfying the following relation:*

 $a_{n+1} \leq (1 - \alpha_n)a_n + \alpha_n \sigma_n + \gamma_n, \quad n \geq 0$

where, (i) $\{\alpha_n\} \subset [0, 1], \ \sum \alpha_n = \infty$; (ii) $\limsup \sigma_n \leq 0$; (iii) $\gamma_n \geq 0$; ($n \geq 0$), $\sum \gamma_n <$ ∞ . *Then,* $a_n \to 0$ *as* $n \to \infty$.

Lemma 2.4 *(Suzuki [\[17](#page-14-9)]) Let* $\{x_n\}$ *and* $\{y_n\}$ *be bounded sequence in a Banach space E and let* $\{\beta_n\}$ *be a sequence in* [0, 1] *with* 0 < lim inf $\beta_n \leq \limsup \beta_n$ < 1. *Suppose that* x_{n+1} = $\beta_n y_n + (1 - \beta_n)x_n$ *for all integer* $n \ge 1$ *and* $\limsup_{n \to \infty} (||y_{n+1} - y_n|| - ||x_{n+1} - x_n||) \le 0$. *Then,* $\lim_{n \to \infty} ||y_n - x_n|| = 0.$

Lemma 2.5 *(*See Lemma 2.1 of Ali [\[2\]](#page-13-11)) *Let E be a real smooth and uniformly convex Banach space and let r* > 0*. Then there exists a strictly increasing, continuous and convex function g* : [0, 2*r*] → *R* such that $g(0) = 0$ and $g(||x - y) \le ||x||^2 - 2\langle x, jy \rangle + ||y||^2$ for all $B_r = \{x \in E : ||x|| \leq r\}.$

Lemma 2.6 *Let E be a real Banach space,* $f: E \rightarrow E$ *be contraction mapping with a coefficient* $0 < \beta <$ *and let* $G : E \rightarrow E$ *be a* κ *-Lipschitzian and* η *-strongly accretive operator with* $\kappa > 0$, $\eta \in (0, 1)$ *. Then for* $\gamma \in (0, \frac{\mu \eta}{\beta})$ *,*

$$
\langle (\mu G - \gamma f)x - (\mu G - \gamma f)y, j(x - y) \rangle \ge (\mu \eta - \gamma \beta) ||x - y||^2, \forall x, y \in E.
$$

That is, $(\mu G - \gamma f)$ *is strongly accretive with coefficient* $(\mu \eta - \gamma \beta)$ *.*

Let μ be a linear continuous functional on l^{∞} and let $a = (a_1, a_2, \dots) \in l^{\infty}$. We will sometimes write $\mu_n(a_n)$ in place of the value $\mu(a)$. A linear continuous functional μ such that $||\mu|| = 1 = \mu(1)$ and $\mu_n(a_n) = \mu_n(a_{n+1})$ for every $a = (a_1, a_2, \dots) \in l^{\infty}$ is called a *Banach limit*. It is known that if μ is a Banach limit, then

$$
\liminf_{n\to\infty} a_n \leq \mu(a_n) \leq \limsup_{n\to\infty} a_n
$$

for every $a = (a_1, a_2, ...) \in l^{\infty}$ (see, for example, [\[5](#page-13-1)[,6\]](#page-13-12))

3 Main results

In the sequel we assume for each $\alpha \in (0, 1)$, the sequence $\{\sigma_{i,\alpha}\}\$ satisfies $\sum_{i\geq 1} \sigma_{i,\alpha} = 1 - \alpha$ and for the sequence $\{\alpha_n\} \subset (0, 1), \{\sigma_{i,n}\} = 1 - \alpha_n$.

Lemma 3.1 *Let E be a q*−*uniformly smooth real Banach space with constant* d_q *,* q *>* 1*. Let f* : *E* → *E be a* β−*contraction mapping with a coefficient* β ∈ (0, 1)*. Let* $T_i: E \to E$ *i* ∈ *N*, *be a family of nonexpansive maps such that* $F: = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$ *and G* : *E* → *E be an* η−*strongly accretive mapping which is also* κ−*Lipschizian. Let* $\mu \in \left(0, \min\left\{1, \left(\frac{q\eta}{d_q\kappa^q}\right)^{\frac{1}{q-1}}\right\}\right)$ and $\tau: = \mu\left(\eta - \frac{\mu^{q-1}d_q\kappa^q}{q}\right)$. For each $t, \alpha \in (0, 1)$ with $\alpha < t$ and $\beta \in (0, \frac{t}{\gamma})$. Assume that $S: = \alpha u + (1 - \delta)(1 - \alpha)I + \delta \sum_{i \geq 1} \sigma_{i,\alpha} T_i$, where δ *is some fixed number in* $(0, 1)$ *and* $u \in E$, α , $\sigma_{i,t}$ *are in* $(0, 1)$ *. Define the following mapping Wt on E by*

$$
W_t x := t \gamma f(x) + (I - \mu t G) S x.
$$

where t is in (0,1). Then W_t *is a strict contraction mapping. Furthermore, for any* $x, y \in E$ *,*

$$
||W_t x - W_t y|| \le [1 - t(\tau - \beta \gamma)] ||x - y||
$$

Proof Observe that, for any $x, y \in E$

$$
||Sx - Sy|| \le (1 - \delta)(1 - \alpha)||x - y|| + \delta \sum_{i \ge 1} \sigma_{i,\alpha} ||T_i x - T_i y||
$$

\n
$$
\le (1 - \delta)(1 - \alpha)||x - y|| + \delta(1 - \alpha)||x - y||
$$

\n
$$
\le ||x - y||. \tag{3.1}
$$

Without loss of generality, assume $\eta < \frac{1}{q}$. Then, as $\mu < (\frac{q\eta}{d_q\kappa^q})^{\frac{1}{q-1}}$, we have $0 < q\eta - \mu^{q-1}$ *d*_{*q*} κ^{*q*}. Furthermore, from *η* < $\frac{1}{q}$ we have *q η*−μ^{*q*−1}*d_q* κ^{*q*} < 1 so that 0 < *q η*−μ^{*q*−1}*d*_{*q*} κ^{*q*} < 1. Also as $\mu < 1$ and $t \in (0, 1)$, we obtain that $0 < t\mu(q\eta - \mu^{q-1}d_q\kappa^q) < 1$. For each $t, \alpha \in (0, 1)$, then for any $x, y \in E$, define $K_t x = (1 - t\mu)Sx$, then from [\(3.1\)](#page-5-0),

$$
||K_t x - K_t y||^q = ||(1 - t\mu G)Sx - (1 - t\mu G)Sy||^q
$$

= $||(Sx - Sy) - t\mu(G(Sx) - G(Sy))||^q$
 $\leq ||G(Sx) - G(Sy)||^q - qt\mu(G(Sx) - G(Sy), j_q(Sx - Sy))$
+ $t^q \mu^q d_q ||Sx - Sy||^q$
 $\leq [1 - t\mu(q\eta - t^{q-1}\mu^{q-1}\kappa^q d_q)] ||x - y||^q$
 $\leq [1 - qt\mu(\eta - \frac{\mu^{q-1}\kappa^q d_q}{q})] ||x - y||^q$

 \mathcal{L} Springer

we obtain

$$
\leq [1 - t\mu(\eta - \frac{\mu^{q-1}\kappa^q d_q}{q})]^q ||x - y||^q
$$

= $(1 - t\tau)^q ||x - y||^q$,

therefore

$$
||W_t x - W_t y|| = ||t\gamma(f(x) - f(y)) + (K_t(Sx) - K_t(Sy))||
$$

\n
$$
\le t\gamma||f(x) - f(y)|| + ||K_t(Sx) - K_t(S_t y)||
$$

\n
$$
\le t\beta\gamma||x - y|| + (1 - t\tau)||x - y||
$$

\n
$$
= [1 - t(\tau - \beta\gamma)]||x - y||.
$$

Hence

$$
||W_t x - W_t y|| \le [1 - t(\tau - \beta \gamma)] ||x - y||,
$$
\n(3.2)

which implies that W_t is a strict contraction, by Banach contraction mapping principle, there exists a unique fixed point x_t of W_t in E . That is,

$$
x_t = t\gamma f(x_t) + (1 - t\mu G)Sx_t.
$$
\n(3.3)

 \Box

Theorem 3.2 *Let E be a q-uniformly real smooth Banach space which is also uniformly convex. Let* T_i , f , G , μ , τ , β , γ , S and F be as in Lemma [3.1](#page-5-1). Let $\{t_n\}$, $\{\alpha_n\}$ be sequences in (0,1), such that $\lim_{n \to \infty} t_n = 0$ and $\lim_{n \to \infty}$ $\frac{\alpha_n}{t_n} = 0$ *. Let* $\{x_{t_n}\}$ *be a sequence satisfying* [\(3.3\)](#page-6-0)*, then*

- (i) $\{x_{t_n}\}\$ is bounded for $t_n \in (0, \frac{1}{\tau}).$
- (ii) $\lim_{n \to \infty} ||x_{t_n} T_i x_{t_n}|| = 0, \quad \forall i \in \mathbb{N}.$
- (iii) *then* $\{x_{t_0}\}$ *converges strongly to a common fixed point p in F which is a unique solution of the variational inequality*

$$
\langle (\mu G - \gamma f) p, j(p - x) \rangle \le 0, \ \forall x \in F. \tag{3.4}
$$

Proof Let $p \in F$ and $\alpha_n \leq t_n$, then

$$
||x_{t_n} - p||^2 = \langle t_n \gamma f(x_{t_n}) + (I - \mu t_n G)Sx_{t_n} - p, j(x_{t_n} - p) \rangle
$$

\n
$$
= t_n \langle \gamma f(p) - \mu G(p), j(x_{t_n} - p) \rangle + t_n \gamma \langle f(x_{t_n}) - f(p), j(x_{t_n} - p) \rangle
$$

\n
$$
+ \langle (I - t_n \mu G)Sx_{t_n} - (I - t_n \mu G)p, j(x_{t_n} - p) \rangle
$$

\n
$$
\leq t_n \langle \gamma f(p) - \mu G(p), j(x_{t_n} - p) \rangle + \beta \gamma t_n ||x_{t_n} - p||^2
$$

\n
$$
+ (1 - \tau t_n) ||Sx_{t_n} - p|| ||x_{t_n} - p||
$$

\n
$$
\leq t_n \langle \gamma f(p) - \mu G(p), j(x_{t_n} - p) \rangle + \beta \gamma t_n ||x_{t_n} - p||^2
$$

\n
$$
+ (1 - \tau t_n)[\alpha_n ||u - p|| + (1 - \alpha_n) ||x_{t_n} - p|| ||x_{t_n} - p||
$$

\n
$$
\leq t_n \langle \gamma f(p) - \mu G(p), j(x_{t_n} - p) \rangle + [1 - t_n (\tau - \gamma \beta) ||x_{t_n} - p||^2
$$

\n
$$
+ (1 - \tau t_n) \alpha_n ||u - p|| ||x_{t_n} - p||.
$$

Since $(1 - \tau t_n)(\alpha_n/t_n) \to 0$ as $n \to \infty$, then there exists $n_0 \in \mathbb{N}$ such that $(1 - \tau t_n)(\alpha_n/t_n)$ $(\tau - \gamma \beta)/2$ for $n \geq n_0$. Furthermore

$$
||x_{t_n}-p||^2 \leq \frac{\langle (\gamma f-\mu G)p, j(x_{t_n}-p) \rangle}{\tau-\gamma \beta}
$$

 $\hat{\mathfrak{D}}$ Springer

$$
+\frac{(1-\tau t_n)\alpha_n}{t_n}\times\frac{||u-p||||x_{t_n}-p||}{\tau-\gamma\beta}\tag{3.5}
$$

for all $n \ge n_0$. That is, $||x_{t_n} - p|| \le (\frac{||y f(p) - \mu G(p)||}{\tau - \gamma \beta} + \frac{||u - p||}{2})$ for all $n \ge n_0$. Thus $\{x_{t_n}\}$ is bounded, so are $\{f(x_{t_n})\}, \{G(x_{t_n})\}, \{T_i(x_{t_n})\}$ and $\{G(T_i x_{t_n})\}.$ (ii) From (3.3) , we have

$$
||x_{t_n} - Sx_{t_n}|| = t_n||\gamma f(x_{t_n}) - \mu G(Sx_{t_n})|| \to 0 \text{ as } n \to \infty.
$$
 (3.6)

Using Lemma 2.5, we have the following estimate

$$
g(||T_i x_{t_n} - x_{t_n}||) = g[||(p - T_i x_{t_n}) - (p - x_{t_n})||]
$$

\n
$$
\leq ||p - T_i x_{t_n}||^2 - 2\langle p - T_i x_{t_n}, j(p - x_{t_n})\rangle + ||p - x_{t_n}||^2
$$

\n
$$
\leq ||p - T_i x_{t_n}||^2 - 2\langle p - x_{t_n} + x_{t_n} - T_i x_{t_n}, j(p - x_{t_n})\rangle + ||p - x_{t_n}||^2
$$

\n
$$
\leq 2||p - T_i x_{t_n}||^2 - 2\langle p - T_i x_{t_n}, j(p - x_{t_n})\rangle + 2\langle x_{t_n} - T_i x_{t_n}, j(x_{t_n} - p)\rangle
$$

\n
$$
\leq 2\langle x_{t_n} - T_i x_{t_n}, j(x_{t_n} - p)\rangle
$$
\n(3.7)

Therefore

$$
\frac{\delta}{2} \sum_{i \ge 1} \sigma_{i,n} g(||T_i x_{t_n} - x_{t_n}||) \le \langle \delta (1 - \alpha_n) x_{t_n} - \delta \sum_{i \ge 1} \sigma_{i,n} T_i x_{t_n}, j(x_{t_n} - p) \rangle
$$

= $\langle \alpha_n (u - x_{t_n}) + x_{t_n} - S x_{t_n}, j(x_{t_n} - p) \rangle$
 $\le [\alpha_n || u - x_{t_n} || + || x_{t_n} - S x_{t_n} ||] || x_{t_n} - p ||.$

Then we immediately obtain $\lim_{n\to\infty} \sum_{i\geq 1} \sigma_{i,n} g(||T_i x_{t_n} - x_{t_n}||) = 0$, it follows that lim_{*n*→∞}*g*($||T_i x_{t_n} - x_{t_n}||$) = 0 ∀*i* ∈ N. By the property of *g* we have that

$$
\lim_{n \to \infty} ||T_i x_{t_n} - x_{t_n}|| = 0 \ \forall i \in \mathbb{N}.
$$
\n(3.8)

(iii) By Lemma [2.6,](#page-4-0) $(\mu G - \gamma f)$ is strongly accretive, so the variational inequality [\(3.4\)](#page-6-1) has a unique solution in *F*. Below we use $q \in F$ to denote the unique solution of [\(3.4\)](#page-6-1). Next, we prove that $x_t \rightarrow q$ ($t \rightarrow 0$).

Let $\{t_n\}$ be a sequence in (0, 1) such that $\{x_{t_n}\}$ satisfies [\(3.3\)](#page-6-0). By writing $\{x_n\}$ instead of $\{x_{t_n}\}$, define a map $\phi : E \to \mathbb{R}$ by

$$
\phi(y) := \mu_n ||x_n - y||^2, \ \forall y \in E.
$$

Then, $\phi(y) \to \infty$ as $||y|| \to \infty$, ϕ is continuous and convex, so as *E* is reflexive, there exists $q \in E$ such that $\phi(q) = \min_{u \in E} \phi(u)$. Hence, the set $u ∈ F$

$$
K^* := \{ y \in E : \phi(y) = \min_{u \in E} \phi(u) \} \neq \emptyset.
$$

Since $\lim_{n\to\infty}||x_n - T_i x_n|| = 0$, $\lim_{n\to\infty}||x_n - T_i^m x_n|| = 0$, for any $m \ge 1$ and $i \in \mathbb{N}$ by induction. Now let $v \in K^*$, we have for any $i \in \mathbb{N}$

$$
\begin{aligned} \phi(T_i v) &= \mu_n ||x_n - T_i v||^2 = \mu_n ||x_n - T_i x_n + T_i x_n - T_i v||^2 \\ &\le \mu_n ||x_n - v||^2 = \phi(v), \end{aligned}
$$

and hence $T_i v \in K^*$.

Now let $z \in F$, then $z = T_i z$, for any $i \in \mathbb{N}$. Since K^* is a closed convex set, there exists a unique $v^* \in K^*$ such that

$$
||z - v^*|| = \min_{u \in K^*} ||z - u||.
$$

But, for any $i \in \mathbb{N}$

$$
||z - T_i v^*|| = ||T_i z - T_i v^*|| \le ||z - v^*||,
$$

which implies $v^* = T_i v^*$ and so $K^* \cap F \neq \emptyset$.

Let $p \in K^* \cap F$ and $\epsilon \in (0, 1)$. Then, it follows that $\phi(p) \leq \phi(p - \epsilon(G - \gamma f)p)$ and using Lemma [2.1,](#page-4-1) we obtain that

$$
||x_n - p + \epsilon (G - \gamma f)p||^2 \le ||x_n - p||^2 + 2\epsilon \langle (G - \gamma f)p, j(x_n - p + \epsilon (G - \gamma f)p) \rangle
$$

which implies

$$
\mu_n \langle (\gamma f - G)p, j(x_n - p + \epsilon (G - \gamma f)p) \rangle \leq 0.
$$

Moreover,

$$
\mu_n \langle (\gamma f - G)p, j(x_n - p) \rangle = \mu_n \langle (\gamma f - G)p, j(x_n - p) - j(x_n - p + \epsilon(G - \gamma f)p) \rangle
$$

+
$$
\mu_n \langle (\gamma f - G)p, j(x_n - p + \epsilon(G - \gamma f)p) \rangle
$$

$$
\leq \mu_n \langle (\gamma f - G)p, j(x_n - p) - j(x_n - p + \epsilon(G - \gamma f)p) \rangle.
$$

Since *j* is norm-to-norm uniformly continuous on bounded subsets of E, and $\epsilon \to 0$ we have that

 $\mu_n \langle (\gamma f - G) p, j(x_n - p) \rangle \leq 0.$

Now from [\(3.5\)](#page-6-2) and since $\lim_{n \to \infty} \frac{\alpha_n}{t_n} = 0$, we have

$$
\mu_n ||x_n - p||^2 \le \mu_n \left(\frac{\langle (\gamma f - \mu G)p, j(x_n - p) \rangle}{\tau - \gamma \beta} \right)
$$

$$
+ \mu_n \left(\frac{(1 - \tau t_n) \alpha_n}{t_n} \times \frac{||u - p|| ||x_n - p||}{\tau - \gamma \beta} \right)
$$

and so

$$
\mu_n||x_n-p||^2\leq 0.
$$

Thus there exist a subsequence say $\{x_{n_j}\}$ of $\{x_n\}$ such that $\lim_{j\to\infty}x_{n_j}=p$. By definition of S_α as $S_{\alpha_n} x_n := \alpha_n u + (1 - \delta)(1 - \alpha_n)x_n + \delta \sum_{i \geq 1} \sigma_{i,n} T_i x_n$, which implies $S_{\alpha_{n_j}} x_{n_j} := x_{n_j} + \alpha_{n_j} (u - x_{n_j}) + \delta \sum_{i \geq 1} \sigma_{i,n_j} (T_i x_{n_j} - x_{n_j}),$ then $\lim_{j \to \infty} S x_{n_j} =$ $\lim_{i \to \infty} x_{n_i} = p$ and $S_{\alpha} p = p$. Thus for any $z \in F$, using [\(3.3\)](#page-6-0) we have

$$
\langle \mu G(x_{n_j}) - \gamma f(x_{n_j}), j(x_{n_j} - z) \rangle = \frac{-1}{t_{n_j}} \langle (I - S)x_{n_j} - (I - S)p, j(x_{n_j} - z) \rangle + \mu \langle Gx_{n_j} - GSx_{n_j}, j(x_{n_j} - z) \rangle \leq \mu \langle Gx_{n_j} - GSx_{n_j}, j(x_{n_j} - z) \rangle,
$$
 (3.9)

since $\langle (I - S)x_{n_j} - (I - S)p, j(x_{n_j} - z) \rangle$ ≥ 0. As *G* is Lipschitzian and the fact that $||x_{n_j} - Sx_{n_j}|| \leq \alpha_{n_j} ||u - x_{n_j}|| + \delta \sum_{i \geq 1} \sigma_{i,n_j} ||(T_i x_{n_j} - x_{n_j})|| \to 0$ as *j* → ∞, we have $Gx_{n_j} - G\dot{S}x_{n_j} \rightarrow 0$ as $j \rightarrow \infty$. From this and [\(3.9\)](#page-8-0), taking limit as $j \rightarrow \infty$ we obtain

$$
\langle (\mu G - \gamma f) p, j(p - z) \rangle \le 0.
$$

Hence p is the unique solution of the variational inequality (3.4) . Now assume there exists another subsequence of $\{z_n\}$ say $\{x_n\}$ such that $\lim_{k\to\infty}x_{n_k} = p^*$. Then, using [\(3.8\)](#page-7-0) we have *p*[∗] ∈ *F*. Repeating the above argument with *p* replaced by *p*[∗] we can easily obtain that *p*[∗]

 $\circled{2}$ Springer

also solved the variational inequality [\(3.4\)](#page-6-1). By uniqueness of the solution of the variational inequality, we obtained that $p = p^*$ and this completes the proof.

Theorem 3.3 *Let E be a q-uniformly real smooth Banach space which is also uniformly convex. Let* $T_i: E \to E$ *i* $\in \{1, 2, \ldots\}$ *be a family of nonexpansive mappings with* $F:$ ∩∞ *ⁱ*=1*F*(*Ti*) = ∅*. Let G* : *^E* [→] *E be an* ^η*-strongly accretive map which is also* ^κ*-Lipschitzian. Let* $f: E \to E$ *be a contraction map with coefficient* $0 < \beta < 1$ *. Let* $\{\alpha_n\}$ *and* $\{\beta_n\}$ *be sequences in (0,1) satisfying:*

- (i) $\lim_{n \to \infty} \beta_n = 0$ *and* $\sum_{n=0}^{\infty} \beta_n = \infty;$
- (ii) $\sum \alpha_n < \infty$ and $\lim_{n \to \infty}$ $\alpha < \infty$ and $\lim_{n \to \infty} \frac{\alpha_n}{\beta_n} = 0$;
- (iii) $\lim_{n \to \infty} \sum_{i \ge 1} |\sigma_{i,n+1} \sigma_{i,n}| = 0 \text{ and } \sum_{i \ge 1} \sigma_{i,n} = 1 \alpha_n.$

Let μ, γ, and τ *be* as in Lemma [3.1](#page-5-1) and δ ∈ (0, 1) *be* fixed. define a sequence { x_n } $_{n=1}^{\infty}$ *iteratively in E by* $x_0 \in E$

$$
\begin{cases}\ny_n = \alpha_n u + (1 - \delta)(1 - \alpha_n)x_n + \delta \sum_{i \ge 1} \sigma_{i,n} T_i x_n \\
x_{n+1} = \beta_n \gamma f(x_n) + (I - \beta_n \mu G)y_n.\n\end{cases}
$$
\n(3.10)

Then, $\{x_n\}_{n=1}^{\infty}$ *converges strongly to* $x^* \in F$ *which is also a solution to the following variational inequality*

$$
\langle (\gamma f - \mu G)x^*, j(y - x^*) \rangle \le 0, \quad \forall y \in F. \tag{3.11}
$$

Proof Since $(\mu G - \gamma f)$ is strongly accretive, then the variational inequality [\(3.11\)](#page-9-0) has a unique solution in *F*. Now we show that $\{x_n\}_{n=1}^{\infty}$ is bounded. Let $p \in F$ then, for every $i \in \mathbb{N}, T_i p = p$. From [\(3.10\)](#page-9-1), we obtain

$$
||y_n - p|| = ||\alpha_n u + (1 - \delta)(1 - \alpha_n)x_n + \delta \sum_{i \ge 1} \sigma_{i,n} T_i x_n - p||
$$

\n
$$
\le \alpha_n ||u - p|| + (1 - \delta)(1 - \alpha_n)||x_n - p||
$$

\n
$$
+ \delta \sum_{i \ge 1} \sigma_{i,n} ||T_i x_n - p||
$$

\n
$$
\le \alpha_n ||u - p|| + (1 - \alpha_n) ||x_n - p||
$$

\n
$$
\le \alpha_n ||u - p|| + ||x_n - p||.
$$
\n(3.12)

Also from (3.10) and (3.12) , we obtain

$$
||x_{n+1} - p|| = ||\beta_n \gamma f(x_n) + (I - \beta_n \mu G)y_n - p||
$$

\n
$$
\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||
$$

\n
$$
+||(I - \beta_n \mu G)y_n - (I - \beta_n \mu G)p||
$$

\n
$$
\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||
$$

\n
$$
+ (1 - \tau \beta_n)||y_n - p||
$$

\n
$$
\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||
$$

\n
$$
+ (1 - \tau \beta_n)[\alpha_n ||u - p|| + ||x_n - p||]
$$

\n
$$
\leq [1 - \beta_n (\tau - \gamma \beta)] ||x_n - p||
$$

\n
$$
+ \beta_n [||\gamma f(p) - \mu G(p)|| + ||u - p||]
$$

\n
$$
\leq \max \{ ||x_n - p||, \frac{||\gamma f(p) - \mu G(p)|| + ||u - p||}{\tau - \gamma \beta} \}
$$

$$
\leq \dots \leq \max \Big\{ ||x_1 - p||, \frac{||\gamma f(p) - \mu G(p)|| + ||u - p||}{\tau - \gamma \beta} \Big\}.
$$

Therefore, $\{x_n\}$ is bounded. Hence $\{y_n\}$, $\{T_i x_n\}$, $\{Gy_n\}$, $\{GT_i y_n\}$ and $\{f(y_n)\}$ are also bounded.

Next, we show that $\lim_{n\to\infty}||x_{n+1}-x_n||=0$. Define two sequences $\{\lambda_n\}$ and $\{z_n\}$ by $\lambda_n := (1 - \delta)\alpha_n + \delta$ and

$$
z_n := \frac{x_{n+1} - x_n + \lambda_n x_n}{\lambda_n}.
$$

Observe that $\{z_n\}$ is bounded and that

$$
||z_{n+1} - z_n|| - ||x_{n+1} - x_n|| \le \left(\frac{\beta_{n+1}}{\lambda_{n+1}} + \frac{\beta_n}{\lambda_n}\right)M + \left|\frac{\alpha_{n+1}}{\lambda_{n+1}} - \frac{\alpha_n}{\lambda_n}\right|||u||
$$

+
$$
\left[\frac{\delta(1 - \alpha_{n+1})}{\lambda_{n+1}} - 1\right]||x_{n+1} - x_n||
$$

+
$$
\frac{\delta M}{\lambda_{n+1}} \sum_{i \ge 1} |\sigma_{i,n+1} - \sigma_{i,n}|
$$

+
$$
\frac{\delta M}{\lambda_{n+1}} \sum_{i \ge 1} \sigma_{i,n}|\lambda_{n+1} - \lambda_n|
$$

for some real number $M := \sup_{n \geq 1} \{ ||\gamma f(x_n) - \mu G(y_n)||, ||T_i x_n||, i = 1, 2, ...\}.$ This implies

$$
\limsup_{n \to \infty} (||z_{n+1} - z_n|| - ||x_{n+1} - x_n||) \le 0,
$$

and by Lemma [2.4,](#page-4-2) we obtain

$$
\lim_{n\to\infty}||z_n-x_n||=0.
$$

Hence

$$
||x_{n+1} - x_n|| = \lambda_n ||z_n - x_n|| \to 0 \text{ as } n \to \infty.
$$
 (3.13)

and from (3.10) , we also obtain

$$
||x_{n+1} - y_n|| = \beta_n ||y_n f(x_n) - \mu G(y_n)|| \to 0 \text{ as } n \to \infty.
$$
 (3.14)

from (3.13) and (3.14) , we have

$$
\lim_{n \to \infty} ||x_n - y_n|| = 0.
$$
\n(3.15)

Next we show that $\lim_{n\to\infty}||T_i x_n - x_n|| = 0$ for all $i \in \mathbb{N}$. Since $p \in F$, using the same argument in [\(3.7\)](#page-7-1), we obtain

$$
\frac{\delta}{2} \sum_{i\geq 1} \sigma_{i,n} g(||T_i x_n - x_n||) \leq \delta \sum_{i\geq 1} \sigma_{i,n} \langle x_n - T_i x_n, j(x_n - p) \rangle
$$

\n
$$
\leq \langle \delta(1 - \alpha_n) x_n - \delta \sum_{i\geq 1} \sigma_{i,n} T_i x_n, j(x_n - p) \rangle
$$

\n
$$
\leq \langle \alpha_n (u - x_n) + x_n - y_n, j(x_n - p) \rangle
$$

\n
$$
\leq [\alpha_n || u - x_n || + ||x_n - y_n ||] ||x_n - p||.
$$

² Springer

From [\(3.15\)](#page-10-2) and $\lim_{n\to\infty} \alpha_n = 0$, we obtain

$$
\lim_{n\to\infty}\sum_{i\geq 1}\sigma_{i,n}||T_ix_n-x_n||=0,
$$

it follows that for every $i \in \mathbb{N}$,

$$
\lim_{n \to \infty} ||T_i x_n - x_n|| = 0.
$$
\n(3.16)

Let $z_t = t\gamma f(z_t) + (1 - t\mu G)Sz_t$, where $S: = \alpha u + (1 - \delta)(1 - \alpha)I + \delta \sum_{i \ge 1} \sigma_{i,\alpha} T_i$, as in Theorem 3.1. Then,

$$
z_t - x_n = t(\gamma f(z_t) - Gz_t) + t\mu(Gz_t - G(Sz_t)) + Sz_t - x_n
$$

Hence

$$
||z_t - x_n||^2 = \langle t(\gamma f(z_t) - Gz_t) + t\mu(Gz_t - G(Sz_t)) + Sz_t - x_n, j(z_t - x_n) \rangle
$$

\n
$$
= t\langle \gamma f(z_t) - \mu G(z_t), j(z_t - x_t) \rangle + t\mu \langle Gz_t - G(Sz_t), j(z_t - x_n) \rangle
$$

\n
$$
+ \langle Sz_t - x_n, j(z_t - x_n) \rangle
$$

\n
$$
\le t\langle \gamma f(z_t) - \mu Gz_t, j(z_t - x_n) \rangle + t\mu \kappa ||z_t - Sz_t||||z_t - x_n||
$$

\n
$$
+ ||Sz_t - x_n||||z_t - x_n||
$$

\n
$$
\le t\langle \gamma f(z_t) - \mu Gz_t, j(z_t - x_n) \rangle + t(1 + \mu) ||z_t - Sz_t||||z_t - x_n||
$$

\n
$$
+ ||z_t - x_n||^2 + ||Sx_n - x_n||||z_t - x_n||.
$$

Therefore

$$
\langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle \le (1 + \mu \kappa) ||z_t - S z_t|| ||z_t - x_n||
$$

$$
+ \frac{1}{t} ||S x_n - x_n|| ||z_t - x_n||
$$

Now, taking limit superior as $n \to \infty$ firstly, and then as $t \to 0$, we have

$$
\limsup_{t \to 0} \limsup_{n \to \infty} \langle \gamma f(z_t) - \mu G z_t, \, j(x_n - z_t) \rangle \le 0 \tag{3.17}
$$

Moreover, we note that

$$
\langle \gamma f(p) - \mu Gp, j(x_n - p) \rangle = \langle \gamma f(p) - \mu Gp, j(x_n - p) \rangle - \langle \gamma f(p) - \mu Gp, j(x_n - z_t) \rangle
$$

+
$$
\langle \gamma f(p) - \mu Gp, j(x_n - z_t) \rangle - \langle \gamma f(p) - \mu Gz_t, j(x_n - z_t) \rangle
$$

+
$$
\langle \gamma f(p) - \mu Gz_t, j(x_n - z_t) \rangle - \langle \gamma f(z_t) - \mu Gz_t, j(x_n - z_t) \rangle
$$

+
$$
\langle \gamma f(z_t) - \mu Gz_t, j(x_n - z_t) \rangle
$$

=
$$
\langle \gamma f(p) - \mu Gp, j(x_n - p) - j(x_n - z_t) \rangle
$$

+
$$
\langle \gamma f(z_t) - \gamma f(p), j(x_n - z_t) \rangle
$$

+
$$
\langle \gamma f(z_t) - \mu Gz_t, j(x_n - z_t) \rangle
$$
(3.18)

Taking limit superior as $n \to \infty$ in [\(3.18\)](#page-11-0), we have

$$
\limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, j(x_n - p) \rangle \leq \limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle
$$

+
$$
\mu ||Gz_t - Gp|| \limsup_{n \to \infty} ||x_n - z_t||
$$

+
$$
||\gamma f(z_t) - \gamma f(p)|| \limsup_{n \to \infty} ||x_n - z_t||
$$

² Springer

$$
+\limsup_{n\to\infty}\langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle
$$

\n
$$
\leq \limsup_{n\to\infty}\langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle
$$

\n
$$
+((\mu + 1) + \alpha \gamma) ||z_t - p|| \limsup_{n\to\infty} ||x_n - z_t||
$$

\n
$$
+\limsup_{n\to\infty}\langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle
$$
 (3.19)

since *E* has a uniformly Gâteaux differentiable norm, so *j* is norm-to-norm∗ uniformly continuous on bounded subset of *E*. Then, from Theorem 3.1 (i.e., $z_t \rightarrow p$ ($t \rightarrow 0^+$)), we obtain

$$
\limsup_{t \to 0} \limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle = 0,
$$

hence, using (3.17) in (3.19) , we obtain

$$
\limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, j(x_n - p) \rangle \le \limsup_{t \to 0} \limsup_{n \to \infty} \langle \gamma f(z_t) - \mu G z_t, j(x_n - p) \rangle
$$

$$
\le 0
$$

Finally, we show that $x_n \to p$. From the recursion formula [\(3.10\)](#page-9-1), by using (2.1) and taking $n \geq N$ where $N \in \mathbb{N}$ is large enough, we obtain

$$
||x_{n+1} - p||^2 = ||\beta_n \gamma f(x_n) - \beta_n \mu G(p) + (I - \beta_n \mu G)y_n - (I - \beta_n \mu G)p||^2
$$

\n
$$
\leq ||(I - \beta_n \mu G)y_n - (I - \beta_n \mu G)p||^2 + 2\beta_n \langle \gamma f(x_n) - \mu G(p), j(x_{n+1} - p) \rangle
$$

\n
$$
\leq (1 - \beta_n \tau)^2 ||y_n - p||^2 + 2\beta_n \langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle
$$

\n
$$
+ 2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle
$$

\n
$$
\leq \alpha_n ||u - p||^2 + (1 - \beta_n \tau)^2 ||x_n - p||^2
$$

\n
$$
+ 2\beta_n \langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle
$$

\n
$$
+ 2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle
$$

On the other hand

$$
\langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle \le \gamma \beta ||x_n - p|| ||x_{n+1} - p||
$$

\n
$$
\le \gamma \beta ||u - p|| ||x_n - p|| \sqrt{\alpha_n} + \gamma \beta (1 - \beta_n \tau) ||x_n - p||^2
$$

\n
$$
+ \gamma \beta ||x_n - p|| \sqrt{2 |\langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle|} \sqrt{\beta_n}
$$

\n
$$
+ \gamma \beta ||x_n - p|| \sqrt{2 |\langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle|} \sqrt{\beta_n}.
$$

Since $\{x_n\}$ and $\{f(x_n)\}$ are bounded, we pick a constant $G_0 > 0$ such that

$$
\sup \Big\{ \gamma \beta ||x_n - p|| ||u - p||, \gamma \beta ||x_n - p|| \Big(\sqrt{2|\langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle} \Big| + \gamma \beta \sqrt{2|\langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle|} \Big) \Big\} < G_0, \forall n \in \mathbb{N}.
$$

Therefore

$$
\langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle \leq \gamma \beta (1 - \beta_n \tau) ||x_n - p||^2 + G_0(\sqrt{\alpha_n} + \sqrt{\beta_n})
$$

Hence

$$
||x_{n+1} - p||^2 \le \alpha_n ||u - p||^2 + (1 - \beta_n \tau)^2 ||x_n - p||^2
$$

 $\hat{2}$ Springer

$$
+2\beta_n \gamma \beta (1 - \beta_n \tau) ||x_n - p||^2 + 2\beta_n G_0(\sqrt{\alpha_n} + \sqrt{\beta_n})
$$

\n
$$
+2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle
$$

\n
$$
= \left[1 - 2\beta_n (1 - \beta_n \tau)(\tau - \gamma \beta)\right] ||x_n - p||^2 + \alpha_n ||u - p||^2
$$

\n
$$
+2\beta_n G_0(\sqrt{\alpha_n} + \sqrt{\beta_n}) + 2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle
$$

\n
$$
\leq \left[1 - \beta_n (1 - \beta_n \tau)(\tau - \gamma \beta)\right] ||x_n - p||^2 + \theta_n
$$

where θ_n : = $\beta_n \left(\frac{\alpha_n}{\beta_n} ||u-p||^2 + 2G_0(\sqrt{\alpha_n} + \sqrt{\beta_n}) + 2\langle \gamma f(p) - \mu G(p), j(x_{n+1}-p) \rangle \right)$ By using Lemma [2.3](#page-4-3) we obtain $x_n \to p$ as $n \to \infty$. This complete the proof.

Corollary 3.4 *Let H be a real Hilbert space,* $\{z_t\}_{t \in (0,1)}$ *, be as in Theorem* [3.2](#page-6-3)*. Then* $\{z_t\}$ *converges strongly to a common fixed points of the family* {*Ti*}∞ *ⁱ*=¹ *say p which is a unique solution of the variational inequality*

$$
\langle (\mu G - \gamma f) p, q - p \rangle \ge 0, \ \forall q \in F.
$$

Corollary 3.5 *Let H be a real Hilbert space and let C a nonempty closed convex subset of H. Let* $G: H \to H$, $f: E \to E$, $\{T_i\}_{i=1}^{\infty} F$, $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be as in Theorem [\(3.1\)](#page-5-0)*, then* ${x_n}_{n=1}^\infty$ *converges strongly to p* ∈ *F, which is also the unique solution of the variational inequality*

$$
\langle \gamma f(p) - \mu G p, q - p \rangle \le 0, \ \forall q \in F
$$

Acknowledgements The author is grateful to the editor and the reviewers suggestions which improved the contents of the article.

References

- 1. Agarwal, R.P., ORegan, D., Sahu, D.R.: Fixed point theory for lipschitzian-type mappings with applications. Springer, Dordrecht Heidelberg, London, New York (2000)
- 2. Ali, B.: Iterarive approximation of common fixed points for families of nonexpansive mappings and solutions of variational inequalitites. Adv. Nonlinear Var. Inequal. **12**(2), 65–81 (2009)
- 3. Bynum, W.L.: Normal structure coefficients for Banach spaces. Pacific J. Math. **86**, 427–436 (1980)
- 4. Ali, B., Ugwunnadi, G.C., Shehu, Y.: A general iterative algorithm for nonexpansive mappings in Banach spaces. Ann. Funct. Anal. **2**(2), 11–22 (2011)
- 5. Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, vol. 1965, XVII, p. 326 (2009). ISBN: 978-1-84882-189-7
- 6. Chidume, C.E., Li, J., Udomene, A.: Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings. Proc. Am. Math. Soc. **133**(2), 473480 (2005)
- 7. Jung, J.S.: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. **302**(2), 509520 (2005)
- 8. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. **61**, 341–350 (2005)
- 9. Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Ekonomika i Matematicheskie Metody **12**, 747–756 (1976)
- 10. Lim, T.C.: Characterization of normal structure. Proc. Am. Math. Soc. **43**, 313–319 (1974)
- 11. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and non- strictly convex minimization. Set Valued Anal. **16**, 899–912 (2008)
- 12. Maingé, P.E.: Approximation methods for common xed points of nonexpan- sive mappings in Hilbert space. J. Math. Anal. Appl. 325, 469–479 (2007)
- 13. Marino, G., Xu, H.K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. **318**(1), 4352 (2006)
- 14. Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. **241**(1), 4655 (2000)
- 15. Noor, M.A.: A class of new iterative methods for solving mixed variational inequalities. Math. Comput. Modell. **31**, 11–19 (2000)
- 16. Stampacchi, G.: Formes bilineaires coercivites sur les ensembles convexes, vol. 258, pp. 4413–4416. C. R. Acad. Sciences, Paris (1964)
- 17. Suzuki, T.: Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. **305**(1), 227–239 (2005)
- 18. Tian, M.A.: A general iterative method for nonexpansive mappings in Hilbert space. Nonlinear Anal. **73**, 689–694 (2010)
- 19. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. **116**, 659678 (2003)
- 20. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. **16**, 1127–1138 (1991)
- 21. Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. (2) **66**(1), 240–256 (2002)
- 22. Xu, H.-K.: Inequality in Banach spaces with applications. Nonlinear Anal. **16**(12), 1127–1138 (1991)
- 23. Xu, Z.B., Roach, G.F.: Characteristic inequalities of uniformly smooth Banach spaces. J. Math. Anal. Appl. **157**(1), 189210 (1991)
- 24. Yamada, I.: The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications. In: Butnariu, D., Censor, Y., Reich, S. (eds.), pp. 473–504. North-Holland, Amsterdam, Holland (2001)
- 25. Yao, Y., Liou, Y.-C., Li, C-L., Lin H.-T.,: Extended extragradient methods for generalized varitional inequalities, fixed point Theory and applications. Volume 2012, Article ID 237083, p. 14
- 26. Yao, Y., Xu, H.-K.: Iterative methods for finding minimum-norm fixed points of nonexpan- sive mappings with applications. Optimization **60**(6), 645–658 (2011)