Skip to main content
Log in

Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fungal co-cultures appear to be advantageous for ligninolytic enzyme (LE) production compared to single fungal strains. The aims of this study were (1) to determine the type of fungal interactions in the co-cultures of two white-rot fungi (WRF, Pycnoporus sanguineus and Trametes maxima) and eight soil-borne micromycetes (SBM), (2) to determine the laccase and manganese peroxidase (MnP) activities and the hydrogen peroxide (H2O2) production in two compatible fungal and micromycetic co-cultures in submerged fermentation, and (3) to understand the effect of H2O2 on LE production by WRF through a dose-response bioassay. In the co-culture of SBM and Pycnoporus sanguineus, the main interaction was deadlock at a distance, whereas T. maxima showed competitive antagonism and replaced the SBM. In the agar plates, Purpureocillium lilacinum (27.8-fold increase) and Beauveria brongniartii (9.4-fold increase) enhanced the laccase and MnP activities of P. sanguineus, and Metarhizium anisopliae (Ma129) (0.83-fold increase) and Trichoderma sp. SP6 (22.6-fold increase) similarly enhanced these activities in T. maxima. In submerged fermentation, P. lilacinum also increased the laccase and MnP activities of P. sanguineus. The laccase activity of T. maxima only increased in the co-culture with B. brongniartii. The co-cultures achieved higher H2O2 production compared to the WRF monoculture, which played a vital role in the increase of LE. The dose-response assays revealed that low concentrations of H2O2 (2.94 and 14.69 mM) enhance the laccase and MnP activities in WRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Funding

The authors are grateful for the funding of the project “Mechanism of increasing ligninolytic enzyme activities of fungal co-cultures between white rot fungi and soil borne micromycetes” by the Institute Mexico-United States of the California University (UC-MEXUS-CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Cupul Wiberth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiberth, CC., Casandra, AZ.C., Zhiliang, F. et al. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures. Ann Microbiol 69, 171–181 (2019). https://doi.org/10.1007/s13213-018-1413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1413-4

Keywords

Navigation