

Modified general iterative algorithm for an infinite family of nonexpansive mappings in Banach spaces

Ugwunnadi Godwin Chidi¹

Received: 17 March 2015 / Accepted: 18 July 2016 / Published online: 26 July 2016 © African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we introduce an iterative method for finding a common fixed point of an infinite family of nonexpansive mappings in q-uniformly real smooth Banach space which is also uniformly convex. We proved strong convergence of the proposed iterative algorithms to the unique solution of a variational inequality problem.

Keywords Fixed point · Strongly accretive mapping · Nonexpansive mapping · Uniformly smooth and convex Banach spaces

Mathematics Subject Classification 47H09 · 47J25

1 Introduction

Let E be a real Banach space and E^* be the dual space of E. A mapping $\varphi \colon [0, \infty) \to [0, \infty)$ is called a guage function if it is strictly increasing, continuous and $\varphi(0) = 0$. Let φ be a gauge function, a generalized duality mapping with respect to φ , $J_{\varphi} \colon E \to 2^{E^*}$ is defined by, $x \in E$,

$$J_{\varphi}x = \{x^* \in E^* : \langle x, x^* \rangle = ||x||\varphi(||x||), ||x^*|| = \varphi(||x||)\},\$$

where $\langle .,. \rangle$ denotes the duality pairing between element of E and that of E^* . If $\varphi(t) = t$, then J_{φ} is simply called the normalized duality mapping and is denoted by J. For any $x \in E$, an element of $J_{\varphi}x$ is denoted by $j_{\varphi}x$.

If however $\varphi(t) = t^{q-1}$, for some q > 1, then J_{φ} is still called the generalized duality mapping and is denoted by J_q (see, for example [1,5]).

Department of Mathematics, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria

[☑] Ugwunnadi Godwin Chidi ugwunnadi4u@yahoo.com

Let S(E): = $\{x \in E : ||x|| = 1\}$ be the unit sphere of E. Then space E is said to have Gâteaux differentiable norm if for any $x \in S(E)$ the limit

$$\lim_{\lambda \to 0} \frac{\|x + \lambda y\| - \|x\|}{\lambda} \tag{1.1}$$

exists $\forall y \in S(E)$. The norm of E is said to be uniformly $G\hat{a}$ teaux differentiable if for each $y \in S(E)$, the limit (1.1) is attained uniformly for $x \in S(E)$. If E has a uniformly $G\hat{a}$ teaux differentiable norm, then $j: E \to E^*$ is uniformly continuous on bounded subsets of E to the weak* topology of E^* .

A mapping $G: D(G) \subset E \to E$ is said to be *accretive* if for all $x, y \in D(G)$, there exists $j_q(x-y) \in J_q(x-y)$ such that

$$\langle Gx - Gy, j_q(x - y) \rangle \ge 0,$$
 (1.2)

where D(G) denote the domain of G. G is called $\eta - strongly$ accretive if for all $x, y \in D(G)$, there exists $j_q(x - y) \in J_q(x - y)$ and $\eta \in (0, 1)$ such that

$$\langle Gx - Gy, j_q(x - y) \rangle \ge \eta ||x - y||^q, \tag{1.3}$$

Let K be a nonempty, closed and convex subset of E and $G: K \to E$ be a nonlinear mapping. The variational inequality problem is to:

find
$$u \in K$$
 such that $\langle Gu, j_q(v-u) \rangle \geq 0, \ \forall v \in K$,

for some $j_q(v-u) \in J_q(v-u)$. The set of solution of variational inequality problem is denoted by VI(K,G). If E:=H, a real Hilbert space, the variational inequality problem reduces to:

find
$$u \in K$$
 such that $\langle Gu, v - u \rangle \ge 0$, $\forall v \in K$,

which was introduced and studied by Stampacchia [16].

Variational inequality theory has emerged as an important tool in studying a wide class of related problems in Mathematical, Physical, regional, engineering and nonlinear optimization sciences (see, for instance, [8,9,11,15,24–26]).

A mapping $T: E \to E$ is L-Lipschitian if for some L>0, $||Tx-Ty|| \le L||x-y|| \ \forall \ x, \ y \in E$. If $L \in [0,1)$, then T is called contraction mapping, but if $L \le 1$, then T is called nonexpansive mapping. A point $x \in E$ is called a fixed point of T if Tx = x. The set of fixed points of T is denoted by F(T): $= \{x \in E: Tx = x\}$. In Hilbert spaces H, accretive operators are called monotone where inequality (1.2) and (1.3) hold with j_q replaced by the identity map on H.

In 2000, Moudafi [14] introduced the viscosity approximation method for nonexpansive mappings. Let f be a contraction on H, starting with an arbitrary $x_0 \in H$, define a sequence $\{x_n\}$ recursively by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T x_n, \quad n > 0, \tag{1.4}$$

where $\{\alpha_n\}$ is a sequence in (0,1). Xu [21] proved that under certain appropriate conditions on $\{\alpha_n\}$, the sequence $\{x_n\}$ generated by (1.4) strongly converges to the unique solution x^* in F of the variational inequality

$$\langle (I - f)x^*, x - x^* \rangle \ge 0$$
, for $x \in F$.

In [19], he proved, under some conditions on the real sequence $\{\alpha_n\}$, that the sequence $\{x_n\}$ defined by $x_0 \in H$ chosen arbitrary,

$$x_{n+1} = \alpha_n b + (1 - \alpha_n A) T x_n, \quad n \ge 0, \tag{1.5}$$

converges strongly to $x^* \in F$ which is the unique solution of the minimization problem

$$\min_{x \in F} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle,$$

where A is a strongly positive bounded linear operator. That is, there is a constant $\bar{\gamma} > 0$ with the property

$$\langle Ax, x \rangle \ge \bar{\gamma} ||x||^2, \ \forall x \in H.$$

Combining the iterative method (1.4) and (1.5), Marino and Xu [13] consider the following general iterative method:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n A) T x_n, \quad n \ge 0, \tag{1.6}$$

they proved that if the sequence $\{\alpha_n\}$ of parameters satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (1.6) converges strongly to $x^* \in F$ which solves the variational inequality

$$\langle (\gamma f - A)x^*, x - x^* \rangle < 0 \ x \in F,$$

which is the optimality condition for the minimization problem

$$\min_{x \in F} \frac{1}{2} \langle Ax, x \rangle - h(x),$$

where h is a potential function for γf (i.e. $h'(x) = \gamma f(x)$ for $x \in H$).

On the other hand, Yamada [24] in 2001 introduced the following hybrid iterative method:

$$x_{n+1} = Tx_n - \lambda_n \mu GTx_n, \quad n \ge 0, \tag{1.7}$$

where G is a κ -Lipschitzian and η -strongly monotone operator with $\kappa > 0$, $\eta > 0$ and $0 < \mu < 2\eta/\kappa^2$. Under some appropriate conditions, he proved that the sequence $\{x_n\}$ generated by (1.7) converges strongly to the unique solution of the variational inequality

$$\langle Gx^*, x - x^* \rangle > 0, \ \forall x \in F.$$

Recently, combining (1.6) and (1.7), Tian [18] considered the following general iterative method:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n \mu G) T(x_n),$$
 (1.8)

and proved that the sequence $\{x_n\}$ generated by (1.8) converges strongly to the unique solution $x^* \in F$ of the variational inequality

$$\langle (\gamma f - \mu G)x^*, x - x^* \rangle \le 0, \ \forall x \in F.$$

Most recently, Ali et al [4], extended the result of Tian [18] to q-uniformly smooth Banach space whose duality mapping is weakly sequentially continuous. Under some assumptions on $\{\alpha_n\}$, γ , μ and G being η -accretive mapping in (1.8), they proved that the sequence $\{x_n\}$ generated by (1.8) converges strongly to the unique solution $x^* \in F$ of the variational inequality

$$\langle (\gamma f - \mu G) x^*, j(x - x^*) \rangle < 0, \forall x \in F.$$

Let $\{T_i\}$ be countable family of nonexpansive mapping. We denote by a set N_I : $= \{i \in \mathbb{N}: T_i \neq I\}$ (I being the identity mapping on E). Maingé [12] studied the Halpern-type scheme for approximation of a common fixed point of *countable infinite* family of nonexpansive mappings in a real Hilbert space. He proved the following theorems.

Theorem 1.1 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}$ be countable family of nonexpansive self-mappings of K, $\{t_n\}$ and $\{\sigma_{i,t_n}\}$ be sequences in (0,1) satisfying the following conditions: (i) $\lim t_n = 0$, (ii) $\sum_{i \ge 1} \sigma_{i,t_n} = 1 - t_n$, (iii) $\forall i \in N_I$, $\lim_{t \to \infty} \frac{t_n}{\sigma_{i,t_n}} = 0$. Define a fixed point sequence $\{x_{t_n}\}$ by

$$x_{t_n} = t_n C x_{t_n} + \sum_{i \ge 1} \sigma_{i, t_n} T_i x_{t_n}, \quad n \ge 1,$$
(1.9)

where $C: K \to K$ is a strict contraction. Assume $F: = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$, the $\{x_{t_n}\}$ converges strongly to a unique fixed point of the contraction $P_F \circ C$, where P_F is a metric projection from H onto F.

Theorem 1.2 (Maingé [12]) Let K be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_i\}$ be countable family of nonexpansive self-mappings of K, $\{\alpha_n\}$ and $\{\sigma_{i,n}\}$ be sequences in (0,1) satisfying the following conditions:

(i)
$$\sum \alpha_n = \infty$$
, $\sum_{i>1} \sigma_{i,n} = 1 - \alpha_n$,

(ii)
$$\begin{cases} \frac{1}{\sigma_{i,n}} \left| 1 - \frac{\alpha_{n-1}}{\alpha_n} \right| \to 0, & or \sum_{n} \frac{1}{\sigma_{i,n}} |\alpha_{n-1} - \alpha_n| < \infty \\ \frac{1}{\alpha_n} \left| \frac{1}{\sigma_{i,n}} - \frac{1}{\sigma_{i,n-1}} \right| \to 0, & or \sum_{n} \left| \frac{1}{\sigma_{i,n}} - \frac{1}{\sigma_{i,n-1}} \right| < \infty \\ \frac{1}{\sigma_{i,n}\alpha_n} \sum_{k \ge 0} |\sigma_{k,n} - \sigma_{k,n-1}| \to 0, & or \frac{1}{\sigma_{i,n}} \sum_{k \ge 0} |\sigma_{k,n} - \sigma_{k,n-1}| < \infty. \end{cases}$$

(iii)
$$\forall i \in N_I$$
, $\lim_{n \to \infty} \frac{\alpha_n}{\sigma_{i,n}} = 0$.

Then, the sequence $\{x_n\}$ define iteratively by $x_1 \in K$,

$$x_{n+1} = \alpha_n C x_n + \sum_{i>1} \sigma_{i,n} T_i x_n, \quad n \ge 1,$$
 (1.10)

where $C: K \to K$ is a strict contraction. Assume $F: = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$, the $\{x_n\}$ converges strongly to a unique fixed point of the contraction $P_F \circ C$, where P_F is a metric projection from H onto F.

Motivated by the results above, we introduce an iterative method for finding a common fixed point of an infinite family of nonexpansive mappings in *q*-uniformly real smooth Banach space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality problem.

2 Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space E and let the diameter of K be defined by d(K): = $\sup\{\|x - y\| : x, y \in K\}$. For each $x \in K$, let $r(x, K) := \sup\{\|x - y\| : y \in K\}$ and let $r(K) := \inf\{r(x, K) : x \in K\}$ denote the Chebyshev radius of K relative to itself. The *normal structure coefficient* N(E) of E (introduced in 1980 by Bynum [3], see also Lim [10] and the references contained therein) is

defined by $N(E) := \inf \{ \frac{d(K)}{r(K)} : K \text{ is a closed convex and bounded subset of } E \text{ with } d(K) > 0 \}.$ A Banach space E such that N(E) > 1 is said to have *uniform normal structure*. It is known that every Banach space with a uniform normal structure is reflexive, and that all uniformly convex and uniformly smooth Banach spaces have uniform normal structure (see e.g., [5,23]).

Let *E* be a normed space with dimE ≥ 2 . The *modulus of smoothness* of *E* is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$\rho_E(\tau) := \sup \left\{ \frac{||x+y|| + ||x-y||}{2} - 1 : ||x|| = 1; ||y|| = \tau \right\}.$$

The space E is called $uniformly \ smooth$ if and only if $\lim_{t\to 0^+} \frac{\rho_E(t)}{t} = 0$. For some positive constant $q\in E$ is called $q-uniformly \ smooth$ if there exists a constant c>0 such that $\rho_E(t)\leq ct^q$, t>0. It is well known that if E is smooth then the duality mapping is singled-valued, and if E is uniformly smooth then the duality mapping is norm-to-norm uniformly continuous on bounded subset of E.

Lemma 2.1 *Let E be a real normed space. Then*

$$||x + y||^2 \le ||x||^2 + 2\langle y, j(x + y)\rangle,$$

for all $x, y \in E$ and for all $j(x + y) \in J(x + y)$.

Lemma 2.2 (Xu, [22]) Let E be a real q-uniformly smooth Banach space for some q > 1, then there exists some positive constant d_q such that

$$||x + y||^q \le ||x||^q + q\langle y, j_q(x)\rangle + d_q||y||^q \ \forall x, y \in E \ and \ j_q \in J_q(x).$$

Lemma 2.3 (Xu, [21]) Let $\{a_n\}$ be a sequence of nonegative real numbers satisfying the following relation:

$$a_{n+1} \le (1 - \alpha_n)a_n + \alpha_n \sigma_n + \gamma_n, \ n \ge 0$$

where, (i) $\{\alpha_n\} \subset [0, 1]$, $\sum \alpha_n = \infty$; (ii) $\limsup \sigma_n \leq 0$; (iii) $\gamma_n \geq 0$; $(n \geq 0)$, $\sum \gamma_n < \infty$. Then, $a_n \to 0$ as $n \to \infty$.

Lemma 2.4 (Suzuki [17]) Let $\{x_n\}$ and $\{y_n\}$ be bounded sequence in a Banach space E and let $\{\beta_n\}$ be a sequence in [0, 1] with $0 < \liminf \beta_n \le \limsup \beta_n < 1$. Suppose that $x_{n+1} = \beta_n y_n + (1 - \beta_n) x_n$ for all integer $n \ge 1$ and $\limsup_{n \to \infty} (||y_{n+1} - y_n|| - ||x_{n+1} - x_n||) \le 0$. Then, $\lim_{n \to \infty} ||y_n - x_n|| = 0$.

Lemma 2.5 (See Lemma 2.1 of Ali [2]) Let E be a real smooth and uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, 2r] \to R$ such that g(0) = 0 and $g(||x - y|) \le ||x||^2 - 2\langle x, jy \rangle + ||y||^2$ for all $B_r = \{x \in E: ||x|| \le r\}$.

Lemma 2.6 Let E be a real Banach space, $f: E \to E$ be contraction mapping with a coefficient $0 < \beta <$ and let $G: E \to E$ be a κ -Lipschitzian and η -strongly accretive operator with $\kappa > 0$, $\eta \in (0, 1)$. Then for $\gamma \in (0, \frac{\mu \eta}{B})$,

$$\langle (\mu G - \gamma f) x - (\mu G - \gamma f) y, \, j(x-y) \rangle \geq (\mu \eta - \gamma \beta) ||x-y||^2, \, \forall x,y \in E.$$

That is, $(\mu G - \gamma f)$ is strongly accretive with coefficient $(\mu \eta - \gamma \beta)$.

Let μ be a linear continuous functional on l^{∞} and let $a=(a_1,a_2,\cdots)\in l^{\infty}$. We will sometimes write $\mu_n(a_n)$ in place of the value $\mu(a)$. A linear continuous functional μ such that $||\mu||=1=\mu(1)$ and $\mu_n(a_n)=\mu_n(a_{n+1})$ for every $a=(a_1,a_2,\cdots)\in l^{\infty}$ is called a *Banach limit*. It is known that if μ is a Banach limit, then

$$\liminf_{n\to\infty} a_n \le \mu(a_n) \le \limsup_{n\to\infty} a_n$$

for every $a = (a_1, a_2, ...) \in l^{\infty}$ (see, for example, [5,6])

3 Main results

In the sequel we assume for each $\alpha \in (0, 1)$, the sequence $\{\sigma_{i,\alpha}\}$ satisfies $\sum_{i\geq 1} \sigma_{i,\alpha} = 1 - \alpha$ and for the sequence $\{\alpha_n\} \subset (0, 1), \{\sigma_{i,n}\} = 1 - \alpha_n$.

Lemma 3.1 Let E be a q-uniformly smooth real Banach space with constant $d_q, q > 1$. Let $f: E \to E$ be a β -contraction mapping with a coefficient $\beta \in (0,1)$. Let $T_i: E \to E$ $i \in N$, be a family of nonexpansive maps such that $F: = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$ and $G: E \to E$ be an η -strongly accretive mapping which is also κ -Lipschizian. Let $\mu \in \left(0, \min\left\{1, (\frac{q\eta}{d_q \kappa^q})^{\frac{1}{q-1}}\right\}\right)$ and $\tau: = \mu\left(\eta - \frac{\mu^{q-1}d_q\kappa^q}{q}\right)$. For each $t, \alpha \in (0,1)$ with $\alpha < t$ and $\beta \in (0, \frac{\tau}{\gamma})$. Assume that $S: = \alpha u + (1-\delta)(1-\alpha)I + \delta \sum_{i \geq 1} \sigma_{i,\alpha} T_i$, where δ is some fixed number in (0,1) and $u \in E$, α , $\sigma_{i,t}$ are in (0,1). Define the following mapping W_t on E by

$$W_t x := t \gamma f(x) + (I - \mu t G) S x.$$

where t is in (0,1). Then W_t is a strict contraction mapping. Furthermore, for any $x, y \in E$,

$$||W_t x - W_t y|| < [1 - t(\tau - \beta \gamma)]||x - y||$$

Proof Observe that, for any $x, y \in E$

$$||Sx - Sy|| \le (1 - \delta)(1 - \alpha)||x - y|| + \delta \sum_{i \ge 1} \sigma_{i,\alpha} ||T_i x - T_i y||$$

$$\le (1 - \delta)(1 - \alpha)||x - y|| + \delta(1 - \alpha)||x - y||$$

$$\le ||x - y||.$$
(3.1)

Without loss of generality, assume $\eta < \frac{1}{q}$. Then, as $\mu < (\frac{q\eta}{d_q\kappa^q})^{\frac{1}{q-1}}$, we have $0 < q\eta - \mu^{q-1}d_q\kappa^q$. Furthermore, from $\eta < \frac{1}{q}$ we have $q\eta - \mu^{q-1}d_q\kappa^q < 1$ so that $0 < q\eta - \mu^{q-1}d_q\kappa^q < 1$. Also as $\mu < 1$ and $t \in (0,1)$, we obtain that $0 < t\mu(q\eta - \mu^{q-1}d_q\kappa^q) < 1$. For each $t, \alpha \in (0,1)$, then for any $x,y \in E$, define $K_t x = (1-t\mu G)Sx$, then from (3.1), we obtain

$$\begin{aligned} ||K_{t}x - K_{t}y||^{q} &= ||(1 - t\mu G)Sx - (1 - t\mu G)Sy||^{q} \\ &= ||(Sx - Sy) - t\mu(G(Sx) - G(Sy))||^{q} \\ &\leq ||G(Sx) - G(Sy)||^{q} - qt\mu\langle G(Sx) - G(Sy), j_{q}(Sx - Sy)\rangle \\ &+ t^{q}\mu^{q}d_{q}||Sx - Sy||^{q} \\ &\leq [1 - t\mu(q\eta - t^{q-1}\mu^{q-1}\kappa^{q}d_{q})]||x - y||^{q} \\ &\leq [1 - qt\mu(\eta - \frac{\mu^{q-1}\kappa^{q}d_{q}}{q})]||x - y||^{q} \end{aligned}$$

$$\leq [1 - t\mu(\eta - \frac{\mu^{q-1}\kappa^q d_q}{q})]^q ||x - y||^q$$

= $(1 - t\tau)^q ||x - y||^q$,

therefore

$$||W_{t}x - W_{t}y|| = ||t\gamma(f(x) - f(y)) + (K_{t}(Sx) - K_{t}(Sy))||$$

$$\leq t\gamma||f(x) - f(y)|| + ||K_{t}(Sx) - K_{t}(S_{t}y)||$$

$$\leq t\beta\gamma||x - y|| + (1 - t\tau)||x - y||$$

$$= [1 - t(\tau - \beta\gamma)]||x - y||.$$

Hence

$$||W_t x - W_t y|| \le [1 - t(\tau - \beta \gamma)]||x - y||, \tag{3.2}$$

which implies that W_t is a strict contraction, by Banach contraction mapping principle, there exists a unique fixed point x_t of W_t in E. That is,

$$x_t = t\gamma f(x_t) + (1 - t\mu G)Sx_t. \tag{3.3}$$

Theorem 3.2 Let E be a q-uniformly real smooth Banach space which is also uniformly convex. Let T_i , f, G, μ , τ , β , γ , S and F be as in Lemma 3.1. Let $\{t_n\}$, $\{\alpha_n\}$ be sequences in (0,1), such that $\lim_{n\to\infty} t_n = 0$ and $\lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$. Let $\{x_{t_n}\}$ be a sequence satisfying (3.3), then

- (i) $\{x_{t_n}\}$ is bounded for $t_n \in (0, \frac{1}{\tau})$.
- (ii) $\lim_{n\to\infty} ||x_{t_n} T_i x_{t_n}|| = 0$, $\forall i \in \mathbb{N}$.
- (iii) then $\{x_{t_0}\}$ converges strongly to a common fixed point p in F which is a unique solution of the variational inequality

$$\langle (\mu G - \gamma f) p, j(p - x) \rangle \le 0, \quad \forall x \in F.$$
 (3.4)

Proof Let $p \in F$ and $\alpha_n < t_n$, then

$$\begin{aligned} ||x_{t_{n}} - p||^{2} &= \langle t_{n} \gamma f(x_{t_{n}}) + (I - \mu t_{n} G) S x_{t_{n}} - p, j(x_{t_{n}} - p) \rangle \\ &= t_{n} \langle \gamma f(p) - \mu G(p), j(x_{t_{n}} - p) \rangle + t_{n} \gamma \langle f(x_{t_{n}}) - f(p), j(x_{t_{n}} - p) \rangle \\ &+ \langle (I - t_{n} \mu G) S x_{t_{n}} - (I - t_{n} \mu G) p, j(x_{t_{n}} - p) \rangle \\ &\leq t_{n} \langle \gamma f(p) - \mu G(p), j(x_{t_{n}} - p) \rangle + \beta \gamma t_{n} ||x_{t_{n}} - p||^{2} \\ &+ (1 - \tau t_{n}) ||S x_{t_{n}} - p||||x_{t_{n}} - p|| \\ &\leq t_{n} \langle \gamma f(p) - \mu G(p), j(x_{t_{n}} - p) \rangle + \beta \gamma t_{n} ||x_{t_{n}} - p||^{2} \\ &+ (1 - \tau t_{n}) [\alpha_{n} ||u - p|| + (1 - \alpha_{n}) ||x_{t_{n}} - p||]||x_{t_{n}} - p|| \\ &\leq t_{n} \langle \gamma f(p) - \mu G(p), j(x_{t_{n}} - p) \rangle + [1 - t_{n} (\tau - \gamma \beta) ||x_{t_{n}} - p||^{2} \\ &+ (1 - \tau t_{n}) \alpha_{n} ||u - p||||x_{t_{n}} - p||. \end{aligned}$$

Since $(1-\tau t_n)(\alpha_n/t_n) \to 0$ as $n \to \infty$, then there exists $n_0 \in \mathbb{N}$ such that $(1-\tau t_n)(\alpha_n/t_n) < (\tau - \gamma \beta)/2$ for $n \ge n_0$. Furthermore

$$||x_{t_n} - p||^2 \le \frac{\langle (\gamma f - \mu G) p, j(x_{t_n} - p) \rangle}{\tau - \gamma \beta}$$

$$+\frac{(1-\tau t_n)\alpha_n}{t_n} \times \frac{||u-p||||x_{t_n}-p||}{\tau-\gamma\beta}$$
(3.5)

for all $n \ge n_0$. That is, $||x_{t_n} - p|| \le (\frac{||\gamma f(p) - \mu G(p)||}{\tau - \gamma \beta} + \frac{||u - p||}{2})$ for all $n \ge n_0$. Thus $\{x_{t_n}\}$ is bounded, so are $\{f(x_{t_n})\}, \{G(x_{t_n})\}, \{T_i(x_{t_n})\}$ and $\{G(T_i x_{t_n})\}$.

(ii) From (3.3), we have

$$||x_{t_n} - Sx_{t_n}|| = t_n ||\gamma f(x_{t_n}) - \mu G(Sx_{t_n})|| \to 0 \text{ as } n \to \infty.$$
 (3.6)

Using Lemma 2.5, we have the following estimate

$$g(||T_{i}x_{t_{n}} - x_{t_{n}}||) = g[||(p - T_{i}x_{t_{n}}) - (p - x_{t_{n}})||]$$

$$\leq ||p - T_{i}x_{t_{n}}||^{2} - 2\langle p - T_{i}x_{t_{n}}, j(p - x_{t_{n}})\rangle + ||p - x_{t_{n}}||^{2}$$

$$\leq ||p - T_{i}x_{t_{n}}||^{2} - 2\langle p - x_{t_{n}} + x_{t_{n}} - T_{i}x_{t_{n}}, j(p - x_{t_{n}})\rangle + ||p - x_{t_{n}}||^{2}$$

$$\leq 2||p - T_{i}x_{t_{n}}||^{2} - 2\langle p - T_{i}x_{t_{n}}, j(p - x_{t_{n}})\rangle + 2\langle x_{t_{n}} - T_{i}x_{t_{n}}, j(x_{t_{n}} - p)\rangle$$

$$\leq 2\langle x_{t_{n}} - T_{i}x_{t_{n}}, j(x_{t_{n}} - p)\rangle$$

$$(3.7)$$

Therefore

$$\frac{\delta}{2} \sum_{i \geq 1} \sigma_{i,n} g(||T_i x_{t_n} - x_{t_n}||) \leq \langle \delta(1 - \alpha_n) x_{t_n} - \delta \sum_{i \geq 1} \sigma_{i,n} T_i x_{t_n}, j(x_{t_n} - p) \rangle
= \langle \alpha_n (u - x_{t_n}) + x_{t_n} - S x_{t_n}, j(x_{t_n} - p) \rangle
\leq [\alpha_n ||u - x_{t_n}|| + ||x_{t_n} - S x_{t_n}||]||x_{t_n} - p||.$$

Then we immediately obtain $\lim_{n\to\infty}\sum_{i\geq 1}\sigma_{i,n}g(||T_ix_{t_n}-x_{t_n}||)=0$, it follows that $\lim_{n\to\infty}g(||T_ix_{t_n}-x_{t_n}||)=0$ $\forall i\in\mathbb{N}.$ By the property of g we have that

$$\lim_{n \to \infty} ||T_i x_{t_n} - x_{t_n}|| = 0 \quad \forall i \in \mathbb{N}.$$

$$(3.8)$$

(iii) By Lemma 2.6, $(\mu G - \gamma f)$ is strongly accretive, so the variational inequality (3.4) has a unique solution in F. Below we use $q \in F$ to denote the unique solution of (3.4). Next, we prove that $x_t \to q$ $(t \to 0)$.

Let $\{t_n\}$ be a sequence in (0, 1) such that $\{x_{t_n}\}$ satisfies (3.3). By writing $\{x_n\}$ instead of $\{x_{t_n}\}$, define a map $\phi : E \to \mathbb{R}$ by

$$\phi(y) := \mu_n ||x_n - y||^2, \ \forall y \in E.$$

Then, $\phi(y) \to \infty$ as $||y|| \to \infty$, ϕ is continuous and convex, so as E is reflexive, there exists $q \in E$ such that $\phi(q) = \min_{u \in F} \phi(u)$. Hence, the set

$$K^* := \{ y \in E : \phi(y) = \min_{u \in E} \phi(u) \} \neq \emptyset.$$

Since $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$, $\lim_{n\to\infty} ||x_n - T_i^m x_n|| = 0$, for any $m \ge 1$ and $i \in \mathbb{N}$ by induction. Now let $v \in K^*$, we have for any $i \in \mathbb{N}$

$$\phi(T_i v) = \mu_n ||x_n - T_i v||^2 = \mu_n ||x_n - T_i x_n + T_i x_n - T_i v||^2$$

$$< \mu_n ||x_n - v||^2 = \phi(v),$$

and hence $T_i v \in K^*$.

Now let $z \in F$, then $z = T_i z$, for any $i \in \mathbb{N}$. Since K^* is a closed convex set, there exists a unique $v^* \in K^*$ such that

$$||z - v^*|| = \min_{u \in K^*} ||z - u||.$$

But, for any $i \in \mathbb{N}$

$$||z - T_i v^*|| = ||T_i z - T_i v^*|| \le ||z - v^*||,$$

which implies $v^* = T_i v^*$ and so $K^* \cap F \neq \emptyset$.

Let $p \in K^* \cap F$ and $\epsilon \in (0, 1)$. Then, it follows that $\phi(p) \le \phi(p - \epsilon(G - \gamma f)p)$ and using Lemma 2.1, we obtain that

$$||x_n - p + \epsilon(G - \gamma f)p||^2 \le ||x_n - p||^2 + 2\epsilon \langle (G - \gamma f)p, j(x_n - p + \epsilon(G - \gamma f)p) \rangle$$

which implies

$$\mu_n \langle (\gamma f - G) p, j(x_n - p + \epsilon (G - \gamma f) p) \rangle \leq 0.$$

Moreover.

$$\mu_{n}\langle (\gamma f - G)p, j(x_{n} - p) \rangle = \mu_{n}\langle (\gamma f - G)p, j(x_{n} - p) - j(x_{n} - p + \epsilon(G - \gamma f)p) \rangle$$

$$+\mu_{n}\langle (\gamma f - G)p, j(x_{n} - p + \epsilon(G - \gamma f)p) \rangle$$

$$\leq \mu_{n}\langle (\gamma f - G)p, j(x_{n} - p) - j(x_{n} - p + \epsilon(G - \gamma f)p) \rangle.$$

Since j is norm-to-norm uniformly continuous on bounded subsets of E, and $\epsilon \to 0$ we have that

$$\mu_n\langle (\gamma f - G)p, j(x_n - p)\rangle \leq 0.$$

Now from (3.5) and since $\lim_{n\to\infty} \frac{\alpha_n}{t_n} = 0$, we have

$$\begin{aligned} \mu_n ||x_n - p||^2 &\leq \mu_n \Big(\frac{\langle (\gamma f - \mu G) p, j(x_n - p) \rangle}{\tau - \gamma \beta} \Big) \\ &+ \mu_n \Big(\frac{(1 - \tau t_n) \alpha_n}{t_n} \times \frac{||u - p|| ||x_n - p||}{\tau - \gamma \beta} \Big) \end{aligned}$$

and so

$$\mu_n \|x_n - p\|^2 \le 0.$$

Thus there exist a subsequence say $\{x_{n_j}\}$ of $\{x_n\}$ such that $\lim_{j\to\infty}x_{n_j}=p$. By definition of S_{α} as $S_{\alpha_n}x_n:=\alpha_nu+(1-\delta)(1-\alpha_n)x_n+\delta\sum_{i\geq 1}\sigma_{i,n}T_ix_n$, which implies $S_{\alpha_{n_j}}x_{n_j}:=x_{n_j}+\alpha_{n_j}(u-x_{n_j})+\delta\sum_{i\geq 1}\sigma_{i,n_j}(T_ix_{n_j}-x_{n_j})$, then $\lim_{j\to\infty}Sx_{n_j}=\lim_{j\to\infty}x_{n_j}=p$ and $S_{\alpha}p=p$. Thus for any $z\in F$, using (3.3) we have

$$\langle \mu G(x_{n_j}) - \gamma f(x_{n_j}), j(x_{n_j} - z) \rangle = \frac{-1}{t_{n_j}} \langle (I - S)x_{n_j} - (I - S)p, j(x_{n_j} - z) \rangle$$

$$+ \mu \langle Gx_{n_j} - GSx_{n_j}, j(x_{n_j} - z) \rangle$$

$$\leq \mu \langle Gx_{n_i} - GSx_{n_i}, j(x_{n_i} - z) \rangle, \tag{3.9}$$

since $\langle (I-S)x_{n_j}-(I-S)p,j(x_{n_j}-z)\rangle\geq 0$. As G is Lipschitzian and the fact that $\|x_{n_j}-Sx_{n_j}\|\leq \alpha_{n_j}\|u-x_{n_j}\|+\delta\sum_{i\geq 1}\sigma_{i,n_j}\|(T_ix_{n_j}-x_{n_j})\|\to 0$ as $j\to\infty$, we have $Gx_{n_j}-GSx_{n_j}\to 0$ as $j\to\infty$. From this and (3.9), taking limit as $j\to\infty$ we obtain

$$\langle (\mu G - \gamma f) p, j(p-z) \rangle \leq 0.$$

Hence p is the unique solution of the variational inequality (3.4). Now assume there exists another subsequence of $\{z_n\}$ say $\{x_{n_k}\}$ such that $\lim_{k\to\infty}x_{n_k}=p^*$. Then, using (3.8) we have $p^* \in F$. Repeating the above argument with p replaced by p^* we can easily obtain that p^*

also solved the variational inequality (3.4). By uniqueness of the solution of the variational inequality, we obtained that $p = p^*$ and this completes the proof.

Theorem 3.3 Let E be a a-uniformly real smooth Banach space which is also uniformly convex. Let $T_i: E \to E$ $i \in \{1, 2, \ldots\}$ be a family of nonexpansive mappings with $F: = \{1, 2, \ldots\}$ $\bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$. Let $G: E \to E$ be an η -strongly accretive map which is also κ -Lipschitzian. Let $f: E \to E$ be a contraction map with coefficient $0 < \beta < 1$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in (0,1) satisfying:

- (i) $\lim_{n \to \infty} \beta_n = 0$ and $\sum_{n=0}^{\infty} \beta_n = \infty$; (ii) $\sum_{n=0}^{\infty} \alpha_n < \infty$ and $\lim_{n \to \infty} \frac{\alpha_n}{\beta_n} = 0$;
- (iii) $\lim_{i \to \infty} \sum_{i>1} |\sigma_{i,n+1} \sigma_{i,n}| = 0$ and $\sum_{i>1} \sigma_{i,n} = 1 \alpha_n$.

Let μ, γ , and τ be as in Lemma 3.1 and $\delta \in (0,1)$ be fixed. define a sequence $\{x_n\}_{n=1}^{\infty}$ iteratively in E by $x_0 \in E$

$$\begin{cases} y_n = \alpha_n u + (1 - \delta)(1 - \alpha_n)x_n + \delta \sum_{i \ge 1} \sigma_{i,n} T_i x_n \\ x_{n+1} = \beta_n \gamma f(x_n) + (I - \beta_n \mu G) y_n. \end{cases}$$
(3.10)

Then, $\{x_n\}_{n=1}^{\infty}$ converges strongly to $x^* \in F$ which is also a solution to the following variational inequality

$$\langle (\gamma f - \mu G) x^*, j(y - x^*) \rangle \le 0, \quad \forall y \in F.$$
(3.11)

Proof Since $(\mu G - \gamma f)$ is strongly accretive, then the variational inequality (3.11) has a unique solution in F. Now we show that $\{x_n\}_{n=1}^{\infty}$ is bounded. Let $p \in F$ then, for every $i \in \mathbb{N}$, $T_i p = p$. From (3.10), we obtain

$$||y_{n} - p|| = ||\alpha_{n}u + (1 - \delta)(1 - \alpha_{n})x_{n} + \delta \sum_{i \geq 1} \sigma_{i,n}T_{i}x_{n} - p||$$

$$\leq \alpha_{n}||u - p|| + (1 - \delta)(1 - \alpha_{n})||x_{n} - p||$$

$$+\delta \sum_{i \geq 1} \sigma_{i,n}||T_{i}x_{n} - p||$$

$$\leq \alpha_{n}||u - p|| + (1 - \alpha_{n})||x_{n} - p||$$

$$\leq \alpha_{n}||u - p|| + ||x_{n} - p||.$$
(3.12)

Also from (3.10) and (3.12), we obtain

$$||x_{n+1} - p|| = ||\beta_n \gamma f(x_n) + (I - \beta_n \mu G) y_n - p||$$

$$\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||$$

$$+||(I - \beta_n \mu G) y_n - (I - \beta_n \mu G) p||$$

$$\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||$$

$$+(1 - \tau \beta_n) ||y_n - p||$$

$$\leq \beta \gamma \beta_n ||x_n - p|| + \beta_n ||\gamma f(p) - \mu G(p)||$$

$$+(1 - \tau \beta_n) [\alpha_n ||u - p|| + ||x_n - p||]$$

$$\leq [1 - \beta_n (\tau - \gamma \beta)] ||x_n - p||$$

$$+\beta_n [||\gamma f(p) - \mu G(p)|| + ||u - p||]$$

$$\leq \max \left\{ ||x_n - p||, \frac{||\gamma f(p) - \mu G(p)|| + ||u - p||}{\tau - \gamma \beta} \right\}$$

$$\leq \cdots \leq \max \left\{ ||x_1 - p||, \frac{||\gamma f(p) - \mu G(p)|| + ||u - p||}{\tau - \gamma \beta} \right\}.$$

Therefore, $\{x_n\}$ is bounded. Hence $\{y_n\}$, $\{T_ix_n\}$, $\{Gy_n\}$, $\{GT_iy_n\}$ and $\{f(y_n)\}$ are also bounded.

Next, we show that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. Define two sequences $\{\lambda_n\}$ and $\{z_n\}$ by $\lambda_n := (1 - \delta)\alpha_n + \delta$ and

$$z_n := \frac{x_{n+1} - x_n + \lambda_n x_n}{\lambda_n}.$$

Observe that $\{z_n\}$ is bounded and that

$$||z_{n+1} - z_n|| - ||x_{n+1} - x_n|| \le \left(\frac{\beta_{n+1}}{\lambda_{n+1}} + \frac{\beta_n}{\lambda_n}\right) M + \left|\frac{\alpha_{n+1}}{\lambda_{n+1}} - \frac{\alpha_n}{\lambda_n}\right| ||u||$$

$$+ \left[\frac{\delta(1 - \alpha_{n+1})}{\lambda_{n+1}} - 1\right] ||x_{n+1} - x_n||$$

$$+ \frac{\delta M}{\lambda_{n+1}} \sum_{i \ge 1} |\sigma_{i,n+1} - \sigma_{i,n}|$$

$$+ \frac{\delta M}{\lambda_{n+1}} \sum_{i \ge 1} \sigma_{i,n} |\lambda_{n+1} - \lambda_n|$$

for some real number $M := \sup_{n \ge 1} \{ || \gamma f(x_n) - \mu G(y_n) ||, || T_i x_n ||, i = 1, 2, ... \}.$ This implies

$$\limsup_{n \to \infty} (||z_{n+1} - z_n|| - ||x_{n+1} - x_n||) \le 0,$$

and by Lemma 2.4, we obtain

$$\lim_{n\to\infty}||z_n-x_n||=0.$$

Hence

$$||x_{n+1} - x_n|| = \lambda_n ||z_n - x_n|| \to 0 \text{ as } n \to \infty.$$
 (3.13)

and from (3.10), we also obtain

$$||x_{n+1} - y_n|| = \beta_n ||y_n f(x_n) - \mu G(y_n)|| \to 0 \text{ as } n \to \infty.$$
 (3.14)

from (3.13) and (3.14), we have

$$\lim_{n \to \infty} ||x_n - y_n|| = 0. \tag{3.15}$$

Next we show that $\lim_{n\to\infty} ||T_i x_n - x_n|| = 0$ for all $i \in \mathbb{N}$. Since $p \in F$, using the same argument in (3.7), we obtain

$$\frac{\delta}{2} \sum_{i \ge 1} \sigma_{i,n} g(||T_i x_n - x_n||) \le \delta \sum_{i \ge 1} \sigma_{i,n} \langle x_n - T_i x_n, j(x_n - p) \rangle$$

$$\le \langle \delta(1 - \alpha_n) x_n - \delta \sum_{i \ge 1} \sigma_{i,n} T_i x_n, j(x_n - p) \rangle$$

$$\le \langle \alpha_n (u - x_n) + x_n - y_n, j(x_n - p) \rangle$$

$$\le [\alpha_n ||u - x_n|| + ||x_n - y_n||]||x_n - p||.$$

From (3.15) and $\lim_{n\to\infty} \alpha_n = 0$, we obtain

$$\lim_{n\to\infty}\sum_{i>1}\sigma_{i,n}||T_ix_n-x_n||=0,$$

it follows that for every $i \in \mathbb{N}$,

$$\lim_{n \to \infty} ||T_i x_n - x_n|| = 0. \tag{3.16}$$

Let $z_t = t\gamma f(z_t) + (1 - t\mu G)Sz_t$, where $S: = \alpha u + (1 - \delta)(1 - \alpha)I + \delta \sum_{i \ge 1} \sigma_{i,\alpha} T_i$, as in Theorem 3.1. Then,

$$z_t - x_n = t(\gamma f(z_t) - Gz_t) + t\mu(Gz_t - G(Sz_t)) + Sz_t - x_n$$

Hence

$$\begin{aligned} ||z_{t} - x_{n}||^{2} &= \langle t(\gamma f(z_{t}) - Gz_{t}) + t\mu(Gz_{t} - G(Sz_{t})) + Sz_{t} - x_{n}, j(z_{t} - x_{n}) \rangle \\ &= t\langle \gamma f(z_{t}) - \mu G(z_{t}), j(z_{t} - x_{t}) \rangle + t\mu\langle Gz_{t} - G(Sz_{t}), j(z_{t} - x_{n}) \rangle \\ &+ \langle Sz_{t} - x_{n}, j(z_{t} - x_{n}) \rangle \\ &\leq t\langle \gamma f(z_{t}) - \mu Gz_{t}, j(z_{t} - x_{n}) \rangle + t\mu\kappa||z_{t} - Sz_{t}||||z_{t} - x_{n}|| \\ &+ ||Sz_{t} - x_{n}||||z_{t} - x_{n}|| \\ &\leq t\langle \gamma f(z_{t}) - \mu Gz_{t}, j(z_{t} - x_{n}) \rangle + t(1 + \mu)||z_{t} - Sz_{t}||||z_{t} - x_{n}|| \\ &+ ||z_{t} - x_{n}||^{2} + ||Sx_{n} - x_{n}||||z_{t} - x_{n}||. \end{aligned}$$

Therefore

$$\langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle \le (1 + \mu \kappa) ||z_t - S z_t|| ||z_t - x_n|| + \frac{1}{t} ||S x_n - x_n|| ||z_t - x_n||$$

Now, taking limit superior as $n \to \infty$ firstly, and then as $t \to 0$, we have

$$\limsup_{t \to 0} \sup_{n \to \infty} \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle \le 0$$
(3.17)

Moreover, we note that

$$\langle \gamma f(p) - \mu G p, j(x_n - p) \rangle = \langle \gamma f(p) - \mu G p, j(x_n - p) \rangle - \langle \gamma f(p) - \mu G p, j(x_n - z_t) \rangle$$

$$+ \langle \gamma f(p) - \mu G p, j(x_n - z_t) \rangle - \langle \gamma f(p) - \mu G z_t, j(x_n - z_t) \rangle$$

$$+ \langle \gamma f(p) - \mu G z_t, j(x_n - z_t) \rangle - \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$

$$+ \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$

$$= \langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle$$

$$+ \mu \langle G z_t - G p, j(x_n - z_t) \rangle$$

$$+ \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$

$$+ \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$
(3.18)

Taking limit superior as $n \to \infty$ in (3.18), we have

$$\begin{split} \limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, \, j(x_n - p) \rangle &\leq \limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, \, j(x_n - p) - j(x_n - z_t) \rangle \\ &+ \mu ||G z_t - G p|| \limsup_{n \to \infty} ||x_n - z_t|| \\ &+ ||\gamma f(z_t) - \gamma f(p)|| \limsup ||x_n - z_t|| \end{split}$$

$$+\limsup_{n\to\infty} \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$

$$\leq \limsup_{n\to\infty} \langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle$$

$$+((\mu + 1) + \alpha \gamma) \|z_t - p\| \limsup_{n\to\infty} |x_n - z_t| \|$$

$$+\limsup_{n\to\infty} \langle \gamma f(z_t) - \mu G z_t, j(x_n - z_t) \rangle$$
(3.19)

since E has a uniformly Gâteaux differentiable norm, so j is norm-to-norm* uniformly continuous on bounded subset of E. Then, from Theorem 3.1 (i.e., $z_t \to p$ $(t \to 0^+)$), we obtain

$$\limsup_{t\to 0} \sup_{n\to\infty} \langle \gamma f(p) - \mu G p, j(x_n - p) - j(x_n - z_t) \rangle = 0,$$

hence, using (3.17) in (3.19), we obtain

$$\limsup_{n \to \infty} \langle \gamma f(p) - \mu G p, j(x_n - p) \rangle \le \limsup_{t \to 0} \sup_{n \to \infty} \langle \gamma f(z_t) - \mu G z_t, j(x_n - p) \rangle$$

$$< 0$$

Finally, we show that $x_n \to p$. From the recursion formula (3.10), by using (2.1) and taking $n \ge N$ where $N \in \mathbb{N}$ is large enough, we obtain

$$\begin{aligned} ||x_{n+1} - p||^2 &= ||\beta_n \gamma f(x_n) - \beta_n \mu G(p) + (I - \beta_n \mu G) y_n - (I - \beta_n \mu G) p||^2 \\ &\leq ||(I - \beta_n \mu G) y_n - (I - \beta_n \mu G) p||^2 + 2\beta_n \langle \gamma f(x_n) - \mu G(p), j(x_{n+1} - p) \rangle \\ &\leq (1 - \beta_n \tau)^2 ||y_n - p||^2 + 2\beta_n \langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle \\ &+ 2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle \\ &\leq \alpha_n ||u - p||^2 + (1 - \beta_n \tau)^2 ||x_n - p||^2 \\ &+ 2\beta_n \langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle \\ &+ 2\beta_n \langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle \end{aligned}$$

On the other hand

$$\begin{split} \langle \gamma f(x_n) - \gamma f(p), \, j(x_{n+1} - p) \rangle &\leq \gamma \beta ||x_n - p|| ||x_{n+1} - p|| \\ &\leq \gamma \beta ||u - p|| ||x_n - p|| \sqrt{\alpha_n} + \gamma \beta (1 - \beta_n \tau) ||x_n - p||^2 \\ &+ \gamma \beta ||x_n - p|| \sqrt{2 |\langle \gamma f(x_n) - \gamma f(p), \, j(x_{n+1} - p) \rangle|} \sqrt{\beta_n} \\ &+ \gamma \beta ||x_n - p|| \sqrt{2 |\langle \gamma f(p) - \mu G(p), \, j(x_{n+1} - p) \rangle|} \sqrt{\beta_n}. \end{split}$$

Since $\{x_n\}$ and $\{f(x_n)\}$ are bounded, we pick a constant $G_0 > 0$ such that

$$\begin{split} \sup \left\{ \gamma \beta ||x_n - p|| ||u - p||, \gamma \beta ||x_n - p|| \left(\sqrt{2 |\langle \gamma f(x_n) - \gamma f(p), j(x_{n+1} - p) \rangle|} \right. \right. \\ \left. + \gamma \beta \sqrt{2 |\langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle|} \right) \right\} < G_0, \forall n \in \mathbb{N}. \end{split}$$

Therefore

$$\langle \gamma f(x_n) - \gamma f(p), \, j(x_{n+1} - p) \rangle \leq \gamma \beta (1 - \beta_n \tau) ||x_n - p||^2 + G_0(\sqrt{\alpha_n} + \sqrt{\beta_n})$$

Hence

$$||x_{n+1} - p||^2 \le \alpha_n ||u - p||^2 + (1 - \beta_n \tau)^2 ||x_n - p||^2$$

$$\begin{aligned} & + 2\beta_{n}\gamma\beta(1-\beta_{n}\tau)||x_{n}-p||^{2} + 2\beta_{n}G_{0}(\sqrt{\alpha_{n}}+\sqrt{\beta_{n}}) \\ & + 2\beta_{n}\langle\gamma f(p) - \mu G(p), j(x_{n+1}-p)\rangle \\ & = \left[1 - 2\beta_{n}(1-\beta_{n}\tau)(\tau-\gamma\beta)\right]||x_{n}-p||^{2} + \alpha_{n}||u-p||^{2} \\ & + 2\beta_{n}G_{0}(\sqrt{\alpha_{n}}+\sqrt{\beta_{n}}) + 2\beta_{n}\langle\gamma f(p) - \mu G(p), j(x_{n+1}-p)\rangle \\ & \leq \left[1 - \beta_{n}(1-\beta_{n}\tau)(\tau-\gamma\beta)\right]||x_{n}-p||^{2} + \theta_{n} \end{aligned}$$

where θ_n : = $\beta_n \left(\alpha_n / \beta_n ||u - p||^2 + 2G_0(\sqrt{\alpha_n} + \sqrt{\beta_n}) + 2\langle \gamma f(p) - \mu G(p), j(x_{n+1} - p) \rangle \right)$ By using Lemma 2.3 we obtain $x_n \to p$ as $n \to \infty$. This complete the proof.

Corollary 3.4 Let H be a real Hilbert space, $\{z_t\}_{t\in(0,1)}$, be as in Theorem 3.2. Then $\{z_t\}_{converges}$ strongly to a common fixed points of the family $\{T_i\}_{i=1}^{\infty}$ say p which is a unique solution of the variational inequality

$$\langle (\mu G - \gamma f) p, q - p \rangle \ge 0, \ \forall q \in F.$$

Corollary 3.5 Let H be a real Hilbert space and let C a nonempty closed convex subset of H. Let $G: H \to H$, $f: E \to E$, $\{T_i\}_{i=1}^{\infty} F$, $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be as in Theorem (3.1), then $\{x_n\}_{n=1}^{\infty}$ converges strongly to $p \in F$, which is also the unique solution of the variational inequality

$$\langle \gamma f(p) - \mu G p, q - p \rangle \le 0, \ \forall q \in F$$

Acknowledgements The author is grateful to the editor and the reviewers suggestions which improved the contents of the article.

References

- Agarwal, R.P., ORegan, D., Sahu, D.R.: Fixed point theory for lipschitzian-type mappings with applications. Springer, Dordrecht Heidelberg, London, New York (2000)
- Ali, B.: Iterarive approximation of common fixed points for families of nonexpansive mappings and solutions of variational inequalitites. Adv. Nonlinear Var. Inequal. 12(2), 65–81 (2009)
- 3. Bynum, W.L.: Normal structure coefficients for Banach spaces. Pacific J. Math. 86, 427–436 (1980)
- 4. Ali, B., Ugwunnadi, G.C., Shehu, Y.: A general iterative algorithm for nonexpansive mappings in Banach spaces. Ann. Funct. Anal. 2(2), 11–22 (2011)
- Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, vol. 1965, XVII, p. 326 (2009). ISBN: 978-1-84882-189-7
- Chidume, C.E., Li, J., Udomene, A.: Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 133(2), 473480 (2005)
- Jung, J.S.: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302(2), 509520 (2005)
- Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)
- Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Ekonomika i Matematicheskie Metody 12, 747–756 (1976)
- 10. Lim, T.C.: Characterization of normal structure. Proc. Am. Math. Soc. 43, 313–319 (1974)
- Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and non-strictly convex minimization. Set Valued Anal. 16, 899–912 (2008)
- Maingé, P.E.: Approximation methods for common xed points of nonexpan-sive mappings in Hilbert space. J. Math. Anal. Appl. 325, 469–479 (2007)
- Marino, G., Xu, H.K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318(1), 4352 (2006)
- Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. 241(1), 4655 (2000)

- Noor, M.A.: A class of new iterative methods for solving mixed variational inequalities. Math. Comput. Modell. 31, 11–19 (2000)
- Stampacchi, G.: Formes bilineaires coercivites sur les ensembles convexes, vol. 258, pp. 4413–4416. C. R. Acad. Sciences, Paris (1964)
- Suzuki, T.: Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305(1), 227–239 (2005)
- Tian, M.A.: A general iterative method for nonexpansive mappings in Hilbert space. Nonlinear Anal. 73, 689–694 (2010)
- 19. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659678 (2003)
- 20. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)
- 21. Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. (2) 66(1), 240–256 (2002)
- 22. Xu, H.-K.: Inequality in Banach spaces with applications. Nonlinear Anal. 16(12), 1127-1138 (1991)
- Xu, Z.B., Roach, G.F.: Characteristic inequalities of uniformly smooth Banach spaces. J. Math. Anal. Appl. 157(1), 189210 (1991)
- Yamada, I.: The hybrid steepest-descent method for variational inequality problems over the intersection
 of the fixed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications. In: Butnariu, D., Censor, Y., Reich, S. (eds.), pp. 473–504. North-Holland,
 Amsterdam, Holland (2001)
- 25. Yao, Y., Liou, Y.-C., Li, C-L., Lin H.-T.,: Extended extragradient methods for generalized varitional inequalities, fixed point Theory and applications. Volume 2012, Article ID 237083, p. 14
- Yao, Y., Xu, H.-K.: Iterative methods for finding minimum-norm fixed points of nonexpan-sive mappings with applications. Optimization 60(6), 645–658 (2011)

