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Abstract In this paper we introduce an iterative method for finding a common fixed point of
an infinite family of nonexpansive mappings in g-uniformly real smooth Banach space which
is also uniformly convex. We proved strong convergence of the proposed iterative algorithms
to the unique solution of a variational inequality problem.
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1 Introduction

Let E be areal Banach space and E* be the dual space of E. A mapping ¢ : [0, 00) — [0, 00)
is called a guage function if it is strictly increasing, continuous and ¢(0) = 0. Let ¢ be a
gauge function, a generalized duality mapping with respect to ¢, Jy: E — 2E" is defined
by, x € E,

Jox = {x* € E* : {x, x%) = |Ixllo(|xID, lIx*[| = e(llxD},

where (., .) denotes the duality pairing between element of E and that of E*. If ¢(r) = t,
then J, is simply called the normalized duality mapping and is denoted by J. For any x € E,
an element of Jyx is denoted by jyx.

If however (1) = 177!, for some ¢ > 1, then Jy is still called the generalized duality
mapping and is denoted by J, (see, for example [1,5]).
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Let S(E): = {x € E: |lx|| = 1} be the unit sphere of E. Then space E is said to have
Gateaux differentiable norm if for any x € S(E) the limit
i T 20— ] 0
r—0 A
exists Vy € S(E). The norm of E is said to be uniformly Gateaux differentiable if for each
y € S(E), the limit (1.1) is attained uniformly for x € S(E). If E has a uniformly Gateaux
differentiable norm, then j: E — E* is uniformly continuous on bounded subsets of E to
the weak™ topology of E*.
A mapping G: D(G) C E — E is said to be accretive if for all x, y € D(G), there
exists j;(x —y) € J,(x — y) such that

(Gx = Gy, jg(x —y)) =0, (1.2)

where D(G) denote the domain of G. G is called n — strongly accretive if for all x, y €
D(G), there exists j,(x —y) € J;(x — y) and € (0, 1) such that

(Gx = Gy, jg(x = ») = nllx = y[|9, (1.3)

Let K be a nonempty, closed and convex subset of E and G: K — E be a nonlinear
mapping. The variational inequality problem is to:

find u € K such that (Gu, j,(v —u)) >0, Vv € K,

for some j, (v —u) € J,;(v — u). The set of solution of variational inequality problem is
denoted by VI(K, G).If E: = H, areal Hilbert space, the variational inequality problem
reduces to:

find u € K such that (Gu,v —u) >0, Vv € K,

which was introduced and studied by Stampacchia [16].

Variational inequality theory has emerged as an important tool in studying a wide class of
related problems in Mathematical, Physical, regional, engineering and nonlinear optimization
sciences (see, for instance, [8,9,11,15,24-26]).

A mapping T: E — E is L — Lipschitian if for some L > 0, ||[Tx — Tyl|| < L||x —
y[|Vx,ye E.If L €]0,1),then T is called contraction mapping, but if L < 1, then T is
called nonexpansive mapping. A pointx € E is called a fixed pointof T if Tx = x. The set of
fixed points of 7 is denoted by F(T): = {x € E: Tx = x}. In Hilbert spaces H, accretive
operators are called monotone where inequality (1.2) and (1.3) hold with j;, replaced by the
identity map on H.

In 2000, Moudafi [14] introduced the viscosity approximation method for nonexpansive
mappings. Let f be a contraction on H, starting with an arbitrary xo € H, define a sequence
{x,} recursively by

Xpp1 =y f(xp) + (1 —0)Tx,, n>0, (1.4)

where {«,} is a sequence in (0,1). Xu [21] proved that under certain appropriate conditions
on {o,}, the sequence {x,} generated by (1.4) strongly converges to the unique solution x*
in F of the variational inequality

(I = fHx*,x —x*) >0, for x € F.
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In [19], he proved, under some conditions on the real sequence {«;,}, that the sequence {x,}
defined by xo € H chosen arbitrary,

Xpt1 = b + (1 =y A)Tx,, n >0, (1.5)

converges strongly to x* € F which is the unique solution of the minimization problem

1
gcrg%(Ax, x) —(x, b),

where A is a strongly positive bounded linear operator. That is, there is a constant y > 0
with the property

(Ax,x) > 7l|x]|?, Vx € H.

Combining the iterative method (1.4) and (1.5), Marino and Xu [13] consider the following
general iterative method:

Xpp1 = f(xp) + (1 — 0, A)Txy, n >0, (1.6)

they proved that if the sequence {«,} of parameters satisfies appropriate conditions, then the
sequence {x,} generated by (1.6) converges strongly to x* € F which solves the variational
inequality

((yf —Ax"x—x") <0 x€F,

which is the optimality condition for the minimization problem

1
minE(Ax,x) — h(x),

xeF

where £ is a potential function for y f (i.e. i’ (x) = y f(x) for x € H).
On the other hand, Yamada [24] in 2001 introduced the following hybrid iterative method:

Xn41 = Txy — AyuGTx,, n >0, (1.7)

where G is a k-Lipschitzian and n-strongly monotone operator with x > 0,1 > 0 and
0 < u < 2n/x*. Under some appropriate conditions, he proved that the sequence {x,}
generated by (1.7) converges strongly to the unique solution of the variational inequality

(Gx*,x —x™) >0, Vx € F.

Recently, combining (1.6) and (1.7), Tian [18] considered the following general iterative
method:

Xpp1 =y f(xn) + I —ayuG)T (xp), (1.8)

and proved that the sequence {x, } generated by (1.8) converges strongly to the unique solution
x* € F of the variational inequality

((yf —nG)x*,x —x*) <0, Vx € F.

Most recently, Ali et al [4], extended the result of Tian [18] to g-uniformly smooth Banach
space whose duality mapping is weakly sequentially continuous. Under some assumptions
on {&,}, y, n and G being n-accretive mapping in (1.8), they proved that the sequence {x,}
generated by (1.8) converges strongly to the unique solution x* € F of the variational
inequality

((yf —uG)x*, j(x —x*)) <0, Vx € F.
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Let {T;} be countable family of nonexpansive mapping. We denote by a set N;: = {i €
N: T; # I} (I being the identity mapping on E). Maingé [12] studied the Halpern-type
scheme for approximation of a common fixed point of countable infinite tamily of non-
expansive mappings in a real Hilbert space. He proved the following theorems.

Theorem 1.1 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {T;} be countable family of nonexpansive self-mappings of K, {t,} and {c; ;, } be
sequences in (0,1) satisfying the following conditions: (i) lim t,, = 0, (ii) Zizl Oi, = 1 —ty,

(i) Vi € Ny, lim af" = 0. Define a fixed point sequence {x;,} by
n—o00 %

Xt = tncxtn + Zai,t,, Extnv n = 1; (19)
i>1
where C: K — K isastrict contraction. Assume F: = N2, F(T;) # 0, the {x,,} converges

strongly to a unique fixed point of the contraction P o C, where PF is a metric projection
from H onto F.

Theorem 1.2 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {T;} be countable family of nonexpansive self-mappings of K, {o,} and {0} ,,}
be sequences in (0,1) satisfying the following conditions:

1) Zan = 00, Zizl Oin = 1 —ay,

s 1 Op—1 1
(i) al—a—”‘eo, or Znalan_1—an|<oo

| 1 1

Qp | Oin Oin—1 ’ - 0’ or Zn Oin Oin—1 ’ <

1

T nCin Zkz() |0k,n - Jk,n—l' — 0, or Gin Zkz() |(7k,n - 0k,n—l| < 0.

(i) Vi € Ny, lim & =0,
n— 00 %i.n

Then, the sequence {x,} define iteratively by x| € K,

Xpt1 = a0y Cxpy + zai,nnxn’ n>1, (1.10)
i>1
where C: K — K is astrict contraction. Assume F: = N2 F(T;) # @, the {x,} converges

strongly to a unique fixed point of the contraction P o C, where PF is a metric projection
from H onto F.

Motivated by the results above, we introduce an iterative method for finding a common fixed
point of an infinite family of nonexpansive mappings in g-uniformly real smooth Banach
space. We prove the strong convergence of the proposed iterative algorithm to the unique
solution of a variational inequality problem.

2 Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space E and let
the diameter of K be defined by d(K): = sup{||x — y||: x,y € K}. Foreachx € K,
let r(x, K) := sup{|lx — y|l : y € K} andletr»(K) := inf{r(x, K) : x € K} denote
the Chebyshev radius of K relative to itself. The normal structure coefficient N(E) of E
(introduced in 1980 by Bynum [3], see also Lim [10] and the references contained therein) is
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defined by N (E):=inf{ %—Ilgz K is a closed convex and bounded subset of E with d(K) > 0}.
A Banach space E such that N(E) > 1 is said to have uniform normal structure . It is
known that every Banach space with a uniform normal structure is reflexive, and that all
uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see
e.g., [5,23]).

Let E be a normed space with dimE > 2. The modulus of smoothness of E is the function
pE - [0, 00) — [0, 00) defined by

Hx + vl + [lx =l
2

pE(T>;::sup[ _ :Hx||=:1;ny||=:r].

The space E is called uniformly smooth if and only if lim,_, o+ ”Ef“) = 0. For some

positive constant ¢ € E is called ¢ — uniformly smooth if there exists a constant ¢ > 0
such that pg(t) < ct?,t > 0. It is well known that if E is smooth then the duality mapping
is singled-valued, and if E is uniformly smooth then the duality mapping is norm-to-norm
uniformly continuous on bounded subset of E.

Lemma 2.1 Let E be a real normed space. Then
e+ Y112 < [l + 20y, j (2 + ),
forallx,y € Eandforall j(x +y) e J(x +Yy).

Lemma 2.2 (Xu, [22]) Let E be a real q-uniformly smooth Banach space for some q > 1,
then there exists some positive constant dg such that

[lx + yII17 =< 1Ix1? + q(y, jg()) +dglIyl|? Vx,y € E and jq € J4(x).

Lemma 2.3 (Xu, [21]) Let {a,} be a sequence of nonegative real numbers satisfying the
following relation:

apy1 < (1 —ap)ay +ayoy + v, n >0

where, (i) {a,} C [0, 1], > a, = o00; (ii) limsupo, < 0; (i) y, = 0; (n = 0), Dy, <
00. Then, a, — 0 asn — oo.

Lemma 2.4 (Suzuki [17]) Let {x,} and {y,} be bounded sequence in a Banach space E and
let {B,} be a sequence in [0, 1] with O < liminf 8, < limsup 8, < 1. Suppose that x, 1 =

Buyn + (1 — Bp)x, forall integer n > 1 and lim SUPy— oo (I1Yn+1 = Yull = l1Xn41 —xull) = 0.
Then, Tim [y, — xu|| = 0.
n—00

Lemma 2.5 (See Lemma 2.1 of Ali[2]) Let E be a real smooth and uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous and convex function
g:[0,2r] — R such that g(0) = 0 and g(||x —y) < ||x||*> = 2(x, jy) + ||y||*> for all
B, ={xeE:||x|]|<r}.

Lemma 2.6 Let E be a real Banach space, f: E — E be contraction mapping with a
coefficient 0 < B < and let G: E — E be a kx—Lipschitzian and n—strongly accretive
operator with k > 0, n € (0, 1). Then for y € (0, &),

(UG =y )x — (UG =y [y, j(x — ) = (un — yP)llx — yII>, Vx,y € E.

That is, (uG — y f) is strongly accretive with coefficient (un — yB).
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226 U. G. Chidi

Let u be a linear continuous functional on [* and let a = (aj,az,---) € [°°. We will
sometimes write (,(a,) in place of the value w(a). A linear continuous functional p such
that ||| = 1 = w(1) and w,(ay) = pn(ay+1) forevery a = (ay, az, - --) € [* is called a
Banach limit. It is known that if x is a Banach limit, then

liminfa, < w(a,) < limsupa,
n— 00 n—>00

for every a = (ay, az, ...) € [*° (see, for example, [5,6])

3 Main results

In the sequel we assume for each o € (0, 1), the sequence {o;  } satisfies Zizl Oia=1—«
and for the sequence {«,} C (0, 1), {0} =1 — op.

Lemma 3.1 Let E be a g—uniformly smooth real Banach space with constant dy,q >
1. Let f: E — E be a B—contraction mapping with a coefficient § € (0,1). Let
Ti: E — Ei € N, be a family of nonexpansive maps such that F: = N2, F(T;) # ¢
and G: E — E be an n—strongly accretive mapping which is also k —Lipschizian. Let
1 -1 q
1 e (0, min[l,(dj;l,)‘ff‘}) and T: = M(n - %) For each t,a € (0, 1) with
a<tand B € (0, L). Assume that S: = ou+ (1 —8)(1 —a)l + 6 Zizl oiaT;, where §
is some fixed number in (0, 1) andu € E, o, 0;; are in (0, 1). Define the following mapping

W; on E by

Wix =ty f(x)+ U — utG)Sx.
where t isin (0,1). Then W, is a strict contraction mapping. Furthermore, forany x,y € E,
[[Wix — Wiyl < [1 —1(z = By)]llx — I
Proof Observe that, for any x,y € E
[1Sx = Syll < (1 =&)AL —a)llx = y|| +8 D 01.0lITix = Tiyl|
i>1
=1 =8I -o)flx —yll+8(1 —a)[lx — yl|
= llx =yl (3.1

qn
dgrd

1
Without loss of generality, assume n < é Then, as u < ( YT, wehave 0 < gn — pud~!
dq k4. Furthermore, from n < é we have gn — ,u‘i_ldqlcq < lsothat0) < gn— /Lq_lquq <

1. Alsoas u < 1l and r € (0, 1), we obtain that 0 < ru(gn — pﬂ’ldqlc") < 1.
For each ¢, « € (0, 1), then for any x, y € E, define K;x = (1 — tuG)Sx, then from (3.1),
we obtain
[|Kix — K y||7 = [|(1 = tuG)Sx — (1 — tuG)Sy||
= [[(Sx — Sy) — tu(G(Sx) — G(Sy)|I?
< IG(Sx) = G(SYI|? — qt (G (Sx) — G(Sy), js(Sx — Sy))
+t7udd,||Sx — Sy||?
< [0 —tplgn — 197 ™ ed )Nl x — yII9

—1
M‘i q

K dq p
<[ —qtum— T)]le =yl
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9=leaq
< [l—tu(n—%)]"llx—yll"
= (I —to)|lx — y||?,
therefore
Wix — Wiyl = [ty (f (x) — f(0) + (K (Sx) — K (Sy))l|
<tyllf(x) = fFOI+ 1K (Sx) — K (Sey)l]
<Byllx —yll+ A —to)||x — yl|
=[1 =1t —=BIllx—yll
Hence
[([Wix — Wyll < [1 —t(x — By)llx — yll, (3.2)

which implies that W; is a strict contraction, by Banach contraction mapping principle, there
exists a unique fixed point x; of W; in E. That is,

X = 1yf () + (1 — 1uG) Sx;. (3.3)

[m}

Theorem 3.2 Let E be a q-uniformly real smooth Banach space which is also uniformly

convex. Let T;, f, G, u, T, B, v, S and F be as in Lemma 3.1. Let {t,,}, {a,,} be sequences in

(0,1), such that lim t, = 0 and lim ‘;‘—" = 0. Let {x;,} be a sequence satisfying (3.3), then
n—oo

n—oo 'n
(i) {x;,} is bounded for t, € (0, 1).
(i) lim ||x;, — Tix,, || =0, VieN.
n—oo
(iii) then {x.} converges strongly to a common fixed point p in F which is a unique solution
of the variational inequality

(G =y Hp.j(p—x) <0, Vx € F. (3.4)
Proof Let p € F and o, < t,,, then

1%, = pIP = (tavf (51,) + (I = 11, G)Sx;, = p. j (xs, — P))
= t(yf(p) — uG(p), j(xs, — p)) + tay (f (x1,) — f(P), j(xs, — P))
H = tuuG)Sxy, — (I — tuG)p, j(x, — p))
<ty (p) = uG(p), j (xs, = P)) + Byitallxs, — plI?
+(1 = 1) 1Sxs, — pllllx, — pl
< ta{yf(p) — nG(p), j(xy, — P)) + Bytallx, — plI?
+( = tt)logllu — pll + (A = a)llxs, — plllx, — pll
< (Y f(p) — G (), j(xi, — P)) + [1 =t (T — yB)lIxy, — pII?
+( = ti)ayllu — pllllx;, — pll.
Since (1—1t,)(y/t,) — 0asn — o0, then there exists ng € Nsuchthat (1—t#,)(a, /1) <
(t — yB)/2 for n > ng. Furthermore
(f =1G)p, j&xi, = p))
T—yB

2
1y, = plI” =
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228 U. G. Chidi

(1 =ty u— pllllx;, — pll
4+ X
In T—yB

(3.5)

forall n > no. That is, ||x,, — p|| < (LHRZEEWIL 4 WPl for all n > no. Thus {x, } is
bounded, so are { f (x;,)}, {G (x;,)}, {Ti (x;,)} and {G(T;x;,)}.
(ii) From (3.3), we have

[0, = Sxi, 1| = tally f (x1,) — LG (Sxy,)|l = 0 as n — oo. (3.6)

Using Lemma 2.5, we have the following estimate

g(ITixy, — x, 1) = gll(p — Tixi,) — (p — x,)I1]
<|lp = Tixy, 1> = 2(p — Tixs,. j(p — x1,)) + |p — x4, 11
<|lp = Tixy, IIF = 2(p — x,, + x5, — Tixy,, j(p — x,)) + |Ip — x5, 117
< 2llp — Tix, 1> = 2(p — Tixs,, j(p — x1,)) + 24xs, — Tixy,, j(xs, — P))

< 2{xy, — Tixy,, j(xy, — P)) (3.7)
Therefore
gzgi,ng(”Tixtn —x, D = (61 —ap)xs, =3 Zo'i,nTixt,,s J(x, — p))
i>1 =3
= {on (0 — x1,) + x1, — Sx4,, j (X1, — P))
=< lanllu — x4, || + x5, — Sxg, [1l]x1, — pII.
Then we immediately obtain nl;rr;o 2i=10in8ITix;, — x4,11) = 0, it follows that

lim g(||T;x;, — x4, |]) = 0 Vi € N. By the property of g we have that

n—oo
lim ||Tix;, — x;,|| =0 Vi € N. (3.8)
n—>oo

(iii)) By Lemma 2.6, (uG — y f) is strongly accretive, so the variational inequality (3.4) has
a unique solution in F'. Below we use g € F to denote the unique solution of (3.4). Next, we
prove that x; — g (t — 0).
Let {t,} be a sequence in (0, 1) such that {x; } satisfies (3.3). By writing {x, } instead of {x; },
define amap ¢ : E — Rby

$() = pallxn — yII°, ¥y € E.

Then, ¢(y) — oo as ||y|| — oo, ¢ is continuous and convex, so as E is reflexive, there
exists ¢ € E such that ¢(q) = mignqb (u). Hence, the set
ue

K*:={y € E:¢(y) = ming(u)} # 0.
uckE
Since lim ||x, —T;ix,|| = 0, lim ||x, —T/"x,|| = 0, for anym > l andi € Nby induction.
n—oo n—oo
Now let v € K*, we have for any i € N
G(Tiv) = pallxn — Trvl1* = pallxn — Tixy + Tixy — Tyv||?
< tallxn = v|I* = $(v),

and hence T;v € K*.
Now let z € F, then z = T;z, for any i € N. Since K™ is a closed convex set, there exists a
unique v* € K* such that

llz = v*|| = min ||z — ul].
uekK*
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But, forany i € N
llz = Tiv*|l = ITiz — Tiv™|] < llz — vl
which implies v* = T;v* and so K* N F # (.
Let p e K*NF and € € (0, 1). Then, it follows that ¢ (p) < ¢ (p — (G — yf)p) and using
Lemma 2.1, we obtain that
lxe = p+€(G —y)plI* < llxa — plI* +26((G — y)p, j(xa — p+ €(G — yf)p))
which implies

wn{(vf = G)p, j(xn —p+€(G —yf)p)) =0.

Moreover,

un{yf = G)p, jxn — p)) = unl{(Vf —G)p, jxn — p) — jxn — p+ (G —yf)p))
+un((yf —G)p, jxn — p+€(G —yf)p))
Sl f=G)p, jxn—p)— jxn —p+e(G—-yfp).

Since j is norm-to-norm uniformly continuous on bounded subsets of £, and € — 0 we have
that

v f — G)p, jxn — p)) <0.

Now from (3.5) and since lim % = 0, we have

n—oo ‘n

((vf —uG)p, jlxn —p)>)
T—yp
(I =ty  Nu— pllllx, — pll
+Mn( Iy x T— yﬂ )

pallxa = I <

and so

tnllxa — plI* < 0.

Thus there exist a subsequence say {xp;} of {x,} such that lim jcoxn; = p.
By definition of Sy as Sy, xp, = ayu + (1 — 81 — ay)xy + 8> ;- 0inTix,, which

implies San/x,,/. =X, o (U — X)) 6 2is1 Oin; (Tixn; — Xn;), then limj—ooSxp; =
limj_,ooxn; = p and Sy p = p. Thus for any z € F, using (3.3) we have
) —1 .
(G (xn;) = v fxn;)s Jxn; —2)) = —(UT = 8)xn; = (L = S)p, j(xn; —2))

nj
+ /L(G.an - GS-xn/'a j(xn_,' - Z))
< wlGxn; — GSxy;0 j (X, — D)), (3.9)
since ((I — S)xn/. - - 9p, j(xnj —z)) > 0. As G is Lipschitzian and the fact that

||xn_,~ - an]' ” =< anj ||M - xnj ” + 621'21 O‘i,nj “(Tlxn, - xnj)” — 0 as .] — 00, we have
Guxp; — GSxp; — 0as j — oo. From this and (3.9), taking limit as j — oo we obtain

(WG =y Hp. j(p—2) =0.

Hence p is the unique solution of the variational inequality (3.4). Now assume there exists
another subsequence of {z, } say {x,, } such that/im_,ox,, = p*.Then, using (3.8) we have
p* € F. Repeating the above argument with p replaced by p* we can easily obtain that p*

@ Springer



230 U. G. Chidi

also solved the variational inequality (3.4). By uniqueness of the solution of the variational
inequality, we obtained that p = p* and this completes the proof. O

Theorem 3.3 Let E be a q-uniformly real smooth Banach space which is also uniformly
convex. Let T;i: E — E i € {1,2,...} be a family of nonexpansive mappings with F: =
N2 F(T;) #0.LetG : E — E beann-strongly accretive map which is also k -Lipschitzian.
Let f: E — E be a contraction map with coefficient 0 < B < 1. Let {o,} and {B,} be
sequences in (0,1) satisfying:
@) nli)ngoﬂn =0 and ;2 Bn = 00;
[0 —

(i) Doy < ocoand '11Lrgoﬂn =0;

(iii) nlingo 2is110int1 —0oinl =0and 3 ;o 0in =1 —ay.

Let w,y, and t be as in Lemma 3.1 and § € (0, 1) be fixed. define a sequence {x,};°,
iteratively in E by xog € E

Yn = aQpl + (1 - 8)(1 - an)xn +4 Zi21 Ui,nTixn
Xn+1 = Buv S (n) + U — BuirG) yy.

Then, {x,};2 converges strongly to x* € F which is also a solution to the following varia-

tional inequality

(3.10)

((Pf —uG)x*, j(y —x")) <0, VyeF. (3.11)

Proof Since (uG — y f) is strongly accretive, then the variational inequality (3.11) has a
unique solution in F. Now we show that {x,}°° | is bounded. Let p € F then, for every
i €N, T;p = p. From (3.10), we obtain

1yn = Il = llotnte + (1 = 8)(1 = ct)xn +8 D 05 Tixn — pl|
i>1
< aullu — pll+ (1 = 8)(1 = ap)llx, — pll
+8 D oinllTixa — pll

i>1
< apllu = pll + (I = an)llx, — pl|
< anllu = pll + llxn = pIl- (3.12)

Also from (3.10) and (3.12), we obtain

[1Xn+1 = pll = 1By f (en) + (I — Byt G)yn — pl
< ByBallxn — pll + Bullyf (p) — nG(p)l|
HIUT = Bt Gy, — (I — BuuG)pl|
< ByBullxn — pll + Bullyf(p) — nG(p)l|
+( =78y — pll
< ByBuallxn — pll + Bullyf (p) — nG(p)lI
+(1 = B)lanllu — pll + l1xa — pll]
< [1=Bu(r —yBlllxn — pll
+Bulllyf(p) — uG(P)Il + llu — pll]
lyf(p) — uG(p)Il+ |lu — pl|
’ T—yp

}

< max {llx, - pll
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llyf(p) = nG Il + llu— pli
’ T—yp
Therefore, {x,} is bounded. Hence {y,}, {Tix,}, {Gy,}, {GT;y,} and {f(y,)} are also
bounded.

Next, we show that lim, o ||[X,+1 — xz|| = 0. Define two sequences {},} and {z,} by
M= (1 —8)ay, + 6 and

}.

< o= max {lx = pl

_ Xn+l — Xp + AnXn

Zn =
n An
Observe that {z,,} is bounded and that
Bn+1 Bn Qp+1 Qp
z — Zull = IIx —X <( —)M — —||u
Nzn41 = Zall = [lxp41 — xpl] < vt +?»n + et [ut]]
5(1 — aus1)
HFEE = ]I =l
)\n+l
SM
|07, n+1 — Oinl
)\‘”+1 IZZI nn nn
SM
+ Tinlhntt — Al
)\,n+l ; nn n n

for some real number M := sup,,- {Ily.f () — LGOIl I Tixall, i = 1,2, ...},
This implies

lim sup([[2n+1 — 2
n—oo

| - ||xn+l _xn”) < 07

and by Lemma 2.4, we obtain

lim ||z, — x,|| = 0.
n—oo
Hence
[1Xn+1 = xpll = Apllzn — xnll = 0 as n — oo. (3.13)
and from (3.10), we also obtain
[1Xn4+1 = Yull = Bullyn f (xn) — pG(Qyn)ll - 0 as n — oo. (3.14)
from (3.13) and (3.14), we have
lim ||x, — yn|| = 0. (3.15)
n—0o0
Next we show that lim ||7;x, — x,|| = 0 for all i € N. Since p € F, using the same
n—0oo

argument in (3.7), we obtain

) )
5 Zo'i,ng(”Tixn —xul]) <6 Zai,n (xp = Tixp, j(xn — p))

iz i>1
< (81— a)xy =8 D 0inTixn, j(ta — p))
i>1
< Aan(u — xn) + X0 — Yn, j(xn — p))
< lanllu = xp |l + 1x0 = Yulllllxn — plI.
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From (3.15) and lim,,_, o @, = 0, we obtain

1im > ol Toxn — xall = 0,
i>1
it follows that for every i € N,
lim ||Tix, — x,|| = 0. (3.16)
n—0o0

Letz; =tyf(z;)) + (1 —tuG)Sz, where S: =oau+ (1 —-98)(1—a)l +6 Zizl oial;,
as in Theorem 3.1. Then,

2 —Xp =t(yf(z) — Gzy) +tu(Gzy — G(Sz)) + Sz — xp

Hence
llze — xall> = (t(f (@) — Gzo) + t1(Gzy — G(S20)) + Szr — X, j (21 — X))
=ty f(z) — uG(zs), j(@ — x1)) + tu{Gzy — G(Szr), j(zr — xn))
+(Szr — xn, j (@ — Xn))
<y f(z) — nGzy, j(ze — x0)) + turllze — Szellllze — Xall
+II18zr — xnllllze — xull
= v f(@) — Gz, j(ze —x0)) + (1 + wllze — Szelllze — xnll
Hlze = xul1? + 11Sx0 — xnlll2e — xall.
Therefore

f @) =Gz, j(xn — 20)) = (L + pi)llze — Szellllze — xnll
1
+?||an —xpllllze — xull
Now, taking limit superior as n — oo firstly, and then as ¢t — 0, we have

lim suplimsup(y f (z;) — £Gzr. j(in — 21)) < 0 (3.17)

t—0 n—>o0

Moreover, we note that

wfp) —uGp, jlxn — p)) = (v f(p) = uGp, jlxn — p)) — (v f(p) — uGp, jlxn — 21))
Hyf(p) —nGp, jlxn —z0)) — (v f(p) — nGzs, jOn — 21))
Hyf(p) —nGze, jOon —20)) — (v f(z) — nGzr, j(xn — 21))
Hyf () = uGz, jlxn — 21))

= (yf(p) — uGp, jlxn — p) — jln — z1))

+1(Gzr — Gp, j(xp — 21))
Hyf (@) —vf(p), jGn —z1))
Hyf @) — uGz, jxn — 21)) (3.13)

Taking limit superior as n — oo in (3.18), we have
lim sup(y f (p) — nGp. j(xn — p)) < limsup(y f(p) = uGp, j(xn — p) — j(xn — 21))
n—00 n—oo

111Gz — Gpl[lim sup||x, — z||

n—oo

+yf(z) — v f(p)I[lim sup||x, — z|
n—o0
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Him sup(y f(z¢) — uGzs, j(xn — 2¢))

n—oo

< limsup(y f(p) — nGp, j(xn — p) — j(xn — 21))
n—oo
+((u + 1) +ay)llz: — pllimsup||x, — z||
n—oo

+lim sup(y f(z) — nGzs, j(xn — 20)) (3.19)

n—o0

since E has a uniformly Géteaux differentiable norm, so j is norm-to-norm* uniformly
continuous on bounded subset of E. Then, from Theorem 3.1 (i.e.,z; — p (t — 07)), we
obtain

lim suplim sup(y f (p) — nGp, j(xn — p) — jxn —21)) =0,

t—0 n—>o0

hence, using (3.17) in (3.19), we obtain

lim sup(y f(p) — uGp, j(x, — p)) < limsuplim sup(y f(z;) — uGz;, j(xp — p))

n—o00 t—0 n—oo

<0

Finally, we show that x, — p. From the recursion formula (3.10), by using (2.1) and
taking n > N where N € N is large enough, we obtain

Xns1 = P = 1By f (n) = BartG(p) + (I = BatG)yn — (I — BuinG) pl|?
< NI =ButtG)yn—(I — B G)plI* + 2Bu (v f (xn) — G (p), j(Xns1 — P))
< (1= Bat)?llyn = PIF + 280y f n) — £ (D). j Gngt — P))
2B, (v f (p) = G (). j (Xns1 — D))
< anllu = pl* + (1 = Bu0)?||xa — plI?
280 (Y f (n) — Y £ (), j (g1 — D))
+2Bu (v f(p) — uG(p), j(xp+1 — p))

On the other hand

A

Y f @) = V(). j gt — P)) < ¥BlIxn — plllxng1 — Pl

yBIlu = pllllxn — pllv/en + yB(1 = BaT)llxn — plI?
+yBl1xn — pPIN2IVf Gn) = v F(P). J Gt — POV Bn
+yBllxn — pIN2IV S (P) — kG (D). J st — PNV Bn-

Since {x,} and { f (x,)} are bounded, we pick a constant Gy > 0 such that

IA

sup {yBl1xa = pllllu = pll. vBlIxa — plI (V210 Gin) = 7/ (). J Goat = P

+yBV2AS () = .G (P). a1 — P) | < Go.¥n € .

Therefore

(V) =V F(P)s j st — p)) < ¥B(L = BaD)|lxn — pII*> + Go(/an + v/ Bn)

Hence

xnt1 — Pl < anllu — plI* + (1 = Bu0) 1% — plI?
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+2B,yB( = BuD)|1xn — pII* + 282 Go (o + v/ Bn)
2By F(P) — RG (D), j (Xnt1 — P))

= [1=28.0 = BiO)@ = ¥B) |10 = PIP + allu = 2
+262Go (ot +v/Bn) + 2By £ (p) = uG(p). j Ctns1 = p))
= [1= 81 = 0@ = ¥B) |I1a = pI + 60

where 6,: = f, (an/ﬂnllu — pIP+2Go(Jetn+Ba)-+2(vf (P) = 1G(p), j (1 —p)>)
By using Lemma 2.3 we obtain x, — p as n — oo. This complete the proof. O

Corollary 3.4 Let H be a real Hilbert space, {z;};c(0,1), be as in Theorem 3.2. Then {z;}
converges strongly to a common fixed points of the family {T;}{°, say p which is a unique
solution of the variational inequality

((rG —vf)p,q—p) =0, Vg eF.

Corollary 3.5 Let H be a real Hilbert space and let C a nonempty closed convex subset of
H.LetG: H— H, f: E— E (T;}2, F, {an}o2 1, {Ba}2 | and {x,};2 | be as in Theorem

n=1
(3.1), then {x,}2, converges strongly to p € F, which is also the unique solution of the

variational inequality
vf(p) —nGp.q—p) =0, Vg € F
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