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Abstract In this paper we introduce an iterative method for finding a common fixed point of
an infinite family of nonexpansive mappings in q-uniformly real smooth Banach space which
is also uniformly convex. We proved strong convergence of the proposed iterative algorithms
to the unique solution of a variational inequality problem.
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1 Introduction

Let E be a real Banach space and E∗ be the dual space of E . Amapping ϕ : [0,∞) → [0,∞)

is called a guage function if it is strictly increasing, continuous and ϕ(0) = 0. Let ϕ be a
gauge function, a generalized duality mapping with respect to ϕ, Jϕ : E → 2E∗

is defined
by, x ∈ E,

Jϕx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x ||ϕ(||x ||), ||x∗|| = ϕ(||x ||)},

where 〈., .〉 denotes the duality pairing between element of E and that of E∗. If ϕ(t) = t ,
then Jϕ is simply called the normalized duality mapping and is denoted by J . For any x ∈ E ,
an element of Jϕx is denoted by jϕx .
If however ϕ(t) = tq−1, for some q > 1, then Jϕ is still called the generalized duality
mapping and is denoted by Jq (see, for example [1,5]).
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222 U. G. Chidi

Let S(E) : = {x ∈ E : ‖x‖ = 1} be the unit sphere of E . Then space E is said to have
Gâteaux differentiable norm if for any x ∈ S(E) the limit

lim
λ→0

‖x + λy‖ − ‖x‖
λ

(1.1)

exists ∀y ∈ S(E). The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ S(E), the limit (1.1) is attained uniformly for x ∈ S(E). If E has a uniformly Gâteaux
differentiable norm, then j : E → E∗ is uniformly continuous on bounded subsets of E to
the weak∗ topology of E∗.

A mapping G : D(G) ⊂ E → E is said to be accretive if for all x, y ∈ D(G), there
exists jq(x − y) ∈ Jq(x − y) such that

〈Gx − Gy, jq(x − y)〉 ≥ 0, (1.2)

where D(G) denote the domain of G. G is called η − strongly accretive if for all x, y ∈
D(G), there exists jq(x − y) ∈ Jq(x − y) and η ∈ (0, 1) such that

〈Gx − Gy, jq(x − y)〉 ≥ η||x − y||q , (1.3)

Let K be a nonempty, closed and convex subset of E and G : K → E be a nonlinear
mapping. The variational inequality problem is to:

find u ∈ K such that 〈Gu, jq(v − u)〉 ≥ 0, ∀v ∈ K ,

for some jq(v − u) ∈ Jq(v − u). The set of solution of variational inequality problem is
denoted by V I (K , G). If E : = H , a real Hilbert space, the variational inequality problem
reduces to:

find u ∈ K such that 〈Gu, v − u〉 ≥ 0, ∀v ∈ K ,

which was introduced and studied by Stampacchia [16].
Variational inequality theory has emerged as an important tool in studying a wide class of

related problems inMathematical, Physical, regional, engineering and nonlinear optimization
sciences (see, for instance, [8,9,11,15,24–26]).

A mapping T : E → E is L − Lipschitian if for some L > 0, ||T x − T y|| ≤ L||x −
y|| ∀ x, y ∈ E . If L ∈ [0, 1), then T is called contraction mapping, but if L ≤ 1, then T is
called nonexpansivemapping. A point x ∈ E is called a fixed point of T if T x = x . The set of
fixed points of T is denoted by F(T ) : = {x ∈ E : T x = x}. In Hilbert spaces H , accretive
operators are called monotone where inequality (1.2) and (1.3) hold with jq replaced by the
identity map on H .

In 2000, Moudafi [14] introduced the viscosity approximation method for nonexpansive
mappings. Let f be a contraction on H , starting with an arbitrary x0 ∈ H, define a sequence
{xn} recursively by

xn+1 = αn f (xn) + (1 − αn)T xn, n ≥ 0, (1.4)

where {αn} is a sequence in (0,1). Xu [21] proved that under certain appropriate conditions
on {αn}, the sequence {xn} generated by (1.4) strongly converges to the unique solution x∗
in F of the variational inequality

〈(I − f )x∗, x − x∗〉 ≥ 0, for x ∈ F.

123



Modified general iterative algorithm 223

In [19], he proved, under some conditions on the real sequence {αn}, that the sequence {xn}
defined by x0 ∈ H chosen arbitrary,

xn+1 = αnb + (1 − αn A)T xn, n ≥ 0, (1.5)

converges strongly to x∗ ∈ F which is the unique solution of the minimization problem

min
x∈F

1

2
〈Ax, x〉 − 〈x, b〉,

where A is a strongly positive bounded linear operator. That is, there is a constant γ̄ > 0
with the property

〈Ax, x〉 ≥ γ̄ ||x ||2, ∀x ∈ H.

Combining the iterative method (1.4) and (1.5), Marino and Xu [13] consider the following
general iterative method:

xn+1 = αn f (xn) + (1 − αn A)T xn, n ≥ 0, (1.6)

they proved that if the sequence {αn} of parameters satisfies appropriate conditions, then the
sequence {xn} generated by (1.6) converges strongly to x∗ ∈ F which solves the variational
inequality

〈(γ f − A)x∗, x − x∗〉 ≤ 0 x ∈ F,

which is the optimality condition for the minimization problem

min
x∈F

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γ f (i.e. h′(x) = γ f (x) for x ∈ H ).
On the other hand, Yamada [24] in 2001 introduced the following hybrid iterativemethod:

xn+1 = T xn − λnμGT xn, n ≥ 0, (1.7)

where G is a κ-Lipschitzian and η-strongly monotone operator with κ > 0, η > 0 and
0 < μ < 2η/κ2. Under some appropriate conditions, he proved that the sequence {xn}
generated by (1.7) converges strongly to the unique solution of the variational inequality

〈Gx∗, x − x∗〉 ≥ 0, ∀x ∈ F.

Recently, combining (1.6) and (1.7), Tian [18] considered the following general iterative
method:

xn+1 = αnγ f (xn) + (I − αnμG)T (xn), (1.8)

and proved that the sequence {xn} generated by (1.8) converges strongly to the unique solution
x∗ ∈ F of the variational inequality

〈(γ f − μG)x∗, x − x∗〉 ≤ 0, ∀x ∈ F.

Most recently, Ali et al [4], extended the result of Tian [18] to q-uniformly smooth Banach
space whose duality mapping is weakly sequentially continuous. Under some assumptions
on {αn}, γ, μ and G being η-accretive mapping in (1.8), they proved that the sequence {xn}
generated by (1.8) converges strongly to the unique solution x∗ ∈ F of the variational
inequality

〈(γ f − μG)x∗, j (x − x∗)〉 ≤ 0, ∀x ∈ F.
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224 U. G. Chidi

Let {Ti } be countable family of nonexpansive mapping. We denote by a set NI : = {i ∈
N : Ti �= I } (I being the identity mapping on E). Maingé [12] studied the Halpern-type
scheme for approximation of a common fixed point of countable in f ini te family of non-
expansive mappings in a real Hilbert space. He proved the following theorems.

Theorem 1.1 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {Ti } be countable family of nonexpansive self-mappings of K , {tn} and {σi,tn } be
sequences in (0,1) satisfying the following conditions: (i) lim tn = 0, (ii)

∑
i≥1 σi,tn = 1− tn,

(iii) ∀i ∈ NI , lim
n→∞

tn
σi,tn

= 0. Define a fixed point sequence {xtn } by

xtn = tnCxtn +
∑

i≥1

σi,tn Ti xtn , n ≥ 1, (1.9)

where C : K → K is a strict contraction. Assume F : = ∩∞
i=1F(Ti ) �= ∅, the {xtn } converges

strongly to a unique fixed point of the contraction PF ◦ C, where PF is a metric projection
from H onto F.

Theorem 1.2 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {Ti } be countable family of nonexpansive self-mappings of K , {αn} and {σi,n}
be sequences in (0,1) satisfying the following conditions:

(i)
∑

αn = ∞,
∑

i≥1 σi,n = 1 − αn,

(ii)
⎧
⎪⎪⎨

⎪⎪⎩

1
σi,n

∣
∣
∣1 − αn−1

αn

∣
∣
∣ → 0, or

∑
n

1
σi,n

|αn−1 − αn | < ∞
1
αn

∣
∣
∣ 1
σi,n

− 1
σi,n−1

∣
∣
∣ → 0, or

∑
n

∣
∣
∣ 1
σi,n

− 1
σi,n−1

∣
∣
∣ < ∞

1
σi,nαn

∑
k≥0 |σk,n − σk,n−1| → 0, or 1

σi,n

∑
k≥0 |σk,n − σk,n−1| < ∞.

(iii) ∀i ∈ NI , lim
n→∞

αn
σi,n

= 0.

Then, the sequence {xn} define iteratively by x1 ∈ K ,

xn+1 = αnCxn +
∑

i≥1

σi,nTi xn, n ≥ 1, (1.10)

where C : K → K is a strict contraction. Assume F : = ∩∞
i=1F(Ti ) �= ∅, the {xn} converges

strongly to a unique fixed point of the contraction PF ◦ C, where PF is a metric projection
from H onto F.

Motivated by the results above, we introduce an iterative method for finding a common fixed
point of an infinite family of nonexpansive mappings in q-uniformly real smooth Banach
space. We prove the strong convergence of the proposed iterative algorithm to the unique
solution of a variational inequality problem.

2 Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space E and let
the diameter of K be defined by d(K ) : = sup{‖x − y‖: x, y ∈ K }. For each x ∈ K ,
let r(x, K ) := sup{‖x − y‖ : y ∈ K } and let r(K ) := inf{r(x, K ) : x ∈ K } denote
the Chebyshev radius of K relative to itself. The normal structure coefficient N (E) of E
(introduced in 1980 by Bynum [3], see also Lim [10] and the references contained therein) is
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Modified general iterative algorithm 225

defined by N (E):=inf{ d(K )
r(K )

: K is a closed convex and bounded subset of E with d(K ) > 0}.
A Banach space E such that N (E) > 1 is said to have uniform normal structure . It is
known that every Banach space with a uniform normal structure is reflexive, and that all
uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see
e.g., [5,23]).
Let E be a normed space with dimE ≥ 2. The modulus of smoothness of E is the function
ρE : [0,∞) → [0,∞) defined by

ρE (τ ) := sup

{ ||x + y|| + ||x − y||
2

− 1 : ||x || = 1; ||y|| = τ

}

.

The space E is called uni f ormly smooth if and only if limt→0+ ρE (t)
t = 0. For some

positive constant q ∈ E is called q − uni f ormly smooth if there exists a constant c > 0
such that ρE (t) ≤ ctq , t > 0. It is well known that if E is smooth then the duality mapping
is singled-valued, and if E is uniformly smooth then the duality mapping is norm-to-norm
uniformly continuous on bounded subset of E .

Lemma 2.1 Let E be a real normed space. Then

||x + y||2 ≤ ||x ||2 + 2〈y, j (x + y)〉,
for all x, y ∈ E and for all j (x + y) ∈ J (x + y).

Lemma 2.2 (Xu, [22]) Let E be a real q-uniformly smooth Banach space for some q > 1,
then there exists some positive constant dq such that

||x + y||q ≤ ||x ||q + q〈y, jq(x)〉 + dq ||y||q ∀x, y ∈ E and jq ∈ Jq(x).

Lemma 2.3 (Xu, [21]) Let {an} be a sequence of nonegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0

where, (i) {αn} ⊂ [0, 1], ∑
αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),

∑
γn <

∞. Then, an → 0 as n → ∞.

Lemma 2.4 (Suzuki [17]) Let {xn} and {yn} be bounded sequence in a Banach space E and
let {βn} be a sequence in [0, 1] with 0 < lim inf βn ≤ lim supβn < 1. Suppose that xn+1 =
βn yn + (1−βn)xn for all integer n ≥ 1 and lim supn→∞(||yn+1 − yn ||− ||xn+1 − xn ||) ≤ 0.
Then, lim

n→∞||yn − xn || = 0.

Lemma 2.5 (See Lemma 2.1 ofAli [2])Let E be a real smooth and uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r ] → R such that g(0) = 0 and g(||x − y) ≤ ||x ||2 − 2〈x, j y〉 + ||y||2 for all
Br = {x ∈ E : ||x || ≤ r}.
Lemma 2.6 Let E be a real Banach space, f : E → E be contraction mapping with a
coefficient 0 < β < and let G : E → E be a κ−Lipschitzian and η−strongly accretive
operator with κ > 0, η ∈ (0, 1). Then for γ ∈ (0, μη

β
),

〈(μG − γ f )x − (μG − γ f )y, j (x − y)〉 ≥ (μη − γβ)||x − y||2, ∀x, y ∈ E .

That is, (μG − γ f ) is strongly accretive with coefficient (μη − γβ).
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226 U. G. Chidi

Let μ be a linear continuous functional on l∞ and let a = (a1, a2, · · · ) ∈ l∞. We will
sometimes write μn(an) in place of the value μ(a). A linear continuous functional μ such
that ||μ|| = 1 = μ(1) and μn(an) = μn(an+1) for every a = (a1, a2, · · · ) ∈ l∞ is called a
Banach limit. It is known that if μ is a Banach limit, then

lim inf
n→∞ an ≤ μ(an) ≤ lim sup

n→∞
an

for every a = (a1, a2, . . .) ∈ l∞ (see, for example, [5,6])

3 Main results

In the sequel we assume for each α ∈ (0, 1), the sequence {σi,α} satisfies ∑
i≥1 σi,α = 1−α

and for the sequence {αn} ⊂ (0, 1), {σi,n} = 1 − αn .

Lemma 3.1 Let E be a q−uniformly smooth real Banach space with constant dq , q >

1. Let f : E → E be a β−contraction mapping with a coefficient β ∈ (0, 1). Let
Ti : E → E i ∈ N , be a family of nonexpansive maps such that F : = ∩∞

i=1F(Ti ) �= ∅
and G : E → E be an η−strongly accretive mapping which is also κ−Lipschizian. Let

μ ∈
(
0,min

{
1, ( qη

dqκq )
1

q−1

})
and τ : = μ

(
η − μq−1dqκq

q

)
. For each t, α ∈ (0, 1) with

α < t and β ∈ (0, τ
γ
). Assume that S : = αu + (1 − δ)(1 − α)I + δ

∑
i≥1 σi,αTi , where δ

is some fixed number in (0, 1) and u ∈ E, α, σi,t are in (0, 1). Define the following mapping
Wt on E by

Wt x := tγ f (x) + (I − μtG)Sx .

where t is in (0,1). Then Wt is a strict contraction mapping. Furthermore, for any x, y ∈ E,

||Wt x − Wt y|| ≤ [1 − t (τ − βγ )]||x − y||
Proof Observe that, for any x, y ∈ E

||Sx − Sy|| ≤ (1 − δ)(1 − α)||x − y|| + δ
∑

i≥1

σi,α||Ti x − Ti y||

≤ (1 − δ)(1 − α)||x − y|| + δ(1 − α)||x − y||
≤ ||x − y||. (3.1)

Without loss of generality, assume η < 1
q . Then, as μ < (

qη
dqκq )

1
q−1 , we have 0 < qη −μq−1

dqκq . Furthermore, from η < 1
q we have qη−μq−1dqκq < 1 so that 0 < qη−μq−1dqκq <

1. Also as μ < 1 and t ∈ (0, 1), we obtain that 0 < tμ(qη − μq−1dqκq) < 1.
For each t, α ∈ (0, 1), then for any x, y ∈ E , define Kt x = (1 − tμG)Sx , then from (3.1),
we obtain

||Kt x − Kt y||q = ||(1 − tμG)Sx − (1 − tμG)Sy||q
= ||(Sx − Sy) − tμ(G(Sx) − G(Sy))||q
≤ ||G(Sx) − G(Sy)||q − qtμ〈G(Sx) − G(Sy), jq(Sx − Sy)〉

+tqμqdq ||Sx − Sy||q
≤ [1 − tμ(qη − tq−1μq−1κqdq)]||x − y||q

≤ [1 − qtμ(η − μq−1κqdq

q
)]||x − y||q
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Modified general iterative algorithm 227

≤ [1 − tμ(η − μq−1κq dq

q
)]q ||x − y||q

= (1 − tτ)q ||x − y||q ,

therefore

||Wt x − Wt y|| = ||tγ ( f (x) − f (y)) + (Kt (Sx) − Kt (Sy))||
≤ tγ || f (x) − f (y)|| + ||Kt (Sx) − Kt (St y)||
≤ tβγ ||x − y|| + (1 − tτ)||x − y||
= [1 − t (τ − βγ )]||x − y||.

Hence

||Wt x − Wt y|| ≤ [1 − t (τ − βγ )]||x − y||, (3.2)

which implies that Wt is a strict contraction, by Banach contraction mapping principle, there
exists a unique fixed point xt of Wt in E . That is,

xt = tγ f (xt ) + (1 − tμG)Sxt . (3.3)

��
Theorem 3.2 Let E be a q-uniformly real smooth Banach space which is also uniformly
convex. Let Ti , f, G, μ, τ, β, γ, S and F be as in Lemma 3.1. Let {tn}, {αn} be sequences in
(0,1), such that lim

n→∞tn = 0 and lim
n→∞

αn
tn

= 0. Let {xtn } be a sequence satisfying (3.3), then

(i) {xtn } is bounded for tn ∈ (0, 1
τ
).

(ii) lim
n→∞||xtn − Ti xtn || = 0, ∀i ∈ N.

(iii) then {xt0} converges strongly to a common fixed point p in F which is a unique solution
of the variational inequality

〈(μG − γ f )p, j (p − x)〉 ≤ 0, ∀x ∈ F. (3.4)

Proof Let p ∈ F and αn ≤ tn , then

||xtn − p||2 = 〈tnγ f (xtn ) + (I − μtnG)Sxtn − p, j (xtn − p)〉
= tn〈γ f (p) − μG(p), j (xtn − p)〉 + tnγ 〈 f (xtn ) − f (p), j (xtn − p)〉

+〈(I − tnμG)Sxtn − (I − tnμG)p, j (xtn − p)〉
≤ tn〈γ f (p) − μG(p), j (xtn − p)〉 + βγ tn ||xtn − p||2

+(1 − τ tn)||Sxtn − p||||xtn − p||
≤ tn〈γ f (p) − μG(p), j (xtn − p)〉 + βγ tn ||xtn − p||2

+(1 − τ tn)[αn ||u − p|| + (1 − αn)||xtn − p||]||xtn − p||
≤ tn〈γ f (p) − μG(p), j (xtn − p)〉 + [1 − tn(τ − γβ)||xtn − p||2

+(1 − τ tn)αn ||u − p||||xtn − p||.
Since (1−τ tn)(αn/tn) → 0 as n → ∞, then there exists n0 ∈ N such that (1−τ tn)(αn/tn) <

(τ − γβ)/2 for n ≥ n0. Furthermore

||xtn − p||2 ≤ 〈(γ f − μG)p, j (xtn − p)〉
τ − γβ
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228 U. G. Chidi

+ (1 − τ tn)αn

tn
× ||u − p||||xtn − p||

τ − γβ
(3.5)

for all n ≥ n0. That is, ||xtn − p|| ≤ (
||γ f (p)−μG(p)||

τ−γβ
+ ||u−p||

2 ) for all n ≥ n0. Thus {xtn } is
bounded, so are { f (xtn )}, {G(xtn )}, {Ti (xtn )} and {G(Ti xtn )}.
(ii) From (3.3), we have

||xtn − Sxtn || = tn ||γ f (xtn ) − μG(Sxtn )|| → 0 as n → ∞. (3.6)

Using Lemma 2.5, we have the following estimate

g(||Ti xtn − xtn ||) = g[||(p − Ti xtn ) − (p − xtn )||]
≤ ||p − Ti xtn ||2 − 2〈p − Ti xtn , j (p − xtn )〉 + ||p − xtn ||2
≤ ||p − Ti xtn ||2 − 2〈p − xtn + xtn − Ti xtn , j (p − xtn )〉 + ||p − xtn ||2
≤ 2||p − Ti xtn ||2 − 2〈p − Ti xtn , j (p − xtn )〉 + 2〈xtn − Ti xtn , j (xtn − p)〉
≤ 2〈xtn − Ti xtn , j (xtn − p)〉 (3.7)

Therefore
δ

2

∑

i≥1

σi,ng(||Ti xtn − xtn ||) ≤ 〈δ(1 − αn)xtn − δ
∑

i≥1

σi,nTi xtn , j (xtn − p)〉

= 〈αn(u − xtn ) + xtn − Sxtn , j (xtn − p)〉
≤ [αn ||u − xtn || + ||xtn − Sxtn ||]||xtn − p||.

Then we immediately obtain lim
n→∞

∑
i≥1 σi,ng(||Ti xtn − xtn ||) = 0, it follows that

lim
n→∞g(||Ti xtn − xtn ||) = 0 ∀i ∈ N. By the property of g we have that

lim
n→∞||Ti xtn − xtn || = 0 ∀i ∈ N. (3.8)

(iii) By Lemma 2.6, (μG − γ f ) is strongly accretive, so the variational inequality (3.4) has
a unique solution in F . Below we use q ∈ F to denote the unique solution of (3.4). Next, we
prove that xt → q (t → 0).
Let {tn} be a sequence in (0, 1) such that {xtn } satisfies (3.3). By writing {xn} instead of {xtn },
define a map φ : E → R by

φ(y) := μn ||xn − y||2, ∀y ∈ E .

Then, φ(y) → ∞ as ||y|| → ∞, φ is continuous and convex, so as E is reflexive, there
exists q ∈ E such that φ(q) = min

u∈E
φ(u). Hence, the set

K ∗ := {y ∈ E : φ(y) = min
u∈E

φ(u)} �= ∅.

Since lim
n→∞||xn −Ti xn || = 0, lim

n→∞||xn −T m
i xn || = 0, for anym ≥ 1 and i ∈ N by induction.

Now let v ∈ K ∗, we have for any i ∈ N

φ(Tiv) = μn ||xn − Tiv||2 = μn ||xn − Ti xn + Ti xn − Tiv||2
≤ μn ||xn − v||2 = φ(v),

and hence Tiv ∈ K ∗.
Now let z ∈ F, then z = Ti z, for any i ∈ N. Since K ∗ is a closed convex set, there exists a
unique v∗ ∈ K ∗ such that

||z − v∗|| = min
u∈K ∗||z − u||.
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Modified general iterative algorithm 229

But, for any i ∈ N

||z − Tiv
∗|| = ||Ti z − Tiv

∗|| ≤ ||z − v∗||,
which implies v∗ = Tiv

∗ and so K ∗ ∩ F �= ∅.

Let p ∈ K ∗ ∩ F and ε ∈ (0, 1). Then, it follows that φ(p) ≤ φ(p − ε(G − γ f )p) and using
Lemma 2.1, we obtain that

||xn − p + ε(G − γ f )p||2 ≤ ||xn − p||2 + 2ε〈(G − γ f )p, j (xn − p + ε(G − γ f )p)〉
which implies

μn〈(γ f − G)p, j (xn − p + ε(G − γ f )p)〉 ≤ 0.

Moreover,

μn〈(γ f − G)p, j (xn − p)〉 = μn〈(γ f − G)p, j (xn − p) − j (xn − p + ε(G − γ f )p)〉
+μn〈(γ f − G)p, j (xn − p + ε(G − γ f )p)〉

≤ μn〈(γ f − G)p, j (xn − p) − j (xn − p + ε(G − γ f )p)〉.
Since j is norm-to-norm uniformly continuous on bounded subsets of E , and ε → 0 we have
that

μn〈(γ f − G)p, j (xn − p)〉 ≤ 0.

Now from (3.5) and since lim
n→∞

αn
tn

= 0, we have

μn ||xn − p||2 ≤ μn

( 〈(γ f − μG)p, j (xn − p)〉
τ − γβ

)

+μn

( (1 − τ tn)αn

tn
× ||u − p||||xn − p||

τ − γβ

)

and so

μn‖xn − p‖2 ≤ 0.

Thus there exist a subsequence say {xn j } of {xn} such that lim j→∞xn j = p.

By definition of Sα as Sαn xn := αnu + (1 − δ)(1 − αn)xn + δ
∑

i≥1 σi,nTi xn, which
implies Sαn j

xn j := xn j + αn j (u − xn j ) + δ
∑

i≥1 σi,n j (Ti xn j − xn j ), then lim j→∞Sxn j =
lim j→∞xn j = p and Sα p = p. Thus for any z ∈ F, using (3.3) we have

〈μG(xn j ) − γ f (xn j ), j (xn j − z)〉 = −1

tn j

〈(I − S)xn j − (I − S)p, j (xn j − z)〉
+ μ〈Gxn j − GSxn j , j (xn j − z)〉
≤ μ〈Gxn j − GSxn j , j (xn j − z)〉, (3.9)

since 〈(I − S)xn j − (I − S)p, j (xn j − z)〉 ≥ 0. As G is Lipschitzian and the fact that
‖xn j − Sxn j ‖ ≤ αn j ‖u − xn j ‖ + δ

∑
i≥1 σi,n j ‖(Ti xn j − xn j )‖ → 0 as j → ∞, we have

Gxn j − GSxn j → 0 as j → ∞. From this and (3.9), taking limit as j → ∞ we obtain

〈(μG − γ f )p, j (p − z)〉 ≤ 0.

Hence p is the unique solution of the variational inequality (3.4). Now assume there exists
another subsequence of {zn} say {xnk } such that limk→∞xnk = p∗.Then, using (3.8) we have
p∗ ∈ F. Repeating the above argument with p replaced by p∗ we can easily obtain that p∗
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also solved the variational inequality (3.4). By uniqueness of the solution of the variational
inequality, we obtained that p = p∗ and this completes the proof. ��
Theorem 3.3 Let E be a q-uniformly real smooth Banach space which is also uniformly
convex. Let Ti : E → E i ∈ {1, 2, . . .} be a family of nonexpansive mappings with F : =
∩∞

i=1F(Ti ) �= ∅. Let G : E → E be an η-strongly accretive map which is also κ-Lipschitzian.
Let f : E → E be a contraction map with coefficient 0 < β < 1. Let {αn} and {βn} be
sequences in (0,1) satisfying:

(i) lim
n→∞βn = 0 and

∑∞
n=0 βn = ∞;

(ii)
∑

αn < ∞ and lim
n→∞

αn
βn

= 0;

(iii) lim
n→∞

∑
i≥1 |σi,n+1 − σi,n | = 0 and

∑
i≥1 σi,n = 1 − αn .

Let μ, γ, and τ be as in Lemma 3.1 and δ ∈ (0, 1) be fixed. define a sequence {xn}∞n=1
iteratively in E by x0 ∈ E

{
yn = αnu + (1 − δ)(1 − αn)xn + δ

∑
i≥1 σi,nTi xn

xn+1 = βnγ f (xn) + (I − βnμG)yn .
(3.10)

Then, {xn}∞n=1 converges strongly to x∗ ∈ F which is also a solution to the following varia-
tional inequality

〈(γ f − μG)x∗, j (y − x∗)〉 ≤ 0, ∀y ∈ F. (3.11)

Proof Since (μG − γ f ) is strongly accretive, then the variational inequality (3.11) has a
unique solution in F . Now we show that {xn}∞n=1 is bounded. Let p ∈ F then, for every
i ∈ N, Ti p = p. From (3.10), we obtain

||yn − p|| = ||αnu + (1 − δ)(1 − αn)xn + δ
∑

i≥1

σi,nTi xn − p||

≤ αn ||u − p|| + (1 − δ)(1 − αn)||xn − p||
+δ

∑

i≥1

σi,n ||Ti xn − p||

≤ αn ||u − p|| + (1 − αn)||xn − p||
≤ αn ||u − p|| + ||xn − p||. (3.12)

Also from (3.10) and (3.12), we obtain

||xn+1 − p|| = ||βnγ f (xn) + (I − βnμG)yn − p||
≤ βγβn ||xn − p|| + βn ||γ f (p) − μG(p)||

+||(I − βnμG)yn − (I − βnμG)p||
≤ βγβn ||xn − p|| + βn ||γ f (p) − μG(p)||

+(1 − τβn)||yn − p||
≤ βγβn ||xn − p|| + βn ||γ f (p) − μG(p)||

+(1 − τβn)[αn ||u − p|| + ||xn − p||]
≤ [1 − βn(τ − γβ)]||xn − p||

+βn[||γ f (p) − μG(p)|| + ||u − p||]
≤ max

{
||xn − p||, ||γ f (p) − μG(p)|| + ||u − p||

τ − γβ
}
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≤ · · · ≤ max
{
||x1 − p||, ||γ f (p) − μG(p)|| + ||u − p||

τ − γβ
}.

Therefore, {xn} is bounded. Hence {yn}, {Ti xn}, {Gyn}, {GTi yn} and { f (yn)} are also
bounded.
Next, we show that limn→∞||xn+1 − xn || = 0. Define two sequences {λn} and {zn} by
λn := (1 − δ)αn + δ and

zn := xn+1 − xn + λn xn

λn
.

Observe that {zn} is bounded and that

||zn+1 − zn || − ||xn+1 − xn || ≤
(βn+1

λn+1
+ βn

λn

)
M +

∣
∣
∣
αn+1

λn+1
− αn

λn

∣
∣
∣||u||

+
[δ(1 − αn+1)

λn+1
− 1

]
||xn+1 − xn ||

+ δM

λn+1

∑

i≥1

|σi,n+1 − σi,n |

+ δM

λn+1

∑

i≥1

σi,n |λn+1 − λn |

for some real number M := supn≥1{||γ f (xn) − μG(yn)||, ||Ti xn ||, i = 1, 2, ...}.
This implies

lim sup
n→∞

(||zn+1 − zn || − ||xn+1 − xn ||) ≤ 0,

and by Lemma 2.4, we obtain

lim
n→∞||zn − xn || = 0.

Hence

||xn+1 − xn || = λn ||zn − xn || → 0 as n → ∞. (3.13)

and from (3.10), we also obtain

||xn+1 − yn || = βn ||γn f (xn) − μG(yn)|| → 0 as n → ∞. (3.14)

from (3.13) and (3.14), we have

lim
n→∞||xn − yn || = 0. (3.15)

Next we show that lim
n→∞||Ti xn − xn || = 0 for all i ∈ N. Since p ∈ F , using the same

argument in (3.7), we obtain

δ

2

∑

i≥1

σi,ng(||Ti xn − xn ||) ≤ δ
∑

i≥1

σi,n〈xn − Ti xn, j (xn − p)〉

≤ 〈δ(1 − αn)xn − δ
∑

i≥1

σi,nTi xn, j (xn − p)〉

≤ 〈αn(u − xn) + xn − yn, j (xn − p)〉
≤ [αn ||u − xn || + ||xn − yn ||]||xn − p||.
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From (3.15) and limn→∞ αn = 0, we obtain

lim
n→∞

∑

i≥1

σi,n ||Ti xn − xn || = 0,

it follows that for every i ∈ N,

lim
n→∞||Ti xn − xn || = 0. (3.16)

Let zt = tγ f (zt ) + (1− tμG)Szt , where S : = αu + (1− δ)(1− α)I + δ
∑

i≥1 σi,αTi ,

as in Theorem 3.1. Then,

zt − xn = t (γ f (zt ) − Gzt ) + tμ(Gzt − G(Szt )) + Szt − xn

Hence

||zt − xn ||2 = 〈t (γ f (zt ) − Gzt ) + tμ(Gzt − G(Szt )) + Szt − xn, j (zt − xn)〉
= t〈γ f (zt ) − μG(zt ), j (zt − xt )〉 + tμ〈Gzt − G(Szt ), j (zt − xn)〉

+〈Szt − xn, j (zt − xn)〉
≤ t〈γ f (zt ) − μGzt , j (zt − xn)〉 + tμκ||zt − Szt ||||zt − xn ||

+||Szt − xn ||||zt − xn ||
≤ t〈γ f (zt ) − μGzt , j (zt − xn)〉 + t (1 + μ)||zt − Szt ||||zt − xn ||

+||zt − xn ||2 + ||Sxn − xn ||||zt − xn ||.
Therefore

〈γ f (zt ) − μGzt , j (xn − zt )〉 ≤ (1 + μκ)||zt − Szt ||||zt − xn ||
+1

t
||Sxn − xn ||||zt − xn ||

Now, taking limit superior as n → ∞ firstly, and then as t → 0, we have

lim sup
t→0

lim sup
n→∞

〈γ f (zt ) − μGzt , j (xn − zt )〉 ≤ 0 (3.17)

Moreover, we note that

〈γ f (p) − μGp, j (xn − p)〉 = 〈γ f (p) − μGp, j (xn − p)〉 − 〈γ f (p) − μGp, j (xn − zt )〉
+〈γ f (p) − μGp, j (xn − zt )〉 − 〈γ f (p) − μGzt , j (xn − zt )〉
+〈γ f (p) − μGzt , j (xn − zt )〉 − 〈γ f (zt ) − μGzt , j (xn − zt )〉
+〈γ f (zt ) − μGzt , j (xn − zt )〉

= 〈γ f (p) − μGp, j (xn − p) − j (xn − zt )〉
+μ〈Gzt − Gp, j (xn − zt )〉
+〈γ f (zt ) − γ f (p), j (xn − zt )〉
+〈γ f (zt ) − μGzt , j (xn − zt )〉 (3.18)

Taking limit superior as n → ∞ in (3.18), we have

lim sup
n→∞

〈γ f (p) − μGp, j (xn − p)〉 ≤ lim sup
n→∞

〈γ f (p) − μGp, j (xn − p) − j (xn − zt )〉
+μ||Gzt − Gp||lim sup

n→∞
||xn − zt ||

+||γ f (zt ) − γ f (p)||lim sup
n→∞

||xn − zt ||
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+lim sup
n→∞

〈γ f (zt ) − μGzt , j (xn − zt )〉
≤ lim sup

n→∞
〈γ f (p) − μGp, j (xn − p) − j (xn − zt )〉

+((μ + 1) + αγ )‖zt − p‖lim sup
n→∞

||xn − zt ||
+lim sup

n→∞
〈γ f (zt ) − μGzt , j (xn − zt )〉 (3.19)

since E has a uniformly Gâteaux differentiable norm, so j is norm-to-norm∗ uniformly
continuous on bounded subset of E . Then, from Theorem 3.1 (i.e., zt → p (t → 0+)), we
obtain

lim sup
t→0

lim sup
n→∞

〈γ f (p) − μGp, j (xn − p) − j (xn − zt )〉 = 0,

hence, using (3.17) in (3.19), we obtain

lim sup
n→∞

〈γ f (p) − μGp, j (xn − p)〉 ≤ lim sup
t→0

lim sup
n→∞

〈γ f (zt ) − μGzt , j (xn − p)〉
≤ 0

Finally, we show that xn → p. From the recursion formula (3.10), by using (2.1) and
taking n ≥ N where N ∈ N is large enough, we obtain

||xn+1 − p||2 = ||βnγ f (xn) − βnμG(p) + (I − βnμG)yn − (I − βnμG)p||2
≤ ||(I −βnμG)yn −(I − βnμG)p||2 + 2βn〈γ f (xn) − μG(p), j (xn+1 − p)〉
≤ (1 − βnτ)2||yn − p||2 + 2βn〈γ f (xn) − γ f (p), j (xn+1 − p)〉

+2βn〈γ f (p) − μG(p), j (xn+1 − p)〉
≤ αn ||u − p||2 + (1 − βnτ)2||xn − p||2

+2βn〈γ f (xn) − γ f (p), j (xn+1 − p)〉
+2βn〈γ f (p) − μG(p), j (xn+1 − p)〉

On the other hand

〈γ f (xn) − γ f (p), j (xn+1 − p)〉 ≤ γβ||xn − p||||xn+1 − p||
≤ γβ||u − p||||xn − p||√αn + γβ(1 − βnτ)||xn − p||2

+γβ||xn − p||√2|〈γ f (xn) − γ f (p), j (xn+1 − p)〉|√βn

+γβ||xn − p||√2|〈γ f (p) − μG(p), j (xn+1 − p)〉|√βn .

Since {xn} and { f (xn)} are bounded, we pick a constant G0 > 0 such that

sup
{
γβ||xn − p||||u − p||, γβ||xn − p||

(√
2|〈γ f (xn) − γ f (p), j (xn+1 − p)〉|

+γβ
√
2|〈γ f (p) − μG(p), j (xn+1 − p)〉|

)}
< G0,∀n ∈ N.

Therefore

〈γ f (xn) − γ f (p), j (xn+1 − p)〉 ≤ γβ(1 − βnτ)||xn − p||2 + G0(
√

αn + √
βn)

Hence

||xn+1 − p||2 ≤ αn ||u − p||2 + (1 − βnτ)2||xn − p||2
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+2βnγβ(1 − βnτ)||xn − p||2 + 2βnG0(
√

αn + √
βn)

+2βn〈γ f (p) − μG(p), j (xn+1 − p)〉
=

[
1 − 2βn(1 − βnτ)(τ − γβ)

]
||xn − p||2 + αn ||u − p||2

+2βnG0(
√

αn + √
βn) + 2βn〈γ f (p) − μG(p), j (xn+1 − p)〉

≤
[
1 − βn(1 − βnτ)(τ − γβ)

]
||xn − p||2 + θn

where θn : = βn

(
αn/βn ||u − p||2+2G0(

√
αn +√

βn).+2〈γ f (p)−μG(p), j (xn+1− p)〉
)

By using Lemma 2.3 we obtain xn → p as n → ∞. This complete the proof. ��
Corollary 3.4 Let H be a real Hilbert space, {zt }t∈(0,1), be as in Theorem 3.2. Then {zt }
converges strongly to a common fixed points of the family {Ti }∞i=1 say p which is a unique
solution of the variational inequality

〈(μG − γ f )p, q − p〉 ≥ 0, ∀q ∈ F.

Corollary 3.5 Let H be a real Hilbert space and let C a nonempty closed convex subset of
H. Let G : H → H, f : E → E, {Ti }∞i=1 F, {αn}∞n=1, {βn}∞n=1 and {xn}∞n=1 be as in Theorem
(3.1), then {xn}∞n=1 converges strongly to p ∈ F, which is also the unique solution of the
variational inequality

〈γ f (p) − μGp, q − p〉 ≤ 0, ∀q ∈ F
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